首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3.  相似文献   

2.
Lysophosphatidic acid (LPA) is enriched in the serum and malignant effusion of cancer patients and plays a key role in tumorigenesis and metastasis. LPA-activated mesenchymal stem cells promote tumorigenic potentials of cancer cells through a paracrine mechanism. LPA-conditioned medium (LPA CM) from human adipose tissue-derived mesenchymal stem cells (hASCs) elicited adhesion and proliferation of A549 human lung adenocarcinoma cells. To identify proteins involved in the LPA-stimulated paracrine functions of hASCs, we analyzed the LPA CM using liquid-chromatography tandem mass spectrometry-based shotgun proteomics. We identified βig-h3, an extracellular matrix protein that is implicated in tumorigenesis and metastasis, as an LPA-induced secreted protein in hASCs. LPA-induced βig-h3 expression was abrogated by pretreating hASCs with the LPA receptor(1/3) inhibitor Ki16425 or small interfering RNA-mediated silencing of endogenous LPA(1). LPA-induced βig-h3 expression was blocked by treating the cells with the Rho kinase inhibitor Y27632, implying that LPA-induced βig-h3 expression is mediated by the LPA(1)- Rho kinase pathway. Immunodepletion or siRNA-mediated silencing of βig-h3 abrogated LPA CM-stimulated adhesion and proliferation of A549 cells, whereas retroviral overexpression of βig-h3 in hASCs potentiated it. Furthermore, recombinant βig-h3 protein stimulated the proliferation and adhesion of A549 human lung adenocarcinoma cells. These results suggest that hASC-derived βig-h3 plays a key role in tumorigenesis by stimulating the adhesion and proliferation of cancer cells and it can be applicable as a biomarker and therapeutic target for lung cancer.  相似文献   

3.
Carcinoma-associated fibroblasts play a key role in tumorigenesis and metastasis by providing a tumor-supportive microenvironment. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) to carcinoma-associated fibroblasts expressing α-smooth muscle actin, vascular endothelial growth factor, and stromal cell-derived factor-1. A549 conditioned medium-induced differentiation of hASCs to carcinoma-associated fibroblasts was completely abrogated by treatment of hASCs with Ki16425, a lysophosphatidic acid receptor antagonist, or knockdown of lysophosphatidic acid receptor 1 (LPA1) expression in hASCs with small interfering RNA or lentiviral short hairpin RNA. Using a murine xenograft transplantation model of A549 cells, we showed that co-transplantation of hASCs with A549 cells stimulated growth of A549 xenograft tumor, angiogenesis, and differentiation of hASCs to carcinoma-associated fibroblasts in vivo. Knockdown of LPA1 expression in hASCs abrogated hASCs-stimulated growth of A549 xenograft tumor, angiogenesis, and differentiation of hASCs to carcinoma-associated fibroblasts. Moreover, A549 conditioned medium-treated hASCs stimulated tube formation of human umbilical vein endothelial cells by LPA1-dependent secretion of vascular endothelial growth factor. These results suggest that A549 cells induce in vivo differentiation of hASCs to carcinoma-associated fibroblasts, which play a key role in tumor angiogenesis within tumor microenvironment, through an LPA-LPA1-mediated paracrine mechanism.  相似文献   

4.
5.

Background

Periostin, an extracellular matrix protein, is expressed in bone, more specifically, the periosteum and periodontal ligaments, and plays a key role in formation and metabolism of bone tissues. Human adipose tissue-derived mesenchymal stem cells (hASCs) have been reported to differentiate into osteoblasts and stimulate bone repair. However, the role of periostin in hASC-mediated bone healing has not been clarified. In the current study, we examined the effect of periostin on bone healing capacity of hASCs in a critical size calvarial defect model.

Methods and Results

Recombinant periostin protein stimulated migration, adhesion, and proliferation of hASCs in vitro. Implantation of either hASCs or periostin resulted in slight, but not significant, stimulation of bone healing, whereas co-implantation of hASCs together with periostin further potentiated bone healing. In addition, the number of Ki67-positive proliferating cells was significantly increased in calvarial defects by co-implantation of both hASCs and periostin. Consistently, proliferation of administered hASCs was stimulated by co-implantation with periostin in vivo. In addition, co-delivery of hASCs with periostin resulted in markedly increased numbers of CD31-positive endothelial cells and α-SMA-positive arterioles in calvarial defects.

