首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is the latest member of the vasoactive intestinal polypeptide (VIP) family of neuropeptides present in nerve fibres in many peripheral organs. Using double immunohistochemistry, with VIP as a marker for intrinsic innervation and calcitonin-gene related peptide (CGRP) as a marker for mainly extrinsic innervation, the distribution and localization of PACAP were studied in the rat pancreas. PACAP was demonstrated in nerve fibres in all compartments of the pancreas and in a subpopulation of intrapancreatic VIP-containing ganglion cells. PACAP and VIP were co-stored in intra- and interlobular nerve fibres innervating acini, blood vessels, and in nerve fibres within the islets of Langerhans. No PACAP immunoreactivity was observed in the islet cells. Another population of PACAP-immunoreactive nerve fibres co-localized with CGRP innervated ducts, blood vessels and acini. PACAP/CGRP-positive nerve fibres were also demonstrated within the islets. Neonatal capsaicin reduced the PACAP-38 concentration by approximately 50%, and accordingly a marked reduction in PACAP/CGRP-immunoreactive nerve fibres in the exocrine and endocrine pancreas was observed. Bilateral subdiaphragmatic vagotomy caused a slight but significant decrease in the PACAP-38 concentration compared with controls. In conclusion, PACAP-immunoreactive nerve fibres in the rat pancreas seem to have dual origin: extrinsic, most probably sensory fibres co-storing CGRP; and intrinsic, constituting a subpopulation of VIP-containing nerve cell bodies and fibres innervating acinar cells and islet cells. Our data provide a morphological basis for the reported effects of PACAP in the pancreas and suggest that PACAP-containing nerves in the rat pancreas may have both efferent and sensory functions.  相似文献   

2.
The present study was designed to investigate and to compare the chemical coding of nerve fibres supplying major populations of neurons in the caudal mesenteric (CaMG) and anterior pelvic (APG) ganglion in juvenile male pigs (n=5) using double-labelling immunofluorescence. The co-existence patterns of some biologically active substances including tyrosine hydroxylase (TH) and vesicular acetylcholine transporter (VAChT) as well as vasoactive intestinal polypeptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), Leu5-enkephalin (LENK) and serotonin (5-HT) were analysed under a confocal laser scanning microscope. Profound differences in the neurochemical features of the nerve terminals between the ganglia were observed. Moreover, there were also distinct differences in the chemical coding of nerve fibres associated with the particular populations and subpopulations of neurons within the ganglia. In both ganglia, nearly all adrenergic and cholinergic neurons were supplied with VAChT-positive nerve fibres (putative preganglionic fibres). However, in the CaMG, they were more numerous and, in contrast to the APG, many of them also stained for VIP. In the APG, a great number of nerve terminals expressed immunoreactivity to SP and CGRP (putative collaterals of sensory neurons). Interestingly, they densely supplied almost exclusively adrenergic neurons. SP-positive nerve fibres were moderate in number in the CaMG, but, in addition to VAChT-IR nerve terminals, the most numerous populations of nerve fibres in this ganglion were those expressing highly colocalized immunoreactivities to CGRP and LENK, and those which stained for 5-HT (putative processes of enteric neurons). However, these fibres supplied almost exclusively larger, intensely stained for TH and clustered adrenergic neurons. This diversity of the nerve terminals reflects the complexity of nerve circuits involved in the innervation of structures supplied by neurons in the porcine CaMG and APG. It also demonstrates the importance of nerve inputs for the proper function of autonomic neurons and thus their target tissues.  相似文献   

