首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.  相似文献   

2.
In skeletal myogenic differentiation, myoblasts fuse with myogenic cells spontaneously, but do not fuse with non-myogenic cells either in vivo or in vitro, suggesting that the fusion of myoblasts with non-myogenic cells is unsuitable for differentiation. To understand the inevitability of the fusion among myoblasts, we prepared heterokaryons in crosses between quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and rodent non-myogenic cells, such as tumor cells, fibroblasts, or neurogenic cells by HVJ (Sendai virus) and examined how myogenic differentiation was influenced in the prepared heterokaryons, focusing on myogenin expression and myofibril formation as markers of differentiation. When presumptive QM-RSV cells were fused with non-myogenic cells by HVJ and induced to differentiate, both myogenin expression and myofibril formation were suppressed. When myotubes of QM-RSV cells that had already expressed myogenin and formed myofibrils were fused with non-myogenic cells, both myogenin and myofibrils disappeared. Especially, fibrous structures of myofibrils were significantly lost and dots or aggregations of F-actin were formed within 24 hr after formation of heterokaryons. However, the fusion of presumptive or differentiated QM-RSV cells with rodent myoblasts did not disturb myogenin expression or myofibril formation. These results suggest that mutual fusion of myoblasts is indispensable for normal myogenic differentiation irrespective of the species, and that some factors inhibiting myogenic differentiation exist in the cytoplasm of non-myogenic cells, but not in myoblasts.  相似文献   

3.
The adenylyl cyclase system of preadipocytes derived from the stromal vascular fraction of perirenal rat fat pads was characterized. Unlike mature adipocytes, preadipocyte adenylyl cyclase was only weakly stimulated by catecholamines and adrenocorticotrophic hormone, but was stimulated by guanine nucleotides. Parathyroid hormone and 2-chloroadenosine also stimulated preadipocyte adenylyl cyclase. The adenylyl cyclase system of preadipocytes resembled that of undifferentiated 3T3-L1 cells. However, agents which induced the differentiation of the 3T3-L1 cell adenylyl cyclase system did not have a similar effect on preadipocytes. A medium (CDM6) which induced some differentiation of preadipocyte adenylyl cyclase was developed. The observations that the adenylyl cyclase system of preadipocytes and undifferentiated 3T3-L1 cells are similar, that preadipocyte adenylyl cyclase can be induced to develop along lines similar to early differentiation of 3T3-L1 cells, and that the adenylyl cyclase system of fully-differentiated 3T3-L1 cells has characteristics intermediate between preadipocytes and adipocytes, suggest that the differentiation of preadipocyte and 3T3-L1 adenyly cyclase in vitro mimics adipose adenylyl cyclase development in vivo. The increased catecholamine and ACTH stimulation, and reduced GTP and adenosine sensitivities of adipocytes compared to preadipocytes suggest that a number of genes affecting adenylyl cyclase-associated regulatory and receptor proteins are coordinately repressed and derepressed during development.  相似文献   

4.
Interleukin-15 (IL-15) is a cytokine which is highly expressed in skeletal muscle tissue, and which has anabolic effects on skeletal muscle protein dynamics both in vivo and in vitro. Additionally, administration of IL-15 to rats and mice inhibits white adipose tissue deposition. To determine if the action of IL-15 on adipose tissue is direct, the capacity of cultured murine 3T3-L1 preadipocytes and adipocytes to respond to IL-15 was examined. IL-15 administration inhibited lipid accumulation in differentiating 3T3-L1 preadipocytes, and stimulated secretion of the adipocyte-specific hormone adiponectin by differentiated 3T3-L1 adipocytes. The latter observation constitutes the first report of a cytokine or growth factor which stimulates adiponectin production. IL-15 mRNA expression by cultured 3T3-L1 adipogenic cells and C2C12 murine skeletal myogenic cells was also examined. Quantitative real-time PCR indicated IL-15 mRNA was expressed by C2C12 skeletal myogenic cells, and was upregulated more than 10-fold in differentiated skeletal myotubes compared to undifferentiated myoblasts. In contrast, 3T3-L1 cells expressed little or no IL-15 mRNA at either the undifferentiated preadipocyte or differentiated adipocyte stages. These findings provide support for the hypothesis that IL-15 functions in a muscle-to-fat endocrine axis which modulates fat:lean body composition and insulin sensitivity.  相似文献   

