首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct counts of fish obtained by night spotlighting were compared with species composition and population estimates obtained from three-pass electrofishing obtained across 29 sites along small clear streams in the Otago region of New Zealand. The influence of habitat variables on the relative efficiency of each method was also examined. The same seven species of fishes were identified by both methods. Juvenile brown trout Salmo trutta were the only species present in sufficient numbers to allow comparison of abundance estimates using the two methods. A total of 777 brown trout were counted by spotlight and 803 brown trout were caught using electrofishing. Estimates of abundance obtained by spotlighting reflected population estimates obtained by three-pass electrofishing across most habitats. Electrofishing produced higher population estimates relative to spotlighting in fast-flowing turbulent riffle habitats, whereas counts obtained by spotlighting tended to be higher relative to electrofishing in slow-flowing pool habitats. The results suggest that spotlighting is an effective method for assessing fish composition and brown trout abundance in small clear water streams, although the extremes of water velocity may influence efficiency of both spotlighting and electrofishing.  相似文献   

2.
Growth and maximum size of stream fishes can be highly variable across populations. For salmonid fishes in streams, individuals from populations confined to headwater streams often exhibit small size at maturity in comparison to populations with access to main-stem rivers. Differences in prey size, prey availability, and metabolic constraints based on temperature may explain patterns of maximum size and growth. In this study, cutthroat trout from headwater stream populations that were isolated above a waterfall were compared to individuals from populations in similar sized streams without a movement barrier and from large main-stem rivers. Cutthroat trout from smaller streams with or without a movement barrier were significantly smaller at a given age than fish from main-stem rivers, where individuals were able to achieve a much larger maximum size. Comparisons of invertebrate drift abundance and size in the three types of streams revealed that drift size did not differ between stream categories, but was highest per volume of water in large main-stem rivers. Across all stream types, prey abundance declined from summer to fall. Temperature declined over the course of the season in a similar manner across all stream types, but remained relatively high later in the season in main-stem river habitats. Prey availability and temperature conditions in main-stem rivers may provide more optimal growing conditions for fish as individuals increase in size and become constrained by prey availability and temperature conditions in small streams. Maintaining connectivity between small spawning and rearing tributary streams and main-stem river habitats may be critical in maintaining large-bodied populations of stream salmonids.  相似文献   

3.
Neglect of imperfect capture efficiency leads to biased inferences on population abundance, and correspondingly, seriously affects ecological research, bioassessment, conservation, and fisheries management. To date, many research studies have studied capture efficiency of salmonid fishes, but the catchability of fishes living in non-salmonid streams has received much less attention. This paper estimates capture probability for seven fish species in densely vegetated lowland streams by using double-pass electrofishing data and an N-mixture removal model. Results show that capture probability can vary among species, and between-stream differences have a stronger influence on the abundance and the catchability than within-stream variability. Estimation uncertainty decreases with observed abundance, and the mean catchability tends to be the highest for the medium abundant species. These findings suggest that relative abundances from single-pass data are biased to a species- and habitat-specific degree. Therefore, plausible estimation of capture probability from double-pass electrofishing requires data collected from numerous sites that cover a wide range of the environmental gradient in lowland streams.  相似文献   

4.
1. Even though intensive aquaculture production of salmonids in lakes occurs in many locations around the world published studies on the survival and reproductive success of escaped cultured salmonids in freshwater ecosystems are not common. A recent expansion of aquaculture in Chile has led it to become the world's second largest producer of cultured salmonids.
2. We document the recent history of escaped and self-sustaining salmonid populations over a wide spatial scale and a long temporal scale in Chilean Patagonian lakes. Our hypotheses are that salmonid density in lakes will be higher where there is intensive aquaculture, due to greater numbers of potential escapees. Secondly, if non-native salmonids have adverse impacts on native fishes, increases in the abundance of non-native species should be associated with decreases in relative abundance of native species. Finally, if the first two hypotheses are correct we anticipate that diets of salmonids may show evidence of predation on native fishes, diet overlap with native species, and evidence of the influence of feed from aquaculture operations in the diets of salmonids and native fishes.
3. We sampled six lakes with gill nets from 1992 to 2001. Our results show that the relative abundance of free-living salmonids is closely related to the level of fish farming production. Salmonids are the top predators and in lakes with fish farming the main prey item is native fishes. The relative abundance of native fishes has decreased, most likely due to predation by salmonids.
4. Our study contributes to the understanding of the effects of non-native salmonids in oligotrophic lakes, and it provides a starting point to judge the establishment of new fish farming sites in lakes around the world.  相似文献   