3.
This study investigated immunohistochemical properties of cholinergic neurons in the anterior pelvic ganglion (APG) of juvenile male pigs (n=7). Cholinergic neurons were identified using antibodies against choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). Immunoblotting was applied to verify the specificity of ChAT-immunostaining. Western blotting performed on APG tissue homogenates detected single immunoreactive protein with a molecular weight matching that of ChAT (71.6 kDa). It was found that many APG neurons expressed immunoreactivity to ChAT or VAChT (40% and 39% of the neurons, respectively). The analysis of adjacent sections from the ganglion revealed complete colocalization of ChAT and VAChT in these nerve cells. Furthermore, virtually all the ChAT-positive neurons were tyrosine hydroxylase (TH)-negative (non-adrenergic) but many of them displayed immunoreactivity to nitric oxide synthase (NOS), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) or somatostatin (SOM). There were also single nerve cell bodies that stained for neither ChAT nor TH. The comparison of the adjacent sections revealed that NOS, VIP, NPY and SOM were simultaneously co-expressed in the majority of the cholinergic somata. ChAT- or VAChT-positive varicose nerve terminals supplied nearly all neuronal profiles within the ganglion often forming loose basket-like formations surrounding the particular nerve cell bodies. The present study for the first time has revealed that nearly all non-adrenergic neurons in the porcine APG are cholinergic in nature, i.e. express immunoreactivity for ChAT and VAChT. Considering a high coincidence between the chemical coding of non-adrenergic (cholinergic) nerve fibres supplying some porcine male reproductive organs described in earlier papers and that of cholinergic pelvic neurons found in this study it is further concluded that pelvic ganglia are probably the major source of cholinergic innervation for the porcine urogenital system.  相似文献   

4.
Indirect double immunofluorescence labelling for eight neuropeptides in the pancreas of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of certain neuropeptides in the exocrine and endocrine pancreas. Immunoreactivity of substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), FMRFamide (FMRF), and galanin (GAL) was localized in nerve fibers distributed between the acini and around the duct system and vasculature of the exocrine pancreas. In these regions, CGRP-immunoreactive fibers were more numerous than those containing the other five peptides. Almost all SP fibers showed coexistence of SP with CGRP, and about one third of fibers also showed coexistence of SP with VIP, NPY, FMRF, and GAL. In the endocrine pancreas, SP, CGRP, VIP, and GAL were recognized in the nerve fibers around and within the islets of Langerhans, and VIP and GAL fibers were more numerous than SP and CGRP fibers. All CGRP fibers, and about half of the VIP and GAL fibers were immunoreactive for SP. NPY- and FMRF-immunoreactive cells were found at the periphery of the islets. These findings suggest that the exocrine and endocrine pancreatic functions of the bullfrog are under the control of peptidergic innervation.  相似文献   

5.
The distribution of vasoactive intestinal polypeptide (VIP) containing nervous elements in the chicken pancreas was immunohistochemically investigated by light microscopy. Strongly VIP immunoreactive ganglia existed in the interlobular connective tissue. Ganglion containing both VIP immunoreactive and non-immunoreactive nerve cells was occasionally observed in the connective tissue. Almost all the ganglion cells also showed acetylcholinesterase (AChE) activity. No extrapancreatic nerve bundles containing VIP immunoreactive nerve fibres were detected. VIP immunoreactive nerve fibres formed plexuses in the subepithelial layer of secretory ducts and the muscle layer of small arteries. The distribution pattern of VIP immunoreactive nerve fibers was similar to that of AChE-positive nerve fibers on adjacent sections. The exocrine pancreas received a rich supply of varicose nerve fibers showing VIP immunoreactivity. B-islets also were richly innervated by VIP immunoreactive varicose nerve fibers, whereas A-islets, only poorly. These observations suggest that VIP containing nerves in the chicken pancreas have an intrinsic origin, are probably derived from VIP immunoreactive, intrapancreatic ganglion cells and innervate secretory ducts, arteries, acinar cells and B-islets, and that VIP must coexist with acetylcholine in the nervous elements.  相似文献   

