首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously demonstrated that the 1alpha,25-dihydroxyvitamin D(3) receptor (VDR) interacts with the constitutive heat shock protein, hsc70 in vitro, and with DnaK (Biochem. Biophys. Res. Commun. 260, 446-452, 1999). The biological significance of VDR-heat shock protein interactions, however, is unknown. To examine the role of such interactions in eukaryotic cells, we heterologously expressed VDR and RXRalpha together with a vitamin D-responsive reporter system in Saccharomyces cerevisiae and examined the consequences of heat shock protein 70 gene (SSA) deletion in these cells. We show that heterologously expressed VDR associates with the yeast cytosolic hsp70 protein, Ssa1p. Deletion of the SSA2, SSA3, and SSA4 genes and reduction of Ssa1p activity, reduces the intracellular concentrations of the VDR and its heterodimeric partner, RXRalpha and reduces the activity of a vitamin D-dependent gene. Hsp70-like chaperone proteins play a role in controlling concentrations of the VDR within the cell.  相似文献   

2.
Previous studies from this laboratory have demonstrated that plasminogen and angiostatin bind to endothelial cell (EC) surface-associated actin via their kringles in a specific manner. Heat shock proteins (hsps) like hsp 27 are constitutively expressed by vascular ECs and regulate actin polymerization, cell growth, and migration. Since many hsps have also been found to be highly abundant on cell surfaces and there is evidence that bacterial surface hsps may interact with human plasminogen, the purpose of this study was to determine whether human plasminogen and angiostatin would interact with human hsps. ELISAs were developed in our laboratory to assess these interactions. It was observed that plasminogen bound to hsps 27, 60, and 70. In all cases, binding was inhibited (85–90%) by excess (50 mM) lysine indicating kringle involvement. Angiostatin predominantly bound to hsp 27 and to hsp 70 in a concentration- and kringle-dependent manner. As observed previously for actin, there was concentration-dependent inhibition of angiostatin’s interaction with hsp 27 by plasminogen. In addition, 30-fold molar excess actin inhibited (up to 50%), the interaction of plasminogen with all hsps. However, 30-fold molar excess actin could only inhibit the interaction of angiostatin with hsp 27 by 15–20%. Collectively, these data indicate that (i) while plasminogen interacts specifically with hsp 27, 60, and 70, angiostatin interacts predominantly with hsp 27 and to some extent with hsp 70; (ii) plasminogen only partially displaces angiostatin’s binding to hsp 27 and (iii) actin only partially displaces plasminogen/angiostatin binding to hsps. It is conceivable therefore that surface-associated hsps could mediate the binding of these ligands to cells like ECs.  相似文献   

3.
Carlberg C  Quack M  Herdick M  Bury Y  Polly P  Toell A 《Steroids》2001,66(3-5):213-221
The vitamin D(3) receptor (VDR) acts primarily as a heterodimer with the retinoid X receptor (RXR) on different types of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) response elements (VDREs). Therefore, DNA-bound VDR-RXR heterodimers can be considered as the molecular switches of 1alpha,25(OH)(2)D(3) signalling. Functional conformations of the VDR within these molecular switches appear to be of central importance for describing the biologic actions of 1alpha,25(OH)(2)D(3) and its analogues. Moreover, VDR conformations provide a molecular basis for understanding the potential selective profile of VDR agonists, which is critical for a therapeutic application. This review discusses VDR conformations and their selective stabilization by 1alpha,25(OH)(2)D(3) and its analogues, such as EB1089 and Gemini, as a monomer in solution or as a heterodimer with RXR bound to different VDREs and complexed with coactivator or corepressor proteins.  相似文献   

