首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J M Argüello  J H Kaplan 《Biochemistry》1990,29(24):5775-5782
Treatment of renal Na,K-ATPase with N-acetylimidazole (NAI) results in loss of Na,K-ATPase activity. The inactivation kinetics can be described by a model in which two classes of sites are acetylated by NAI. The class I sites are rapidly reacting, the acetylation is prevented by the presence of ATP (K0.5 congruent to 8 microM), and the inactivation is reversed by incubation with hydroxylamine. These data suggest that the class I sites are tyrosine residues at the ATP binding site. The second class of sites are more slowly reacting, not protected by ATP, nor reversed by hydroxylamine treatment. These are probably lysine residues elsewhere in the protein. The associated K-stimulated p-nitrophenylphosphatase activity is inactivated by acetylation of the class II sites only; thus the tyrosine residues associated with ATP binding to the catalytic center are not essential for phosphatase activity. Inactivated enzyme no longer has high-affinity ATP binding associated with the catalytic site, although low-affinity ATP effects (inhibition of phosphatase and deocclusion of Rb) are still present. The inactivated enzyme can still be phosphorylated by Pi, occlude Rb+ ions, and undergo the major conformational transitions between the E1 Na and E2 K forms of the enzyme. Thus acetylation of the Na,K-ATPase by NAI inhibits high-affinity ATP binding to the catalytic center and produces inactivation.  相似文献   

2.
The Na(+)-dependent or E1 stages of the Na,K-ATPase reaction require a few micromolar ATP, but submillimolar concentrations are needed to accelerate the K(+)-dependent or E2 half of the cycle. Here we use Co(NH(3))(4)ATP as a tool to study ATP sites in Na,K-ATPase. The analogue inactivates the K(+) phosphatase activity (an E2 partial reaction) and the Na,K-ATPase activity in parallel, whereas ATP-[(3)H]ADP exchange (an E1 reaction) is affected less or not at all. Although the inactivation occurs as a consequence of low affinity Co(NH(3))(4)ATP binding (K(D) approximately 0.4-0.6 mm), we can also measure high affinity equilibrium binding of Co(NH(3))(4)[(3)H]ATP (K(D) = 0.1 micro m) to the native enzyme. Crucially, we find that covalent enzyme modification with fluorescein isothiocyanate (which blocks E1 reactions) causes little or no effect on the affinity of the binding step preceding Co(NH(3))(4)ATP inactivation and only a 20% decrease in maximal inactivation rate. This suggests that fluorescein isothiocyanate and Co(NH(3))(4)ATP bind within different enzyme pockets. The Co(NH(3))(4)ATP enzyme was solubilized with C(12)E(8) to a homogeneous population of alphabeta protomers, as verified by analytical ultracentrifugation; the solubilization did not increase the Na,K-ATPase activity of the Co(NH(3))(4)ATP enzyme with respect to parallel controls. This was contrary to the expectation for a hypothetical (alphabeta)(2) membrane dimer with a single ATP site per protomer, with or without fast dimer/protomer equilibrium in detergent solution. Besides, the solubilized alphabeta protomer could be directly inactivated by Co(NH(3))(4)ATP, to less than 10% of the control Na,K-ATPase activity. This suggests that the inactivation must follow Co(NH(3))(4)ATP binding at a low affinity site in every protomeric unit, thus still allowing ATP and ADP access to phosphorylation and high affinity ATP sites.  相似文献   

3.
A highly conserved amino acid sequence 442GDASE446 in the ATP binding pocket of rat Na/K-ATPase was mutated, and the resulting proteins, G442A, G442P, D443A, S445A, and E446A, were expressed in HeLa cells to investigate the effect of individual ligands on Na/K-ATPase. The apparent Km for the high and low affinity ATP effects was estimated by ATP concentration dependence for the formation of the Na-dependent phosphoenzyme (Kmh) and Na/K-ATPase activity (Kml). The apparent Km for p-nitrophenylphosphate (pNPP) for K-dependent-pNPPase (KmP) and its inhibition by ATP (Ki,0.5) and the apparent Km for Mg2+, Na+, K+, and vanadate in Na/K-ATPase were also estimated. For all the mutants, the value for ATP was approximately 2-10-fold larger than that of the wild type. While the turnover number for Na/K-ATPase activity were unaffected or reduced by 20 approximately 50% in mutants G442(A/P) and D443A. Although both affinities for ATP effects were reduced as a result of the mutations, the ratio, Kml Kmh, for each mutant was 1.3 approximately 3.7, indicating that these mutations had a greater impact on the low affinity ATP effect than on the high affinity effect. Each KmP value with the turnover number suggests that these mutations favor the binding of pNPP over that of ATP. These data and others indicate that the sequence 442GDASE446 in the ATP binding pocket is an important motif that it is involved in both the high and low affinity ATP effects rather than in free Mg2+, Na+, and K+ effects.  相似文献   