6.
The distribution of calcitonin gene-related peptide (CGRP), substance P/tachykinin (SP/TK), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and gastrin-releasing peptide (GRP) immunreactivities (IR) in the rat pancreas was investigated using radioimmunoassay and immunohistochemistry. CGRP, NPY and VIP tissue contents are much higher than GRP and SP/TK concentrations. Peptide-containing nerves are distributed to both the exocrine and endocrine pancreas. However, differences exist in terms of density and targets of innervation for each peptidergic system. In the acini and through the stroma, fibers IR for CGRP, NPY and VIP are greater than GRP- and SP/TK-containing processes. The vasculature is supplied by a prominent NPY, CGRP and, to a lesser extent, SP/TK innervation. VIP-IR is found occasionally, and GRP-IR is never detected, in fibers associated with blood vessels. Around ducts, CGRP- and NPY-positive neurites are greater than SP/TK- greater than or equal to VIP-IR fibers, whereas GRP-containing nerves are not visualized. In the islets, the density of peptidergic nerves is: VIP-, GRP- greater than or equal to CGRP-IR greater than NPY or SP/TK. In intrapancreatic ganglia. VIP- and, to a lesser extent, NPY-IRs are found in numerous neuronal cell bodies and in nerve fibers; GRP-IR is present in numerous nerve processes and in few cell bodies; CGRP- and SP/TK-IRs are detected only in fibers wrapping around unlabeled ganglion cells. The majority of CGRP-IR fibers contain SP/TK-IR. The existence of differential patterns of peptidergic nerves suggests that peptides exert their effects on pancreatic functions via different pathways.  相似文献   

7.
The immunochemical distribution of peptidergic and aminergic neurotransmitters in the exocrine pancreas of the Houbara bustard, Chlamydotis undulata, was determined. Immunoreactivity to choline acetyltransferase (ChAT), vasoactive intestinal polypeptide (VIP), and galanin (Gal) occurred mainly as varicose terminals in the walls of capillaries around the acini and arterioles within the connective tissue. Neuronal cell bodies immunoreactive to ChAT were infrequently observed. Neuropeptide Y (NPY), pancreatic polypeptide (PP), and somatostatin (Som) were observed mainly in intra-acinar cell bodies but nerve fibers immunoreactive to these neuropeptides were also seen along the basal surfaces of the acini. Immunoreactivity to NPY and PP was also discernible in cells of the pancreatic ducts. In addition, NPY occurred as varicose terminals in vessels around the ducts. SP occurred rarely in interacinar ganglia. The distribution of tyrosine hydroxylase (TH) was similar to that of ChAT and, in addition, the occasional TH immunoreactive intra-acinar neuronal cell body was observed. Neuronal nitric oxide synthase (nNOS) occurred in neuronal cell bodies among the acinar cells as well as nerve fibers along the bases of the acini. The potential roles of these peptidergic and aminergic neurotransmitters in the neurohormonal control of pancreatic secretion are discussed.  相似文献   

8.
The vasoactive intestinal polypeptide (VIP) has been shown to exert effects on endocrine and exocrine pancreatic secretion. Immunocytochemistry reveals that VIP immunoreactive nerves occur in the porcine, canine, feline and avian pancreas. In the pancreas of pig and cat VIP nerves are abundant around non-immunoreactive nerve cell bodies of the intrapancreatic ganglia but scarce in the islets and in the exocrine parenchyma. In the dog pancreas, however, the intrapancreatic ganglia contain strongly immunoreactive VIP nerve cell bodies which give off axons that seem to heavily innervate vessels as well as endocrine and exocrine cells. We suggest that in the pig and cat the pancreatic VIP nerves mainly affect the activity of a second type of intrapancreatic neuron, whose transmitter is unknown, whereas in the dog pancreas VIP nerves directly contact their putative effector structures.  相似文献   