5.
The interaction between native fishes and salmonids introduced in Patagonia at the beginning of the 20th Century, developed at the same time as the environmental change. The phenomenon of global warming has led to the formulation of predictions in relation to changes in the distribution of species, in the latitudinal dimension, both at intralacustrine, or small streams levels. The aim of the present work includes three main objectives: a) to compose a general and updated picture of the latitudinal distribution range of native and alien fishes, b) to analyze the historical changes in the relative abundance of Percichthys trucha, Odontesthes sp., and salmonids in lakes and reservoirs, and c) to relate the diversity and relative abundance of native and salmonid fishes to the environmental variables of lakes and reservoirs. We analysed previous records and an ensemble of data about new locations along the northern border of the Patagonian Province. We compared current data about the relative abundance of native fishes and salmonids in lakes and reservoirs, with previous databases (1984–1987). All samplings considered were performed during spring-summer surveys and include relative abundance, as proportions of salmonids, P. trucha, and Odontesthes sp. For the first time, we found changes in fish assemblages from twenty years back up to the present: a significant decline in the relative abundances of salmonids and an increase of P. trucha. We studied the association between the diversity and relative abundance of native and salmonid fishes and the environmental variables of lakes and reservoirs using Canonical Correspondence Analysis. Relative abundance showed mainly geographical cues and the diversity relied largely on morphometric characteristics. Relative abundance and diversity seem to have a common point in the lake area, included into the PAR concept. Native abundance and alien diversity were negatively related with latitude. Greater native diversity was observed in lakes with high PAR compared with salmonids. Historical changes such as southward dispersion, relative abundance changes, and geographical patterns for relative abundance and diversity are basic concepts needed not only in future research but also in management design for Patagonian fish populations.  相似文献   

6.
This study is based on a 23‐year sampling of fish and compares raw population abundance and biomass obtained from three to six consecutive electrofishing passes in a small lowland stream in Poland, with values of calculated density and a biomass from the Zippin model. Three density estimates and four biomass estimates obtained with three passes were higher than those estimates based on six catches. This discrepancy occurred because fewer fish were collected in the first pass than in the second pass. However, when the six consecutive passes were considered, the higher raw abundance and biomass in the second pass did not produce any significant error in the density calculation. A catchability decline resulted from the low number of juvenile fish captured when there was a high number of fish that had successfully spawned in a given year. Nevertheless, fish density assessment on the basis of three runs in lowland streams is recommended for quantitative sampling, and the problems that sometimes emerge will be explained in this study.  相似文献   

7.
In central Europe, both brown trout Salmo trutta and European grayling Thymallus thymallus are threatened native salmonid species with high value in recreational angling and nature conservation. On the other hand, rainbow trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis are intensively stocked non-native species of high angling value but no value for nature conservation. This study tested if harvest rates of native salmonids are negatively correlated to intensive stocking and harvest rates of non-native salmonids in inland freshwater recreational fisheries. Data were collected from 250 fishing sites (river and stream stretches) over 13 years using mandatory angling logbooks. Logbooks were collected from individual anglers by the Czech Fishing Union in the regions of Prague and Central Bohemia, Czechia (central Europe) and processed by the author of this study. In result, anglers harvested 200,000 salmonids with total weight of 80 tons over 13 years. Intensive stocking of multiple salmonid species lead to slightly lower harvests of native salmonids. Inversely, intensive harvests of multiple salmonid species lead to slightly higher harvest of native salmonids. Recapture rates of stocked salmonids were relatively low (0.6%–3.7%), proving fish stocking moderately ineffective. Since the effects of non-native salmonid stocking and harvest rates on native salmonid harvest were significant but not strong, it is suggested that rivers and streams that support fishing for non-native salmonids still support fishing for native salmonids. However, this idea does not apply for fishing sites with really high intensity of non-native salmonid stocking – harvest rates of natives were very low on these fishing sites.  相似文献   

8.
Although climate change is an important factor affecting inland fishes globally, a comprehensive review of how climate change has impacted and will continue to impact inland fishes worldwide does not currently exist. We conducted an extensive, systematic primary literature review to identify English-language, peer-reviewed journal publications with projected and documented examples of climate change impacts on inland fishes globally. Since the mid-1980s, scientists have projected the effects of climate change on inland fishes, and more recently, documentation of climate change impacts on inland fishes has increased. Of the thousands of title and abstracts reviewed, we selected 624 publications for a full text review: 63 of these publications documented an effect of climate change on inland fishes, while 116 publications projected inland fishes’ response to future climate change. Documented and projected impacts of climate change varied, but several trends emerged including differences between documented and projected impacts of climate change on salmonid abundance (P = 0.0002). Salmonid abundance decreased in 89.5% of documented effects compared to 35.7% of projected effects, where variable effects were more commonly reported (64.3%). Studies focused on responses of salmonids (61% of total) to climate change in North America and Europe, highlighting major gaps in the literature for taxonomic groups and geographic focus. Elucidating global patterns and identifying knowledge gaps of climate change effects on inland fishes will help managers better anticipate local changes in fish populations and assemblages, resulting in better development of management plans, particularly in systems with little information on climate change effects on fish.  相似文献   