5.
6.
Exon 6B from the chicken β-tropomyosin pre-mRNA is alternatively spliced during myogenic differentiation. Exon 6B is excluded in mRNA from myoblasts and included in mRNA from myotubes. We investigated the regulation of exon 6B inclusion ex vivo in a quail myogenic cell line, which behaves as myoblasts in undifferentiated state and as myotubes after differentiation. We show that the β-tropomyosin exon 6B is a novel target of CUG-BP and ETR-3-like factor (CELF). Overexpression of CELF proteins in myoblasts activates splicing of exon 6B. Using a dominant-negative form of CELF4, we demonstrate that CELF proteins are involved in switching splicing from exon 6A towards exon 6B inclusion during myogenic differentiation. We also found that polypyrimidine tract binding protein (PTB) is required for splicing repression of exon 6B in myoblasts. CELF and PTB proteins exhibit antagonistic properties toward inclusion of exon 6B during myogenic differentiation. Our results suggest that a change in the protein level of CUGBP1 and PTB proteins, associated with a distinct pattern of PTB during the transition from myoblasts to myotubes is one of the parameters involved in regulating splicing of exon 6B during myogenesis.  相似文献   

7.
Summary Quail myoblasts were maintained in an undifferentiated state by first blocking differentiation with 5-bromodeoxyuridine and then reversing the block in the presence of phorbol-12-myristate-13-acetate. The synthesis of quail skeletal myosin light chain 1 is induced in heterokaryons formed by fusing these undifferentiated quail myoblasts to differentiated chick myocytes. These results extend observations previously obtained using an established line of rat myoblasts and indicate that the induction is a result of regulatory interactions present in normal diploid cells. This work was supported by grants from the Muscular Dystrophy Association and the National Institutes of Health.  相似文献   

8.
In a previous study, it has been shown that presumptive mouse C2 myoblast cells are strongly resistant to HVJ (hemaglutinating virus of Japan, Sendai virus)-mediated cell fusion, but do become capable of fusion upon differentiation. Quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) also become more sensitive to HVJ-mediated cell fusion during differentiation. Investigations were undertaken to see whether heterokaryotic myotubes were formed spontaneously by co-culture of two different kinds of myogenic cells, QM-RSV cells and C2 cells. When both cells were committed to myotube formation, they spontaneously fused without HVJ on co-culture. On the other hand, when both or one of the cells were in the presumptive state, heterokaryons were not formed by co-culturing. Furthermore, committed QM-RSV cells did not fuse with non-myogenic cells. These results indicate that the membranes of myogenic cells change to become capable of fusion for myotube formation during differentiation.  相似文献   

9.
The p53 protein is known as a guardian of the genome and is involved in energy metabolism. Since the metabolic system is uniquely regulated in each tissue, we have anticipated that p53 also would play differential roles in each tissue. In this study, we focused on the functions of p53 in white adipose tissue (adipocytes) and skeletal muscle (myotubes), which are important peripheral tissues involved in energy metabolism. We found that in 3T3-L1 preadipocytes, but not in C2C12 myoblasts, p53 stabilization or overexpression downregulates the expression of Ppargc1a, a master regulator of mitochondrial biogenesis. Next, by using p53-knockdown C2C12 myotubes or 3T3-L1 preadipocytes, we further examined the relationship between p53 and mitochondrial regulation. In C2C12 myoblasts, p53 knockdown did not significantly affect Ppargc1a expression and mtDNA, but did suppress differentiation to myotubes, as previously reported. However, in 3T3-L1 preadipocytes and mouse embryonic fibroblasts, p53 downregulation enhanced both differentiation into adipocytes and mitochondrial DNA content. Furthermore, p53-depleted 3T3-L1 cells showed increase in mitochondrial proteins and enhancement of both Citrate Synthase and Complex IV activities during adipogenesis. These results show that p53 differentially regulates cell differentiation and mitochondrial biogenesis between adipocytes and myotubes, and provide evidence that p53 is an inhibitory factor of mitochondrial regulation in adipocyte lineage.  相似文献   