9.
Summary The occurrence and distribution of peptide-containing nerve fibres [substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), neuropeptide Y (NPY)] and noradrenergic nerve fibres [tyrosine hydroxylase (TH)- and dopamine beta hydroxylase (DBH)-positive] in the airways of the pig were studied by means of immunohistochemistry. SP- and CGRP-immunoreactive (-IR) nerve fibres were present close to and within the lining respiratory epithelium, around blood vessels, within the tracheobronchial smooth muscle layer and around local tracheobronchial ganglion cells. The content of CGRP- and neurokinin A (NKA)-like immunoreactivity (-LI) measured by radioimmunoassay (RIA) was twice as high in the trachea compared to that in the peripheral bronchi. SP was a more potent constrictor agent than NKA on pig bronchi in vitro. CGRP had a relaxant effect on precontracted pig bronchi. On blood vessels CGRP exerted a relaxant effect that was more pronounced on pulmonary arteries than on bronchial arteries. VIP/PHI-IR fibres were seen in association with exocrine glands and in the tracheobronchial smooth muscle layer. VIP-positive nerve fibres were abundant around blood vessels in the trachea but sparse or absent around blood vessels in the peripheral bronchi. This histological finding was supported by RIA; it was shown that the content of peptides displaying VIP-like immunoreactivity (-LI) was 18 times higher in the trachea compared to peripheral bronchi. VIP was equally potent as CGRP in relaxing precontracted pig bronchi in vitro. Both bronchial and pulmonary arteries were relaxed by VIP. NPY was colocalized with VIP in tracheal periglandular nerve fibres and in nerve fibres within the tracheobronchial smooth muscle layer. NPY was also present in noradrenergic (DBH-positive) vascular nerve fibres. The content of NPY was much higher (15-fold) in the trachea compared to small bronchi. NPY caused a contraction of both pulmonary and bronchial arteries. The bronchial smooth muscle contraction to field stimulation in vitro was purely cholinergic. A non-cholinergic relaxatory effect following field stimulation was observed after bronchial precontraction. Capsaicin had no effect on pig bronchi in vitro.  相似文献   

10.
Cholinergic nerves are identified by labelling molecules in the ACh synthesis, release and destruction pathway. Recently, antibodies against another molecule in this pathway have been developed. Choline reuptake at the synapse occurs via the high-affinity choline transporter (CHT1). CHT1 immunoreactivity is present in cholinergic nerve fibres containing vesicular acetylcholine transporter (VAChT) in the human and rat central nervous system and rat enteric nervous system. We have examined whether CHT1 immunoreactivity is present in nerve fibres in human intestine and whether it is colocalised with markers of cholinergic, tachykinergic or nitrergic circuitry. Human ileum and colon were fixed, sectioned and processed for fluorescence immunohistochemistry with antibodies against CHT1, class III beta-tubulin (TUJ1), synaptophysin, common choline acetyl-transferase (cChAT), VAChT, nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). CHT1 immunoreactivity was present in many nerve fibres in the circular and longitudinal muscle, myenteric and submucosal ganglia, submucosa and mucosa in human colon and ileum and colocalised with immunoreactivity for TUJ1 and synaptophysin confirming its presence in nerve fibres. In nerve fibres in myenteric ganglia and muscle, CHT1 immunoreactivity colocalised with immunoreactivity for VAChT and cChAT. Some colocalisation occurred with SP immunoreactivity, but little with immunoreactivity for VIP or NOS. In the mucosa, CHT1 immunoreactivity colocalised with that for VIP and SP in nerve fibres and was also present in vascular nerve fibres in the submucosa and on epithelial cells on the luminal border of crypts. The colocalisation of CHT1 immunoreactivity with VAChT immunoreactivity in cholinergic enteric nerves in the human bowel thus suggests that CHT1 represents another marker of cholinergic nerves.  相似文献   