4.
The mechanism of functioning of Na, K-ATPase system is considered, the peculiarities of hydrolysis in different substrates are described. The experimental results testify to the role of substrate structure in E2----E1-transition, Na+ transport, K(+)-dependent phosphatase activity and quaternary structure of enzyme. The regulatory role of molecular organization of Na, K-ATPase in ion transport is discussed.  相似文献   

5.
C H Pedemonte  J H Kaplan 《Biochemistry》1988,27(20):7966-7973
Treatment of purified renal Na,K-ATPase with dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) produces both reversible and irreversible inhibition of the enzyme activity. The reversible inhibition is unaffected by the presence of saturating concentrations of the sodium pump ligands Na+,K+, Mg2+, and ATP, while the inactivation is prevented by either ATP or K+. The kinetics of protection against inactivation indicate that K+ binds to two sites on the enzyme with very different affinities. Na+ ions with high affinity facilitate the inactivation by H2DIDS and prevent the protective effect of K+ ions. The H2DIDS-inactivated enzyme no longer exhibits a high-affinity nucleotide binding site, and the covalent binding of fluorescein isothiocyanate is also greatly reduced, but phosphorylation by Pi is unaffected. The kinetics of inactivation by H2DIDS were first order with respect to time and H2DIDS concentration. The enzyme is completely inactivated by the covalent binding of one H2DIDS molecule at pH 9 per enzyme phosphorylation site, or two H2DIDS molecules at pH 7.2. H2DIDS binds exclusively to the alpha-subunit of the Na,K-ATPase, locking the enzyme in an E2-like conformation. The profile of radioactivity, following trypsinolysis and SDS-PAGE, showed H2DIDS attachment to a 52-kDa fragment which also contains the ATP binding site. These results suggest that H2DIDS treatment modifies a specific conformationally sensitive amino acid residue on the alpha-subunit of the Na,K-ATPase, resulting in the loss of nucleotide binding and enzymatic activity.  相似文献   

6.
Treatment of the canine renal Na,K-ATPase with N-(2-nitro-4-isothiocyanophenyl)-imidazole (NIPI), a new imidazole-based probe, results in irreversible loss of enzymatic activity. Inactivation of 95% of the Na,K-ATPase activity is achieved by the covalent binding of 1 molecule of [3H]NIPI to a single site on the alpha-subunit of the Na,K-ATPase. The reactivity of this site toward NIPI is about 10-fold greater when the enzyme is in the E1Na or sodium-bound form than when it is in the E2K or potassium-bound form. K+ ions prevent the enhanced reactivity associated with Na+ binding. Labeling and inactivation of the enzyme is prevented by the simultaneous presence of ATP or ADP (but not by AMP). The apparent affinity with which ATP prevents the inactivation by NIPI at pH 8.5 is increased from 30 to 3 microM by the presence of Na+ ions. This suggests that the affinity with which native enzyme binds ATP (or ADP) at this pH is enhanced by Na+ binding to the enzyme. Modification of the single sodium-responsive residue on the alpha-subunit of the Na,K-ATPase results in loss of high affinity ATP binding, without affecting phosphorylation from Pi. Modification with NIPI probably alters the adenosine binding region without affecting the region close to the phosphorylated carboxyl residue aspartate 369. Tightly bound (or occluded) Rb+ ions are not displaced by ATP (4 mM) in the inactivated enzyme. Thus modification of a single residue simultaneously blocks ATP acting with either high or low affinity on the Na,K-ATPase. These observations suggest that there is a single residue on the alpha-subunit (probably a lysine) which drastically alters its reactivity as Na+ binds to the enzyme. This lysine residue is essential for catalytic activity and is prevented from reacting with NIPI when ATP binds to the enzyme. Thus, the essential lysine residue involved may be part of the ATP binding domain of the Na,K-ATPase.  相似文献   