10.
The control of gene expression during terminal myogenesis was explored in heterokaryons between differentiated and undifferentiated myogenic cells by analyzing the formation of species specific myosin light chains of chick and rat skeletal muscle. Dividing L6 rat myoblasts served as the biochemically undifferentiated parent. The differentiated parental cells were mononucleated muscle cells (myocytes) that were obtained from primary cultures of embryonic chick thigh muscle by blocking myotube formation with EGTA and later incubating the postimitotic cells in cytochalasin B. Heterokaryons were isolated by the selective rescue of fusion products between cells previously treated with lethal doses of different cell poisons. 95-99% pure populations of heterokaryons formed between undifferentiated rat myoblasts and differentiated chick myocytes were obtained. The cells were labeled with [35S]methionine, and whole cell extracts were analyzed on two-dimensional polyacrylamide gels. These heterokaryons synthesize the light chain of chick myosin and both embryonic and adult light chains of rat skeletal myosin. Control homokaryons formed by fusing undifferentiated cells to themselves did not synthesize skeletal myosin light chains. Control heterokaryons formed between undifferentiated rat myoblasts and chick fibroblasts also failed to synthesize myosin light chains. These results indicate that differentiated chick muscle cells provide some factor that induces L6 myoblasts to synthesize rat myosin light chains. This system provides a model for investigating the processes by which differentiated cell functions are induced.  相似文献   

11.
12.
13.
14.
15.
Extracellular matrix (ECM) has a marked influence on adipose tissue development. Adipose tissue formation is initiated with proliferation of preadipocytes and migration before undergoing further differentiation into mature adipocytes. Previous studies showed that collagen I (col I) provides a good substratum for 3T3-L1 preadipocytes to grow and migrate. However, it remains unclear whether and how col I regulates adipogenic differentiation of preadipocytes. This study reports that lipid accumulation, representing in vitro adipogenesis of the 3T3-L1 preadipocytes or the mouse primary adipocyte precursor cells derived from subcutaneous adipose tissue in the inguinal region is inhibited by the culture on col I, owing to downregulation of adipogenic factors. Previous study shows that col I enhances 3T3-L1 cell migration via stimulating the nuclear translocation of yes-associated protein (YAP). In this study, we report that downregulation of YAP is associated with in vitro adipogenesis of preadipocytes as well as with in vivo adipose tissue of high-fat diet fed mice. Increased expression of YAP in the cells cultured on col I-coated dishes is correlated with repression of adipogenic differentiation processes. The inactivation of YAP using YAP inhibitor, verteporfin, or YAP small-interfering RNA enhanced adipogenic differentiation and reversed the inhibitory effect of col I. Activation of YAP either by the transfection of YAP plasmid or the silence of large tumor suppressor 1 (LATS1), an inhibitory kinase of YAP, inhibited adipogenic differentiation. The results indicate that col I inhibits adipogenic differentiation via YAP activation in vitro.  相似文献   