11.
The occurrence and distribution of neuropeptide-containing fibres in the human parotid gland were examined by the peroxidase--antiperoxidase method with attention to the quality of fixation and the condition of patients. Many fibres immunoreactive for neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) and a moderate number of galanin- positive (GAL) fibres were distributed around the acini. A moderate number of NPY and VIP fibres were distributed around the intercalated ducts. The semiquantitative mean densities (_SD) of periacinar NPY, VIP and GAL fibres expressed as a percentage of the total protein gene product (PGP) 9.5 immunoreactive fibres were 75.62 _ 7.25%, 70.52 _ 9.33% and 41.76 _ 5.45%, respectively, whereas those of substance P (SP), calcitonin gene-related peptide (CGRP) and FMRF amide (FMRF) fibres were below 10%. The mean densities of NPY and VIP fibres around the intercalated ducts expressed as the percentage of PGP 9.5 fibres associated with these ducts were 52.37 _ 6.19% and 59.62 _ 7.02% respectively. Those of SP, CGRP, GAL, and FMRF fibres were below 10%. The densities of NPY, VIP, SP, CGRP, GAL and FMRF fibres around the striated and excretory ducts were also below 10%. In the vasculature, NPY fibres were the most prominent. Similarly, the mean density of perivascular NPY fibres was 93.76 _ 2.03%. No somatostatin or leucine or methionine enkephalin immunoreactivity was detected around the acini, duct system or blood vessels. These findings suggest that, in this gland, the periacinar NPY, VIP and GAL fibres may participate in regulating the synthesis of saliva and its secretion and that perivascular peptidergic fibres, especially NPY fibres, may be involved in controlling local blood flow This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
This study examines whether there is a change in the pattern of distribution of cholecystokinin-octapeptide (CCK-8), calcitonin-gene-related peptide (CGRP), neuropeptide-Y (NPY), substance P (SP) and vasoactive intestinal polypeptide (VIP) in the pancreas of streptozotocin (STZ)-diabetic (host) rats after subcutaneous pancreatic transplantation. Varicose CCK-8-immunopositive nerve fibres were observed in the wall of blood vessels of both normal and diabetic host pancreata. The density of CCK-8-immunoreactive varicose nerve fibres appeared to have increased in host rat pancreas. CGRP was demonstrated in many nerve fibres located in the wall of blood vessels of both normal and host pancreas. CGRP, however, seemed to be better expressed in the nerves of host pancreas when compared to normal. The pancreata of both normal and diabetic (host) rats contained numerous NPY-immunopositive varicose nerve fibres located in the wall of blood vessels. SP was demonstrated in neurons located in the interlobular areas of normal tissue and in fine varicose nerve fibres of the interacinar region of the pancreas of STZ-induced diabetic rats with SPTG. In normal pancreatic tissue, VIP-immunopositive nerve fibres were observed in all areas of the pancreas. VIP-positive nerve fibres were still discernible especially in the interacinar regions of the pancreas of host rats. In conclusion, the pattern of distribution and density of NPY, SP and VIP in the pancreas of STZ-induced diabetic rats with SPTG is similar to that observed in normal pancreas, but the expression of CGRP and CCK-8 seemed to have increased as a result of transplantation and or diabetes.  相似文献   

13.
The continuing and even expanding use of genetically modified mice to investigate the normal physiology and development of the enteric nervous system and for the study of pathophysiology in mouse models emphasises the need to identify all the neuron types and their functional roles in mice. An investigation that chemically and morphologically defined all the major neuron types with cell bodies in myenteric ganglia of the mouse small intestine was recently completed. The present study was aimed at the submucosal ganglia, with the purpose of similarly identifying the major neuron types with cell bodies in these ganglia. We found that the submucosal neurons could be divided into three major groups: neurons with vasoactive intestinal peptide (VIP) immunoreactivity (51% of neurons), neurons with choline acetyltransferase (ChAT) immunoreactivity (41% of neurons) and neurons that expressed neither of these markers. Most VIP neurons contained neuropeptide Y (NPY) and about 40% were immunoreactive for tyrosine hydroxylase (TH); 22% of all submucosal neurons were TH/VIP. VIP-immunoreactive nerve terminals in the mucosa were weakly immunoreactive for TH but separate populations of TH- and VIP-immunoreactive axons innervated the arterioles in the submucosa. Of the ChAT neurons, about half were immunoreactive for both somatostatin and calcitonin gene-related peptide (CGRP). Calretinin immunoreactivity occurred in over 90% of neurons, including the VIP neurons. The submucosal ganglia and submucosal arterioles were innervated by sympathetic noradrenergic neurons that were immunoreactive for TH and NPY; no VIP and few calretinin fibres innervated submucosal neurons. We conclude that the submucosal ganglia contain cell bodies of VIP/NPY/TH/calretinin non-cholinergic secretomotor neurons, VIP/NPY/calretinin vasodilator neurons, ChAT/CGRP/somatostatin/calretinin cholinergic secretomotor neurons and small populations of cholinergic and non-cholinergic neurons whose targets have yet to be identified. No evidence for the presence of type-II putative intrinsic primary afferent neurons was found. This work was supported by a grant from the National Health and Medical Research Council of Australia (grant no. 400020) and an Australian Research Council international linkage grant (no. LZ0882269) for collaboration between the Melbourne and Bologna laboratories.  相似文献   