7.
The structural stability of the large cytoplasmic domain (H(4)-H(5) loop) of mouse alpha(1) subunit of Na(+)/K(+) ATPase (L354-I777), the number and the location of its binding sites for 2'-3'-O-(trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) and p-nitrophenylphosphate (pNPP) were investigated. C- and N-terminal shortening revealed that neither part of the phosphorylation (P)-domain are necessary for TNP-ATP binding. There is no indication of a second ATP site on the P-domain of the isolated loop, even though others reported previously of its existence by TNP-N(3)ADP affinity labeling of the full enzyme. Fluorescein isothiocyanate (FITC)-anisotropy measurements reveal a considerable stability of the nucleotide (N)-domain suggesting that it may not undergo a substantial conformational change upon ATP binding. The FITC modified loop showed only slightly diminished phosphatase activity, most likely due to a pNPP site on the N-domain around N398 whose mutation to D reduced the phosphatase activity by 50%. The amino acids forming this pNPP site (M384, L414, W411, S400, S408) are conserved in the alpha(1-4) isoforms of Na(+)/K(+) ATPase, whereas N398 is only conserved in the vertebrates' alpha(1) subunit. The phosphatase activity of the isolated H(4)-H(5) loop was neither inhibited by ATP, nor affected by mutation of D369, which is phosphorylated in native Na(+)/K(+) ATPase.  相似文献   

8.
The mechanism of Na,K-ATPase function is reviewed. The peculiarities of hydrolysis of various substrates are described. The experimental results testify to the effect of substrate structure on the E2----E1 transition, rate of Na+ transport, K-dependent phosphatase activation and the quaternary structure of Na,K-ATPase. A conclusion is drawn that the proton-acceptor properties of the substrate play a role in the regulation of ion transport by Na,K-ATPase.  相似文献   

9.
The rates of individual steps in the reaction cycle of dog kidney Na,K-ATPase labeled with iodoacetamidofluorescein (IAF) were measured using the fluorescence stopped-flow technique. The maximal rate of the fluorescence quenching accompanying ATP hydrolysis at 20 degrees C in the presence of K+ is 66.3 s-1, while the turnover rate in the same conditions is 15.5 s-1. The rate without K+ is slightly lower. Unexpectedly, at very high ionic strength, K+ accelerates the rate 2-fold. The fluorescence change appears to be associated with the E1P----E2P transition. The results are consistent with the classical Albers-Post scheme but do not support recent criticisms that E1P is kinetically incompetent in the presence of Na+ plus K+. As expected, in the absence of ATP the rate of E2(K)----E1Na was very slow (0.2 s-1) but was greatly accelerated by ATP (maximal rate 15.9 s-1) with low affinity (K0.5 = 196 microM). It was concluded that E2(K)----E1 is the slowest step of the cycle, even at nonlimiting ATP concentrations. The rate of E1K----E2(K) for both IAF- and fluorescein 5'-isothiocyanate-labeled enzyme was stimulated by K+ acting with low affinity, but not at all by ATP at 5 microM. Whereas the maximal rate with IAF-enzyme (271 s-1) was similar to previous work, the K+ affinity was significantly higher. Fluorescence signals accompanying hydrolysis of acetyl phosphate with both IAF- and fluorescein 5'-isothiocyanate-labeled enzyme have similar rates, 5.25 s-1 and 4.06 s-1, respectively. A species difference was observed between dog and pig kidney Na,K-ATPase in that both enzymes are labeled with IAF but only in dog enzyme were conformational transitions associated with fluorescence changes. Therefore, the IAF-labeled dog kidney enzyme is the preparation of choice for measuring fluorescence changes accompanying ATP hydrolysis.  相似文献   