Conclusions

These results suggest that recombinant periostin potentiates hASC-mediated bone healing by stimulating proliferation of transplanted hASCs and angiogenesis in calvarial defects.  相似文献   

6.
7.
Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds.  相似文献   

8.
Chmp1A (Chromatin modifying protein 1A/Charged multivesicular protein 1A) is a member of the ESCRT-III (Endosomal Sorting Complex Required for Transport) family that was shown to function in endosome-mediated trafficking via multivesicular body (MVB) formation and sorting. Recent reports suggest that ESCRT complexes are also involved in cell cycle progression and tumor development. Using in vitro and in vivo model systems, we provide evidence that Chmp1A is a novel tumor suppressor, especially in the pancreas. We demonstrated that short hairpin RNA (shRNA) mediated stable silencing of Chmp1A in HEK 293T cells resulted in an increase of anchorage-independent growth in soft agar assay and tumor formation in xenograft assay. To investigate the involvement of Chmp1A in human tumor development we screened human cancer arrays and pancreatic tissue arrays. We discovered that Chmp1A mRNA and protein was reduced and/or altered (protein) in various human pancreatic tumors. To investigate the biological implication of these data, we either over-expressed or silenced Chmp1A in human pancreatic ductal tumor cells (PanC-1) and studied the effect of these manipulations on cell and tumor growth respectively. Stable over-expression of Chmp1A in PanC-1 cells resulted in cell growth inhibition and tumor xenograft inhibition respectively. In contrast, silencing of Chmp1 in PanC-1 cells resulted in the elevation of cell growth in vitro. Mechanistically, over-expression of Chmp1A strongly increased the protein level of P53 and phospho-P53. Taken together, our data indicates that Chmp1A is a novel tumor suppressor, especially in pancreas and that Chmp1A regulates tumor growth potentially through P53 signaling pathway.  相似文献   

9.
Gastric cancer (GC) is the fourth largest cancer in the world, with a 5-year survival rate of <30%. Thus, this study intends to investigate the effects of inhibin βA (INHBA) gene silencing on the migration and invasion of GC cells via the transforming growth factor-β (TGF-β) signaling pathway. Initially, this study determined the expression of INHBA and the TGF-β signaling pathway-related genes in GC tissues. After that, to assess the effect of INHBA silencing on GC progression, GC cells were transfected with short hairpin RNAs that targeted INHBA in order to detect the expression of INHBA and the TGF-β signaling pathway-related genes, as well as cell migration, invasion, and proliferation abilities. Finally, a tumor xenograft model in nude mice was constructed to verify the effect that the silencing of INHBA had on tumor growth. Highly expressed INHBA and activated TGF-β signaling pathways were observed in GC tissues. In response to shINHBA-1 and shINHBA-2, the TGF-β signaling pathway was inhibited in GC cells, whereas the GC cell migration, invasion, proliferation, and tumor growth were significantly dampened. On the basis of the observations and findings of this study, INHBA gene silencing inhibited the progression of GC by inactivating the TGF-β signaling pathway, which provides a potential target in the treatment of GC.  相似文献   

10.
ABSTRACT: BACKGROUND: The loss of tumor suppressor gene (TSG) function is a critical step in the pathogenesis of human lung cancer. RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15) gene from chromosome 3p21.3 demonstrated tumor suppressor activity. However, the role of RBM5 played in the occurrence and development of lung cancer is still not well understood. METHOD: Paired non-tumor and tumor tissues were obtained from 30 adenocarcinomas. The expression of RBM5 mRNA and protein was examined by RT-PCR and Western blot. A549 cell line was used to determine the apoptotic function of RBM5 in vitro. A549 cells were transiently transfected with pcDNA3.1-RBM5. AnnexinV analysis was performed by flow cytometry. Expression of Bcl-2, cleaved caspase-3, caspase-9 and PAPP proteins in A549 lung cancer cells and the A549 xenograft BALB/c nude mice model was determined by Western blot. Tumor suppressor activity of RBM5 was also examined in the A549 xenograft model treated with pcDNA3.1-RBM5 plasmid carried by attenuated Salmonella typhi Ty21a. Result The expression of RBM5 mRNA and protein was decreased significantly in adenocarcinoma tissues compared to that in the non-tumor tissues. In addition, as compared to the vector control, a significant growth inhibition of A549 lung cancer cells was observed when transfected with pcDNA3.1-RBM5 as determined by cell proliferation assay. We also found that overexpression of RBM5 induced both early and late apoptosis in A549 cells using AnnexinV/PI staining as determined by flow cytometry. Furthermore, the expression of Bcl-2 protein was decreased, whereas the expression of cleaved caspase-3, caspase-9 and PARP proteins was significantly increased in the RBM5 transfected cells; similarly, expression of decreased Bcl-2 and increased cleaved caspase-3 proteins was also examined in the A549 xenograft model. More importantly, we showed that accumulative and stable overexpression of RBM5 in the A549 xenograft BALB/c nude mice model significantly inhibited the tumor growth rate in vivo as compared to that in the control. CONCLUSION: Our study demonstrates that RBM5 can inhibit the growth of lung cancer cells and induce apoptosis both in vitro and in vivo, which suggests that RBM5 might be used as a potential biomarker or target for lung cancer diagnosis and chemotherapy. Moreover, we propose a novel animal model set up in BALB/c nude mice treated with attenuated Salmonella as a vector carrying plasmids to determine RBM5 function in vivo.  相似文献   