14.
Summary The innervations of the exocrine and endocrine pancreas of some vertebrate animals were studied by electron microscopy. The pancreas of the bat and monkey contained ganglion cells in the interlobular connective tissue or between acinar cells. Unmyelinated nerve fibers ran through the interlobular connective tissue and reached the exocrine and endocrine parts, and terminated there as the endings. The nerve endings within the pancreas could be divided into four types: 1. Type 1-a of the nerve ending contained only agranular synaptic vesicles of about 500 Å in diameter. 2. Type 1-b characterized by containing agranular synaptic vesicles and some large cored vesicles (1,000 Å diameter). These two types of nerve endings might belong to the cholinergic (parasympathetic) endings. 3. Type 2-a contained small cored vesicles and agranular synaptic vesicles along with a few large cored vesicles. 4. Type 2-b was characterized by containing vesicles of the same size as those of agranular synaptic vesicles, and a majority of these vesicles contained bar-shaped crystalloids. This ending also contained a few large cored vesicles. These nerve endings of Type 2-a and 2-b might be the adrenergic (sympathetic) endings.  相似文献   

15.
Summary The intrapancreatic localization and the effects on basal and stimulated insulin secretion of neuropeptide Y (NPY) were investigated in the mouse. Immunocyto-chemistry showed NPY to be confined to intrapancreatic nerve fibers mainly associated with blood vessels. Fine varicose NPY fibers were also detected in the exocrine parenchyma and occasionally also within the islets. Double-staining experiments with the use of antisera for both NPY and tyrosine hydroxylase (TH) indicated that most of the NPY fibers were nonadrenergic in nature. Only a population of the NPY fibers occurring around blood vessels showed TH immunoreactivity. Under in vivo conditions, NPY was found to elevate plasma insulin levels slightly when injected intravenously at the high dose level of 8.5 nmol/kg. At lower dose levels, NPY did not affect basal plasma insulin levels, but instead inhibited glucose-induced insulin secretion. Thus, the glucose-induced increment in plasma insulin levels, which was 120±7U/ml in controls, was reduced to 87 ±5 U/ml by NPY at 4.25 nmol/kg (p<0.01) and to 98±6U/ml by NPY at 1.06 nmol/kg (p<0.05). In contrast, the insulin secretory response to the cholinergic agonist carbachol was not affected by NPY. We conclude that NPY nerve fibers occur in the mouse pancreas and that most of these NPY nerve fibers are nonadrenergic. Furthermore, in the mouse, NPY enhances basal plasma insulin levels at high dose levels and inhibits glucose-induced, but not cholinergically induced insulin secretion at lower dose levels under in vivo conditions.  相似文献   

16.
Summary Immunohistochemistry was used to localize regulatory peptides in endocrine cells and nerve fibres in the pancreas of two species of elasmobranchs (starry ray,Raja radiata and spiny dogfish,Squalus acanthias), and in the Brockmann bodies of four teleost species (goldfish,Carassius auratus, brown troutSalmo trutta, rainbow trout,Oncorhynchus mykiss and cod,Gadus morhua). In the elasmobranchs, the classical pancreatic hormones somatostatin, glucagon and insulin were present in endocrine cells of the islets. In addition, endocrine cells were labelled with antisera to enkephalins, FMRF-amide, gastrin/cholecystokinin-(CCK)/caerulein, neurotensin, neuropeptide Y (NPY), and peptide YY (PYY). Nerve fibres were demonstrated with antisera against bombesin, galanin and vasoactive intestinal polypeptide (VIP). These nerve fibres innervated the walls of blood vessels, in the exocrine as well as the endocrine tissue. In the four teleost species immunoreactivity to somatostatin, insulin and glucagon was intense in the Brockmann bodies. Cells were labelled with antisera to enkephalin, neurotensin, FMRFamide, gastrin/CCK/ caerulein, NPY, PYY and VIP. Only a few nerve fibres were found with antisera against dopamine--hydroxylase (DBH, cod), enkephalin (met-enkephalin-Arg-Phe, cod), bombesin (cod), gastrin/CCK/caerulein (cod) and VIP. Galanin-like-immunoreactive fibres were numerous in the Brockmann bodies of all teleosts examined. Immunoreactivity to calcitonin gene-related peptide (CGRP), substance P, tyrosine hydroxylase (TH), and phenyl-N-methyl transferase (PNMT) could not be found in any of the species studied.  相似文献   