10.
Pig kidney Na/K-ATPase preparations showed a positive cooperative effect for pNPP in Na-pNPPase activity. Measurements of the Na-pNPPase activity, Na-ATPase activity and the accumulation of phosphoenzyme (EP) under conditions of pNPP saturation showed several different ATP affinities. The presence of pNPP reduced both the maximum amount of EP and Na-ATPase activity to half showing a value of 4 and a 3,700-fold reduced ATP affinity for EP formation, and a 7 and 1,300-fold reduced affinity for Na-ATPase activity. The presence of low concentrations of ATP in the phosphorylation induced a 2-fold enhancement in Na-pNPPase activity despite a reduction in available pNPP sites. However, higher concentrations of ATP inhibited the Na-pNPPase activity and a much higher concentration of ATP increased both the phosphorylation and Na-ATPase activity to the maximum levels. The maximum Na-pNPPase activity was 1.7 and 3.4-fold higher without and with ATP, respectively, than the maximum Na-ATPase activity. These data and the pNPP dependent reduction in both Na-ATPase activity and the amount of enzyme bound ATP provide new evidence to show that ATP, pNPP and ATP with pNPP, respectively, induce different subunit interactions resulting a difference in the maximum Na(+)-dependent catalytic activity in tetraprotomeric Na/K-ATPase.  相似文献   

11.
The fluorescein 5'-isothiocyanate (FITC)-labeled lamb kidney Na+/K+-ATPase has been used to investigate enzyme function and ligand-induced conformational changes. In these studies, we have determined the effects of two monoclonal antibodies, which inhibit Na+/K+-ATPase activity, on the conformational changes undergone by the FITC-labeled enzyme. Monitoring fluorescence intensity changes of FITC-labeled enzyme shows that antibody M10-P5-C11, which inhibits E1 approximately P intermediate formation (Ball, W.J. (1986) Biochemistry 25, 7155-7162), has little effect on the E1 in equilibrium E2 transitions induced by Na+, K+, Mg2+ Pi or Mg2+. ouabain. The M10-P5-C11 epitope, which appears to reside near the ATP-binding site, does not significantly participate in these ligand interactions. In contrast, we find that antibody 9-A5 (Schenk, D.B., Hubert, J.J. and Leffert, H.L. (1984) J. Biol. Chem. 259, 14941-14951) inhibits both the Na+/K+-ATPase and p-nitrophenylphosphatase activity. Its binding produces a 'Na+-like' enhancement in FITC fluorescence, reduces the ability of K+ to induce the E1 in equilibrium E2 transition and converts E2.K+ to an E1 conformation. Mg2+ binding to the enzyme alters both the conformation of this epitope region and its coupling of ligand interactions. In the presence of Mg2+, 9-A5 binding stabilizes an E1.Mg2+ conformation such that K+-, Pi- and ouabain-induced E1----E2 or E1----E2-Pi transitions are inhibited. Oubain and Pi added together overcome this stabilization. These studies indicate that the 9-A5 epitope participates in the E1 in equilibrium E2 conformational transitions, links Na+-K+ interactions and ouabain extracellular binding site effects to both the phosphorylation site and the FITC-binding region. Antibody-binding studies and direct demonstration of 9-A5 inhibition of enzyme phosphorylation by [32P]Pi confirm the results obtained from the fluorescence studies. Antibody 9-A5 has also proven useful in demonstrating the independence of Mg2+ ATP and Mg2+Pi regulation of ouabain binding. In addition, [3H]ouabain and antibody-binding studies demonstrate that FITC-labeling alters the enzyme's responses to Mg2+ as well as ATP regulation.  相似文献   

12.
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.  相似文献   

13.
To help characterize the Na,K-ATPase active site with enzyme incorporated into phospholipid vesicles, the activities with alternative substrates were compared, 22Na/Na-transport was equivalent with ATP, CTP, carbamylphosphate and acetylphosphate, but slower with CTP, 3-O-methylfluoresceinphosphate (3-O-MFP), nitrophenylphosphate and umbelliferonephosphate. It indicates a slower rate of formation of phosphorylating enzyme complex in conformation position of E1 (E1P) when the second group of substrates is bound with enzyme active center. 22Na/K-transport was half as effective with CTP as with ATP and was far slower with the other substrates. It indicates a more stringent selectivity at the low-affinity site of enzyme in conformation E2 that accelerates the slow step of this transport mode. Although enzyme modification with fluoresceinisothiocyanate blocks the high-affinity site to ATP, the K-phosphatase reaction catalyzed by E2 is retained, even with a substrate, 3-O-MFP, that binds to the adenine pocket. Dimethylsulfoxide inhibits hydrolysis of the nucleotides and of the carboxylic phosphate substrates of the K-phosphatase reaction, but stimulates hydrolysis of the phenolic phosphate substrates (nitrophenylphosphate and umbelliferone phosphate) which normally are hydrolyzed more slowly than the other substrates. On the basis of these data the authors propose the model of Na,K-ATPase active center.  相似文献   