9.
The introduction of nonnative salmonids in the Southern Hemisphere generally leads to a reduction in invertebrate abundance and changes in assemblage composition. In the Cape Floristic Region of South Africa, introduced rainbow trout Oncorhynchus mykiss is the dominant predator in many headwater streams, where they have replaced small‐bodied native fishes such as Breede River redfin Pseudobarbus burchelli. To examine the consequences of this species replacement on food web structure, we used a month‐long field experiment to compare the top‐down effects of Breede River redfin and rainbow trout on benthic invertebrate assemblages (abundance and composition) and basal resources (periphyton and particulate organic matter) in 1 × 1.5 m of plastic cages. Benthic invertebrate abundance was more strongly depleted in the cages with redfin than in the cages with trout, and redfin and trout had distinct effects on invertebrate assemblage composition. On the other hand, neither redfin nor trout had a significant influence over standing stocks of periphyton or organic matter, implying that their differential effects on benthic invertebrates did not cascade down to the base of the stream food web in our experiment. Gut content analysis showed that aquatic invertebrates contributed more to the diet of redfin, while terrestrial invertebrates contributed more to the diet of trout, which may be responsible for the relatively weak effect of trout on aquatic invertebrates. This pattern contrasts with nonnative salmonid impacts elsewhere in the Southern Hemisphere. That trout can strongly alter the structure of benthic invertebrate assemblages, in addition to severely depleting native fish abundance, in Cape Floristic Region headwater streams should be weighed into management decisions, and our findings highlight the need for a detailed understanding of species‐specific top‐down effects where native predators are replaced by invasive predators.  相似文献   

10.
There is increasing interest in the potential of single-pass and timed electrofishing to assess status and trends in fish populations. However, where capture probability varies over time, there is a risk that uncalibrated electrofishing data could fail to detect, or provide biased estimates of trends. This study analysed a long-term electrofishing dataset collected over 50 years in an intensively studied catchment where egg deposition and emigrant production declined by c. 82% and 35% over the same time. The electrofishing data were used to illustrate the effects of changing capture probability on estimated trends in juvenile Atlantic salmon Salmo salar abundance. Temporal variability in capture probability was modelled. Trends in abundance were then estimated from uncalibrated single-pass electrofishing count data and compared with estimates from data calibrated for capture probability. The calibrated data revealed significant declines in S. salar fry (age 0) and parr (age ≥ 1) abundance. However, the trend estimates from the uncalibrated data were positively biased and not significant. Exploration of alternative (realistic) scenarios with different trends in true abundance and capture probability suggests that uncalibrated electrofishing data can provide very misleading estimates of trends. The problem is exacerbated in data where capture probability is low. It is recommended that single-pass and timed electrofishing methods should not be used to assess trends in fish populations without regular (annual) calibration.  相似文献   

11.
Thirty years ago, Fausch (Can J Zool 62:441–451, 1984) proposed a simple model of optimal positions for drift-feeding salmonids in streams, whereby fish maximize their net energy intake (NEI) by selecting focal points in low water velocity near faster currents that deliver abundant drifting invertebrates. The theory was based on earlier observations in artificial and natural streams describing characteristics of salmonid positions and a conceptual model by Chapman (Am Nat 100:345–357, 1966). A test of this simple drift foraging model in a laboratory stream showed that the growth rate of juvenile trout and salmon increased with NEI, and that the rank of NEI at positions held by coho salmon (Oncorhynchus kisutch) correlated nearly perfectly with their rank in the dominance hierarchy. Fausch (1984) inferred from these findings that positions that optimize NEI, within the constraints of the dominance hierarchy, are the resource for which these stream salmonids compete. In turn, the model was used to test the effects of interspecific competition by coho salmon on the foraging positions held by brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta), and these results were used to infer potential effects of the introduced salmon on resident trout in Lake Michigan tributaries. Though the goals for this model were originally modest, it was tested in the field and further refined by Hughes and Dill (Can J Fish Aquat Sci 47:2039–2048, 1990) and others. During the last 20 years, the general theory has been incorporated into other models, which have been applied widely to analyze salmonid distribution and abundance in streams and rivers and used for management and restoration of habitat and flow regimes to benefit these fishes.  相似文献   