17.
The cholinergic muscarinic 2 receptor (M2r) is known to be present on smooth muscle cells in the intestine. Pharmacological studies also suggest that M2rs regulate transmitter release from nerves in the enteric nervous system. This study localised M2rs in the guinea-pig ileum using different antibodies and fluorescence immunohistochemistry. Double labelling with antibodies against neurochemical markers was used to identify the type of nerves bearing M2r. Guinea-pig ileum were fixed, prepared for sections and wholemounts and incubated with antisera against the M2r sequence. Tissue was double labelled with antibodies against neuronal nitric oxide synthase (nNOS), common choline acetyltransferase (cChAT), substance P (SP), synaptophysin and vesicular acetylcholine transporter (VAChT). Immunofluorescence was viewed using confocal microscopy. Abundant M2r-immunoreactivity (IR) was present on the surface of circular and longitudinal smooth muscle cells. M2r-IR was present in many but not all nerve fibres in the circular muscle and ganglia. M2r-IR was present in VAChT-IR and cChAT-IR cholinergic nerve fibres and SP-IR nerve fibres in the myenteric ganglia and submucosal ganglia. M2r-IR was present on a few nNOS-IR nerve fibres and around nNOS-IR neurons in the myenteric ganglia. In the circular muscle and deep muscular plexus, M2r-IR was present in many VAChT-IR and SP-IR nerve fibres and in few nNOS-IR nerves. M2rs are not only present on muscle cells in the intestine, but also on nerve fibres. M2rs may mediate cholinergic reflexes via their location on muscle and also via neural transmission. The pre-synaptic location supports pharmacological studies suggesting M2rs mediate neurotransmitter release from nerve fibres. The presence of M2rs on VAChT-IR, SP-IR and nNOS-IR-containing nerve fibres suggests M2rs may regulate ACh, SP and nitric oxide release. Work in this study was funded by the National Health and Medical Research Council (grant numbers: 114215 and 216704; Senior Research Fellowship to B.S.), a Melbourne University Research Scholarship and the Murdoch Children’s Research Institute.  相似文献   

18.
Summary The pelvic ganglia supply cholinergic and noradrenergic nerve pathways to many organs. Other possible transmitters are also present in these nerves, including peptides. Multiple labelling immunofluorescence techniques were used in this study of the male rat major pelvic ganglion (MPG) to examine: (1) the peptides present in noradrenergic (tyrosine hydroxylase (TH)-positive) and non-noradrenergic (putative cholinergic) neurons, and (2) the types of peptide-containing nerve fibres closely associated with these two groups of neurons. The distribution of the peptide galanin (GAL) within the MPG was also investigated. All of the TH-neurons contained neuropeptide Y (NPY), but none of the other tested peptides. However, many NPY neurons did not contain TH and may have been cholinergic. TH-negative neurons also displayed vasoactive intestinal peptide (VIP), enkephalin (ENK) or GAL. VIP and NPY formed the most common types of putative cholinergic pelvic neurons, but few cells contained both peptides. Many ENK neurons exhibited VIP, NPY or GAL. Varicose nerve terminals surrounding ganglion cells contained ENK, GAL, somatostatin (SOM) and cholecystokinin (CCK). These peptide-immunoreactive fibres were more often associated with the non-noradrenergic (putative cholinergic) than the noradrenergic neurons; two types (SOM and CCK) were preferentially associated with the non-noradrenergic NPY neurons. GAL was distributed throughout the MPG, in small neurons, scattered small, intensely fluorescent (SIF) cells, and both varicose and non-varicose nerve fibres. The nerve fibres were concentrated near the pelvic and penile nerves; most of the varicose fibres formed baskets surrounding individual GAL-negative somata.  相似文献   