14.
Rubratoxin B, a lactone-containing bisanhydride metabolite of certain toxigenic molds, inhibited (Na+-K+)-stimulated ATPase activity of mouse brain microsomes in a dose-dependent manner with an estimated IC50 of 6 x 10(-6) M. Hydrolysis of ATP was linear with time and enzyme concentration, with or without rubratoxin in reaction mixtures. Altered pH and activity curves for (Na+-K+)-ATPase demonstrated comparable inhibition by rubratoxin in buffered acidic, neutral, and alkaline pH ranges. Kinetic studies of cationic-substrate activation of (Na+-K+)-ATPase indicated classical competitive inhibition for Na+ and K+. Results also showed competitive inhibition for K+ activated p-nitrophenyl phosphatase as demonstrated by altered binding site parameters without change in the catalytic velocity of dephosphorylation of the enzyme . phosphoryl complex. Noncompetitive inhibition with regards to activation by ATP and p-nitrophenyl phosphate was indicated by altered Vmax values with no change in Km values. Inhibition was partially restored by repeated washings. Preincubation with sulfhydryl agents protected the enzyme from inhibition. Cumulative inhibition studies with rubratoxin and ouabain indicated possible interaction between the two inhibitors of (Na+-K+)-ATPase. Rubratoxin appeared to exert its effects on (Na+-K+)-ATPase by interacting at Na+ and K+ sites.  相似文献   

15.
Uncoupling the red cell sodium pump by proteolysis   总被引:1,自引:0,他引:1  
In situ proteolysis of Na,K-ATPase was studied using inside-out red cell membrane vesicles. Proteolysis of the enzyme in its "E1" conformation with either trypsin or chymotrypsin inactivated cation translocation more than ATP hydrolysis. This was evident both in the absence of intravesicular alkali cations when Na-ATPase was compared to ATP-dependent 22Na+ influx, and in the presence of K+ when Na+/K+ exchange was compared to (Na+ + K+)-activated ATPase. This differential loss in pump versus hydrolysis was observed also when the activities of only intact, non-leaky vesicles were compared and therefore reflects intramolecular uncoupling rather than nonspecific leakage. Although oligomycin and thimerosal, like trypsin and chymotrypsin, inhibit the enzyme's conformational step(s), neither effect uncoupling. It is concluded that specific cleavage(s) of Na,K-ATPase, at least as it exists in situ, alters the reaction sequence with respect to the normal ordered mechanism. Accordingly, cytoplasmic Na+ and extracellular K+ bind to the enzyme, stimulate phosphorylation (ATP + E1----E1P + ADP) and dephosphorylation (E2P----E2 + Pi), respectively, but each is then released to the same side from which it had bound; presumably release occurs prior to the conformational transitions of E1P to E2P and E2 to E1. This conclusion is supported by experiments showing that, ar micromolar ATP concentration, the hydrolytic activity (Na-ATPase) of the trypsinized but not the unmodified enzyme is stimulated by K+, consistent with earlier experiments (Hegyvary, C., and Post, R. L. (1971) J. Biol. Chem. 246, 5234-5240) showing that the K X E2 to K X E1 transition is slower than the E2 to E1 transition.  相似文献   

16.
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+- dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187--3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabain-inhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V] -vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution. These findings are considered in terms of Mn2+ at the divalent cation site being a better selector than Mg2+ of the E2 conformational states of the enzyme, states also selected by K+ and by dimethylsulfoxide and reactive with ouabain and vanadate; the E1 conformational states, by contrast, are those selected by Na+ and ATP, and also by Triton X-100.  相似文献   