16.
17.
Summary Fibroblast growth factors (FGFs) are potent inhibitors of myogenic differentiation. The recent observation that the endogenous expression of acidic and basic FGF by myogenic cells decreases coordinately with differentiation suggests a regulatory role for these growth factors in myogenesis. Inasmuch as other proteins known to influence myogenesis (e.g., MyoD1 and myogenin) activate their own expression as well as the expression of other members of their family, we hypothesized that the FGFs might be capable of similar autoregulation. We examined the effect of exogenously supplied FGF on the abundance of the mRNAs encoding acidic and basic FGF in Sol 8 myoblasts, and demonstrate that either acidic or basic FGF stimulate, through paracrine mechanisms, the accumulation of the mRNAs encoding both of these FGFs. Thus FGFs can auto- and transregulate their own expression in a manner analogous to that observed for the myogenic determination proteins. In addition, similar to that previously observed for MyoD1, both acidic and basic FGF suppress myogenin expression in myoblasts. These results suggest two mechanisms whereby endogenously produced FGFs participate in the maintenance of the undifferentiated state of myogenic cells. These data provide support for paracrine, and suggest potential autocrine, roles for FGFs in the regulation of myogenic differentiation.  相似文献   

18.
Phoenixin-14 (PNX) is a newly discovered peptide produced by proteolytic cleavage of the small integral membrane protein 20 (Smim20). Previous studies showed that PNX is involved in controlling reproduction, pain, anxiety and memory. Furthermore, in humans, PNX positively correlates with BMI suggesting a potential role of PNX in controlling fat accumulation in obesity. Since the influence of PNX on adipose tissue formation has not been so far demonstrated, we investigated the effects of PNX on proliferation and differentiation of preadipocytes using 3T3-L1 and rat primary preadipocytes. We detected Smim20 and Gpr173 mRNA in 3T3-L1 preadipocytes as well as in rat primary preadipocytes. Furthermore, we found that PNX peptide is produced and secreted from 3T3-L1 and rat primary adipocytes. PNX increased 3T3-L1 preadipocytes proliferation and viability. PNX stimulated the expression of adipogenic genes (Pparγ, C/ebpβ and Fabp4) in 3T3-L1 adipocytes. 3T3-L1 preadipocytes differentiated in the presence of PNX had increased lipid content. Stimulation of cell proliferation and differentiation by PNX was also confirmed in rat preadipocytes. PNX failed to induce AKT phosphorylation, however, PNX increased cAMP levels in 3T3-L1 cells. Suppression of Epac signalling attenuated PNX-induced Pparγ expression without affecting cell proliferation. Our data show that PNX stimulates differentiation of 3T3-L1 and rat primary preadipocytes into mature adipocytes via cAMP/Epac-dependent pathway. In conclusion our data shows that phoenixin promotes white adipogenesis, thereby may be involved in controlling body mass regulation.  相似文献   

19.
Mouse resistin, a cysteine-rich protein primarily secreted from mature adipocytes, is involved in insulin resistance and type 2 diabetes. Human resistin, however, is mainly secreted by immune mononuclear cells, and it competes with lipopolysaccharide for the binding to Toll-like receptor 4, which could mediate some of the well-known proinflammatory effects of resistin in humans. In addition, resistin has been involved in the regulation of many cell differentiation and proliferation processes, suggesting that different receptors could be involved in mediating its numerous effects. Thus, a recent work identifies an isoform of Decorin (Δ Decorin) as a functional resistin receptor in adipocyte progenitors that may regulate white adipose tissue expansion. Our work shows that the mouse receptor tyrosine kinase-like orphan receptor (ROR)1 could mediate some of the described functions of resistin in 3T3-L1 adipogenesis and glucose uptake. We have demonstrated an interaction of mouse resistin with specific domains of the extracellular region of the ROR1 receptor. This interaction results in the inhibition of ROR1 phosphorylation, modulates ERK1/2 phosphorylation, and regulates suppressor of cytokine signaling 3, glucose transporter 4, and glucose transporter 1 expression. Moreover, mouse resistin modulates glucose uptake and promotes adipogenesis of 3T3-L1 cells through ROR1. In summary, our results identify mouse resistin as a potential inhibitory ligand for the receptor ROR1 and demonstrate, for the first time, that ROR1 plays an important role in adipogenesis and glucose homeostasis in 3T3-L1 cells. These data open a new line of research that could explain important questions about the resistin mechanism of action in adipogenesis and in the development of insulin resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号