4.
5.
6.
7.
8.
9.
Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system   总被引:14,自引:0,他引:14  
In addition to its role in calcium and skeletal homeostasis, there is increasing evidence that the hormonal form of vitamin D, 1, 25-dihydroxyvitamin D(3), appears to serve as a modulator of the immune system. We have determined the level of the 1, 25-dihydroxyvitamin D(3) receptor (VDR) in resting and activated lymphocytes by immuno- and ligand-binding assays. As expected from previous work, the total T lymphocyte population contains VDR whose levels are increased when activated and treated with 1, 25-dihydroxyvitamin D(3). Surprisingly, the highest concentrations of VDR are found in CD8 lymphocytes, although significant amounts are also present in CD4 lymphocytes. Furthermore, B lymphocytes do not contain detectable amounts of VDR. Cells of the monocyte/macrophage lineage possess small amounts of VDR that are not affected by activation but are increased by treatment with 1, 25-dihydroxyvitamin D(3). These results suggest that CD8 lymphocytes may be a major site of 1,25-dihydroxyvitamin D(3) action, while B lymphocytes are likely not directly regulated by 1, 25-dihydroxyvitamin D(3).  相似文献   

10.
We have previously purified a cytosolic vitamin D metabolite binding protein (cDBP) from rat enterocytes, which has characteristics distinct from other vitamin D binding proteins. In these studies, we demonstrate that cDBP in a semi-purified fraction from human intestinal cells (Caco-2 cells) binds 25-hydroxyvitamin D (25OHD) with at least a 1000-fold greater affinity than 1, 25-dihydroxyvitamin D (1,25(OH)(2)D) or 24,25-dihydroxyvitamin D. Treatment of cells with 1,25(OH)(2)D reduced 25OHD binding to approximately one third that of the untreated cells (0.42 CPM/mg total protein vs 1.34 CPM/mg total protein, respectively). Finally, the cDBP is not immunoreactive to antibodies prepared against the C-terminus of the nuclear vitamin D receptor (VDR). In summary, cDBP bound 25OHD with greater affinity than either 1,25(OH)(2)D or 24,25 dihydroxyvitamin D, the cytosolic binding activity was down-regulated by 1,25(OH)(2)D and cBDP is distinct from the nuclear VDR.  相似文献   

11.
Heat shock proteins (hsps) are versatile molecular chaperones that are responsiblefor many cellular functions including proper folding, oligomeric assembly, activation,and transport of proteins. Most of the known roles for hsps involve intracellular proteinsand processes. Mounting evidence suggests that hsps are present and function in theextracellular space. Hsp90 alpha was recently found on the surface and in conditionedmedia of HT-1080 fibrosarcoma cells. Here it acts as a molecular chaperone that assistsin the activation of matrix metalloproteinase-2 (MMP2), leading to increased tumorinvasiveness. Few other extracellular substrates of hsp90 have been identified, butseveral independent observations of extracellular hsp90 suggest that this protein may beimportant for both normal physiology and disease states. Hsp90 typically works in acomplex of associated proteins, and some of these proteins have also been observedextracellularly. Here we show that some of these components, including hsp90organizing protein (hop) and p23, are also found in HT-1080 conditioned mediasupporting the notion that hsp90 complexes function in invasiveness. These findingssuggest a wide-ranging phenomenon of extracellular molecular chaperoning that couldhave implications for biological processes and disease.  相似文献   

12.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

13.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

14.
15.
The antiproliferative effect of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) has been studied for a decade in diverse model systems, but the signalling pathways linking 1alpha,25(OH)(2)D(3) to cell cycle arrest remains unclear. In our attempt to establish a model system which would allow further identification of important players in the process of the 1alpha,25(OH)(2)D(3) imposed cell cycle arrest, we have isolated derivatives of the human breast cancer cell line MCF-7 and chosen two nearly 1alpha,25(OH)(2)D(3) resistant and two hypersensitive sub-clones. Investigation of cell cycle proteins regulated by 1alpha,25(OH)(2)D(3) in these clones indicates that activation of one component/pathway is responsible for the linkage between 1alpha,25(OH)(2)D(3) and growth arrest. Protein levels of the Vitamin D receptor (VDR) were elevated in sensitive cells upon 1alpha,25(OH)(2)D(3) treatment, whereas resistant clones were unable to induce VDR upon 1alpha,25(OH)(2)D(3) treatment. Our data show that VDR protein levels and the ability of a cell to induce VDR upon 1alpha,25(OH)(2)D(3) treatment correlate with the antiproliferative effects of 1alpha,25(OH)(2)D(3), and suggest that the level of VDR in cancer cells might serve as a prognostic marker for treatment of cancer with 1alpha,25(OH)(2)D(3) analogues.  相似文献   