19.
C Heym  R Webber  M Horn  W Kummer 《Histochemistry》1990,93(5):547-557
Tyrosine hydroxylase (TH)- and peptide-immunoreactivity of postganglionic neurons and of nerve fibres in guinea pig lumbar paravertebral sympathetic ganglia 2-4 after transection of the communicating rami and the visceral branches, respectively, were investigated by single- and double-labelling techniques. Six subpopulations of postganglionic neurons were discriminated immunohistochemically: two cell types, which were immunoreactive to only one of the applied antisera - TH, and vasoactive intestinal polypeptide (VIP); and four cell types in which immunoreactivity was colocalized - TH/neuropeptide Y (NPY), NPY/VIP, dynorphin/alpha-neoendorphin and dynorphin (alpha-neoendorphin)/NPY. Small intensely fluorescent (SIF) cells dependent on their location exhibited differential immunobehaviour to NPY-/dynorphin-(alpha-neoendorphin-) and TH-antisera. Immunoreactivity to substance P (SP), calcitonin gene-related peptide (CGRP), met-enkephalin-arg-phe (MEAP) and leu-enkephalin was present in nerve fibres but not in postganglionic neurons with frequent colocalization of SP/CGRP- and MEAP/leu-enkephalin- and, sometimes leu-enkephalin/SP- and dynorphin/SP-immunoreactivity. TH-immunoreactive intraganglionic nerve fibres were numerically more increased after cutting the visceral branches, than after transection of the communicating rami. Vice versa, NPY-, VIP-, dynorphin- and alpha-neoendorphin-immunoreactive nerve fibres were particularly increased in number after cutting the communicating rami. Many but not all of the nerve fibres exhibited colocalization of two of these peptides. SP-, CGRP-, and enkephalin-immunoreactive nerve fibres were not visibly affected by cutting the visceral branches but virtually disappeared after lesioning the communicating rami.  相似文献   

20.
Summary Tyrosine hydroxylase (TH)- and peptide-immunoreactivity of postganglionic neurons and of nerve fibres in guinea pig lumbar paravertebral sympathetic ganglia 2–4 after transection of the communicating rami and the visceral branches, respectively, were investigated by single-and double-labelling techniques. Six subpopulations of postganglionic neurons were discriminated immunohistochemically: two cell types, which were immunoreactive to only one of the applied antisera — TH, and vasoactive intestinal polypeptide (VIP); and four cell types in which immunoreactivity was colocalized — TH/neuropeptide Y (NPY), NPY/VIP, dynorphin/α-neoendorphin and dynorphin (α-neoendorphin)/NPY. Small intensely fluorescent (SIF) cells dependent on their location exhibited differential immunobehaviour to NPY-/dynorphin-(α-neoendorphin-) and TH-antisera. Immunoreactivity to substance P (SP), calcitonin gene-related peptide (CGRP), met-enkephalin-arg-phe (MEAP) and leu-enkephalin was present in nerve fibres but not in postganglionic neurons with frequent colocalization of SP/CGRP- and MEAP/leu-enkephalin- and, sometimes leu-enkephalin/SP- and dynorphin/SP-immunoreactivity. TH-immunoreactive intraganglionic nerve fibres were numerically more increased after cutting the visceral branches, than after transection of the communicating rami. Vice versa, NPY-, VIP-, dynorphin- and α-neoendorphin-immunoreactive nerve fibres were particularly increased in number after cutting the communicating rami. Many but not all of the nerve fibres exhibited colocalization of two of these peptides. SP-, CGRP-, and enkephalin-immunoreactive nerve fibres were not visibly affected by cutting the visceral branches but virtually disappeared after lesioning the communicating rami.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号