17.
Substrate-velocity curve for Na,K-ATPase under optimal conditions is described as a curve with intermediary plateau. C12E2 treatment of the enzyme changes its kinetic behaviour. The substrate-velocity curve transforms into hyperbolic one and the Km value for the solubilized enzyme approaches the Km value for the first phase of the complex curve. The experimental substrate-velocity curves obtained for Na,K-ATPase under different conditions were analyzed on the basis of the sum of Michaelis and Hill equations and the kinetic scheme for the enzyme was proposed. This model suggests that at the definite step of the reaction cycle the short-living oligomer is formed which can bind ATP with higher affinity thus accelerating E2----E1 transition. Several additional experimental facts that prove the hypothesis are presented.  相似文献   

18.
L D Faller  E Rabon  G Sachs 《Biochemistry》1983,22(20):4676-4685
Vanadate inhibition of the catalytic and transport activities of the gastric magnesium-dependent, hydrogen ion transporting, and potassium-stimulated adenosinetriphosphatase (EC 3.6.1.3) (H,K-ATPase) has been studied. The principal experiment observations are the following: (1) Inhibition of adenosine 5'-triphosphate (ATP) hydrolysis is biphasic. Vanadate binding with a stoichiometry of 1.5 nmol mg-1 approximately halves K+-stimulated ATPase activity at physiological temperature. The remaining activity is inhibited by binding an additional 1.5 nmol mg-1 vanadate with lower apparent ions bind specifically to gastric vesicles with two affinities. Vanadate binding in the presence of nucleotide is compatible with competition for the kinetically defined high-affinity and low-affinity ATP sites. (3) Vanadate inhibits phosphoenzyme formation and the K+-stimulated p-nitrophenyl phosphatase activity of the enzyme monophasically. A maximum of 1.5 nmol mg-1 acid-stable phosphoenzyme is formed. The half-time for vanadate dissociation from the site that inhibits p-nitrophenyl phosphate hydrolysis is 5 min (4) At most, 3 nmol mg-1 vanadate is required to inhibit proton transport. The simplest interpretation of the data is that vanadate inhibits the H,K-ATPase by binding competitively with ATP at two catalytic sites. Different catalytic mechanisms at the high-affinity and low-affinity sites are suggested by the different stoichiometries found for vanadate binding and phosphoenzyme formation.  相似文献   

19.
The effect of N1-substituted analogs of ATP on the hydrolysis of umbelliferone phosphate by Na,K-ATPase has demonstrated: analogs having a negatively charged substituent (N1-oxy- or N1-carbo-methoxy-ATP) and capable of accepting H+ induce an activation similar to that of ATP; N1-methoxy-ATP, containing an uncharged substituent, does not affect the phosphatase reaction at low concentration and inhibits it at higher concentration. It has been assumed that ATP binding to Na,K-ATPase induces formation of a hydrogen bond between the nitrogen atom at the first position of the purine base and appropriate amino acid of active centre, with a subsequent attachment of H+ to ATP, thus facilitating the transition of Na,K-ATPase from the K+- to the Na+-form.  相似文献   

20.
Lysine 480 has been suggested to be essential for ATP binding and hydrolysis by Na,K-ATPase because it is labeled by reagents that are thought to react with the ATPase from within the ATP binding site. In order to test this hypothesis, Lys-480 was changed to Ala, Arg, or Glu by site-directed mutagenesis, and the resultant Na,K-ATPase molecules were expressed in yeast cells. The ATPase activity of each of the mutants was similar to the activity of the wild type enzyme indicating that Lys-480 is not essential for ATP hydrolysis. The binding of [3H]ouabain in both ATP-dependent and inorganic phosphate-dependent reactions was used to determine the apparent affinity of each mutant for ATP or Pi. The K0.5(ATP) for ouabain binding to phosphoenzyme formed from ATP was 1-3 microM for Lys-480, Arg-480, and Ala-480, whereas for Glu-480 the K0.5(ATP) was 18 microM. The K0.5(Pi) for ouabain binding to phosphoenzyme formed from inorganic phosphate was 16-28 microM for Lys-480, Arg-480, and Ala-480, but was 74 microM for Glu-480. The Kd for ouabain binding was similar for both the wild type and mutant Na,K-ATPase molecules (3-6 nM). These data indicate that the substitution of an acidic amino acid for lysine at position 480 appears to reduce the affinity of the Na,K-ATPase for both ATP and phosphate. It is concluded that Lys-480 is not essential for ATP binding or hydrolysis or for phosphate binding by Na,K-ATPase but is likely to be located within the ATP binding site of the Na,K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号