16.
A 25-carboxylic ester analogue of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)), ZK159222, was described as a novel type of antagonist of 1alpha,25-(OH)(2)D(3) signaling. The ligand sensitivity of ZK159222, in facilitating complex formation between 1alpha,25-(OH)(2)D(3) receptor (VDR) and the retinoid X receptor (RXR) on a 1alpha,25-(OH)(2)D(3) response element (VDRE), was approximately 7-fold lower when compared with 1alpha,25-(OH)(2)D(3). However, ZK159222 was not able to promote a ligand-dependent interaction of the VDR with the coactivator proteins SRC-1, TIF2, and RAC3, neither in solution nor in a complex with RXR on DNA. Functional analysis in HeLa and COS-7 cells demonstrated a 10-100-fold lower ligand sensitivity for ZK159222 than for 1alpha, 25-(OH)(2)D(3) and, most interestingly, a potency that was drastically reduced compared with 1alpha,25-(OH)(2)D(3). A cotreatment of 1alpha,25-(OH)(2)D(3) with a 100-fold higher concentration of ZK159222 resulted in a prominent antagonistic effect both in functional in vivo and in in vitro assays. These data suggest that the antagonistic action of ZK159222 is due to a lack of ligand-induced interaction of the VDR with coactivators with a parallel ligand sensitivity, which is sufficient for competition with the natural hormone for VDR binding.  相似文献   

17.
Three protein fractions of the cytosol of the chick parathyroid glands, which had the sedimentation constants of 2.5 S, 3.7 S and 5.5 S, were found to bind with 1 alpha,25-dihydroxyvitamin D3. Among these proteins, the 3.7 S protein was assumed to be the specific receptor protein. The 3.7 S receptor protein was also capable of binding to 1 alpha,24-dihydroxyvitamin D3 but not 25-hydroxyvitamin D3. The binding affinity of 1 alpha,24(R)-dihydroxyvitamin D3 to the 3.7 S receptor protein was estimated to be 1.2 times greater than that of 1 alpha,25-dihydroxyvitamin D3, while 1 alpha,25-dihydroxyvitamin D3 bound to the receptor protein about 10 times stronger than 1 alpha,24(S)-dihydroxyvitamin D3. The dissociation constant for the receptor-1 alpha,25-dihydroxyvitamin D3 complex at 0 degrees C was 2.7 x 10(-11) M, the dissociation constants were calculated to be 2.2 x 10(-11) M and 2.6 x 10(-10) M for the complexes with 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3.  相似文献   

18.
19.
The vitamin D receptor (VDR) is an endocrine nuclear receptor that binds with high affinity its natural ligand 1alpha,25-dihydroxyvitamin D3. Gemini is a 1alpha,25-dihydroxyvitamin D3 analog with two identical side chains that, despite its significantly increased volume, binds to the VDR and can function as a potent agonist. This study demonstrates that, at excess corepressor (CoR) levels, Gemini shifts from an agonist to an inverse agonist that actively recruits CoR proteins to the VDR and mediates superrepression. Under these conditions Gemini stabilizes the VDR into a silent conformation, in which helix 12 of the ligand-binding domain is repositioned and thus unable to contribute to coactivator interaction. Amino acid F422 has been described as the lock of helix 12 and seems to be the most critical VDR residue in the inverse agonistic action of Gemini. Molecular dynamics simulations of the Gemini-VDR complex support these observation by indicating that the second side chain of Gemini induces tension to the receptor structure that can be released by a shift of helix 12. Taken together, Gemini is the first described (conditional) inverse agonist to an endocrine nuclear receptor and may function as a sensor for the cell-specific coactivator/CoR ratio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号