12.
Understanding how ecosystem processes influencing fish distribution operate across spatial scales is important to understand biological invasions. Salmonids, originally from the Northern Hemisphere, have been repeatedly introduced throughout the world, making them an ideal group to test hypotheses about factors driving invasions. We assessed the influence of environmental variables at the watershed scale on the abundance and structure of salmonid assemblages in the breeding streams of the Upper Limay river basin, Rio Negro, Argentina. We combined field captures with digital map data and geographic information systems to examine landscape-level patterns of salmonid abundance in 35 representative sub-basins of the environmental gradient. We employed a hierarchical cluster analysis and classification and regression tree models to relate the abundance of salmonids and types of species assemblages with environmental characteristics at watershed level. We found stream localization, precipitation regime, altitude and air temperature to be important predictors of the abundance and assemblage structure of salmonids. Total catches showed an increasing gradient of catch-per-unit-effort from west to east and from north to south, with Oncorhynchus mykiss being the most abundant species. O. mykiss relative abundance was westward skewed, where smaller catchments with steeper and shaded valleys are drained by less productive streams with more irregular hydrological regimes, like those found in this species' North American native range. In contrast, the abundance of Salmo trutta abundance was eastward skewed, where larger, sunnier and more gently sloped catchments result in more productive streams with stable hydrological regimes, like those found in that species' European native range. Thus, differential salmonid abundance could result from the interplay between the evolutionary fingerprint left by each species' native environment (especially flow and temperature regimes) and the availability of those conditions in new environments to which they have been translocated. By furthering our understanding of how landscape conditioned invasion success, these findings can help guide the management of economically important introduced fish.  相似文献   

13.
14.
15.
Six lower order streams in the south‐west of Colombia were sampled on a monthly basis in order to determine the status of Trichomycterus species in relation to their food supply (macroinvertebrates), and physico‐chemical habitat. Fishes were sampled by electrofishing and samples taken for dietary analysis. Macroinvertebrates were collected using a Surber sampler. Trichomycterus spp. populations were present in all streams in habitats ranging from soft to hard substrata and from relatively stagnant waters to fast flowing streams. The average density of the fishes ranged from 0·06 to 1·14 individuals m−2 with peaks in population corresponding to recruitment of individuals of <1 g. Trichomycterus spp. were found to be benthic carnivores with a diet mostly of aquatic insects. The index of relative importance for the dietary items was 35·0, 10·5, 1·9 and 7·8% for Chironomidae, Trichoptera, Ephemeroptera and Oligochaeta respectively. Combined with physical habitat data, ordinations of fishes and macroinvertebrate data suggested that differences in abundance among sites were driven by stream size and flow regime, indicating dominance of the physical habitat, although a high correlation between Trichomycterus spp. and Chironomidae abundances ( r  = 0·81, P  = 0·049) was also recorded.  相似文献   

16.
The genus Salmincola is an ectoparasitic copepod group commonly infesting the branchial and buccal cavities of salmonids. While negative impacts on hatchery fishes have been reported, their impacts on wild fish populations and distribution patterns are critically understudied. In the Shiretoko Peninsula, Hokkaido, Japan, we found parasites belonging to this genus on the branchial cavity of a stream salmonid, Southern Asian Dolly Varden Salvelinus curilus. All parasites recovered were identified as Salmincola edwardsii based on morphological characteristics and partial 28S rDNA sequences. Prevalence was highly heterogeneous even among neighboring streams (0–54.8%, < 10 km) with the mean intensity among streams being generally low (2.19 parasites/infeted fish). Despite the low intensity, quantile regression analysis showed negative trends between parasite intensity and host condition, suggesting that the infestation of S. edwardsii has a potential negative impact on the host salmonid. In addition, a single copepod was found from an anadromous fish, which could indicate some salinity tolerance of the copepods. It is important to evaluate the effects of Salmincola spp. on host species and determine the limiting factors on the parasite's distribution for proper management.  相似文献   

17.
The current paradigm of fish community distribution is one of a downstream increase in species richness by addition, but this concept is based on a small number of streams from the mid-west and southern United States, which are dominated by cyprinids. Further, the measure of species richness traditionally used, without including evenness, may not be providing an accurate reflection of the fish community. We hypothesize that in streams dominated by anadromous salmonids, fish community diversity will be affected by the presence of the anadromous species, and therefore be influenced by those factors affecting the salmonid population. Catamaran Brook, New Brunswick, Canada, provides a long-term data set to evaluate fish community diversity upstream and downstream of an obstruction (North American beaver Castor canadensis dam complex), which affects distribution of Atlantic salmon Salmo salar. The Shannon Weiner diversity index and community evenness were calculated for sample sites distributed throughout the brook and over 15 years. Fish community diversity was greatest upstream of the beaver dams and in the absence of Atlantic salmon. The salmon appear to depress the evenness of the community but do not affect species richness. The community upstream of the beaver dams changes due to replacement of slimy sculpin Cottus cognatus by salmon, rather than addition, when access is provided. Within Catamaran Brook, location of beaver dams and autumn streamflow interact to govern adult Atlantic salmon spawner distribution, which then dictates juvenile production and effects on fish community. These communities in an anadromous Atlantic salmon dominated stream do not follow the species richness gradient pattern shown in cyprinid-dominated streams and an alternative model for stream fish community distribution in streams dominated by anadromous salmonids is presented. This alternative model suggests that community distribution may be a function of semipermeable obstructions, streamflow and the distribution of the anadromous species affecting resident stream fish species richness, evenness, biomass and production.  相似文献   

18.
An experimental analysis of self-thinning in juvenile steelhead trout   总被引:1,自引:0,他引:1  
Ernest R. Keeley 《Oikos》2003,102(3):543-550
Mobile animal populations have been proposed to decline in density according to a slope based on the allometry of metabolic requirements or space requirements. In salmonid fishes, metabolic rate and food consumption scale to body mass by the exponent 0.87 and 0.73, respectively; whereas the territory size of steelhead trout scales to body mass by the exponent 0.86. Experimental cohorts of juvenile steelhead trout ( Oncorhynchus mykiss ) were used to test the hypothesis that mobile animal populations composed of individuals with indeterminate growth decline in density as a result of self-thinning. After controlling for experimentally manipulated levels of food abundance and stocking density, cohorts of steelhead trout declined in density with increasing body size according to a slope closest to the allometry of food consumption. Densities of steelhead trout were inversely related to average mass by the exponent −0.74. Despite the similarity to the food consumption slope, a relatively wide confidence interval also precluded distinguishing the slope either the metabolic rate or territory size slopes. Data from the literature were also examined to determine if there was general support for the idea of self-thinning in natural populations of stream-dwelling salmonid fish. Although not all data suggest that populations of salmonids in streams decline as a result of density-dependent intraspecific competition, at least some appear to fit the idea of self-thinning; especially when density is above a minimum level of habitat saturation.  相似文献   

19.
Copp  G. H.  Carter  M. G.  & Faulkner  H. 《Journal of fish biology》2003,63(S1):248-249
Population behaviours associated with the migrations of coarse (non‐salmonid) fishes within river basins are amongst the most poorly understood dispersion mechanisms of temperate freshwater organisms, which in rivers are expected to be influenced by river discharge. We examined the timing and intensity of fish movements (via trapping) between the River Avon (Hampshire, England) and a small floodplain tributary, Ibsley Brook, and tested for correlations with trends in river discharge (i.e. mean cm of change in stage during trapping), water temperature and brook water velocity over twelve months in 1999–2000. 0‐group fishes dominated the catches. Intensities of movement between the brook and the river were similar in most months, but seasonal patterns were observed overall and for individual species. Few significant differences in overall numbers of fish were observed between the discharge trends, but many individual species demonstrated differences, mostly as more intense movement under fast rising discharge. Fish numbers in five species were correlated with river discharge trend, and movements in some species were correlated with the rate of temperature change (Δ° C 10 h sampling), and with changes in brook water velocity. Our results suggest daily movements between the river and small tributary brooks are triggered by changes in light intensity and water velocity, whereas seasonal movements of species between the river and brook are driven by changes in river discharge and water temperature, in particular associated with flood events. This study emphasizes the importance of connectivity in river systems, as fish movement between the Avon and its annexes occur under all flow regimes, but especially with rapidly rising discharge.  相似文献   

20.
This work provides new length-weight information for seven species of freshwater fishes. The analyzed specimens were collected monthly during a year (April 2018–March 2019) in a coastal lagoon system and its associated streams in southern Uruguay. During each sampling campaign, fishes were captured using gillnets in the lagoon and electrofishing in the streams. This study reports a new maximum size for four species and the first length-weight relationship report for Gymnogeophagus terrapurpura. Length-weight estimates and their confidence intervals are provided for all species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号