11.
Recent research has shown that adipose tissues contain abundant MSCs (mesenchymal stem cells). The origin and location of the adipose stem cells, however, remain unknown, presenting an obstacle to the further purification and study of these cells. In the present study, we aimed at investigating the origins of adipose stem cells. α-SMA (α-smooth muscle actin) is one of the markers of pericytes. We harvested ASCs (adipose stromal cells) from α-SMA-GFP (green fluorescent protein) transgenic mice and sorted them into GFP-positive and GFP-negative cells by FACS. Multilineage differentiation tests were applied to examine the pluripotent ability of the α-SMA-GFP-positive and -negative cells. Immunofluorescent staining for α-SMA and PDGF-Rβ (platelet-derived growth factor receptor β) were applied to identify the α-SMA-GFP-positive cells. Then α-SMA-GFP-positive cells were loaded on a collagen-fibronectin gel with endothelial cells to test their vascularization ability both in vitro and in vivo. Results show that, in adipose tissue, all of the α-SMA-GFP-positive cells congregate around the blood vessels. Only the α-SMA-GFP-positive cells have multilineage differentiation ability, while the α-SMA-GFP-negative cells can only differentiate in an adipogenic direction. The α-SMA-GFP-positive cells maintained expression of α-SMA during multilineage differentiation. The α-SMA-GFP-positive cells can promote the vascularization of endothelial cells in three-dimensional culture both in vitro and in vivo. We conclude that the adipose stem cells originate from perivascular cells and congregate around blood vessels.  相似文献   

12.
The type 1 insulin-like growth factor receptor (IGF-1R), which is over-expressed or activated in many human cancers, including lung cancer, mediates cancer cell proliferation and metastasis. Several studies indicate that blocking IGF-1R expression can inhibit tumor cell proliferation and metastasis. In this study, inhibition of the endogenous IGF-1R by recombinant adenoviruses encoding short hairpin RNAs against IGF-1R was found to significantly suppress IGF-1R expression, arrest the cell cycle, enhance the apoptotic response, and inhibit proliferation, adhesion, invasion and migration in A549 cells. Moreover, silencing IGF-1R decreases the expression of invasive-related genes including matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-plasminogen activator (u-PA), and the phosphorylation of Akt and ERK1/2. These results suggest that the silencing of IGF-1R has the potential to be an effective cancer gene therapy strategy for human lung cancer.  相似文献   

13.
Atrial natriuretic peptide (ANP) is increasingly expressed on airway and inhibits pulmonary arterial remodeling. However, the role of ANP in remodeling of respiratory system is still unclear. The role of ANP on airway remodeling and the possible mechanism was explored in this study. Both human bronchial epithelial 16HBE-14o cells and alveolar epithelial A549 cells were stimulated by TGF-β1, ANP, cGMP inhibitor, PKG inhibitor, and cGMP analogue. The expressions of epithelial markers, mesenchymal markers, and Smad3 were assessed by quantitative real-time PCR and western blotting. Immunohistochemical staining was employed to assess Smad3 expression once it was silenced by siRNA in 16HBE-14o or A549 cells. Our results showed that the mRNA and protein expressions of E-Cadherin were decreased, whereas α-SMA expressions were increased after induction by TGF-β1 in 16HBE-14o and A549 cells. The E-Cadherin expressions were increased and α-SMA expressions were decreased after ANP stimulation. Inhibition of cGMP or PKG decreased E-Cadherin expression but increased α-SMA expression, which could be reversed by cGMP analogue. Moreover, the phosphorylated Smad3 expression was consistent with α-SMA expression. After smad3 was silenced, Smad3 was mostly expressed in cytoplasm instead of nucleus as non-silenced cells during epithelial-mesenchymal transition (EMT). In conclusion, ANP inhibits TGF-β1-induced EMT in 16HBE-14o and A549 cells through cGMP/PKG signaling, by which it targets TGF-β1/Smad3 via attenuating phosphorylation of Smad3. These findings suggest the potential of ANP in the treatment on pulmonary diseases with airway remodeling.  相似文献   

14.
In this study, we explored the therapeutic potential of microRNA (miR) analogs against non–small-cell lung cancer (NSCLC) using lentiviral delivery of short hairpin RNA (shRNA). By using A549 as a model cell line, we used analogs and mimics of miR-4319/miR-125-5p to target the tumorigenic RAF1 gene. Lentiviral vectors carrying shRNA of a highly efficient miRNA analog of miR-4319/miR-125-5p, Analog2, were constructed to infect A549 cells. Our results showed that, compared with the noncancerous bronchial epithelial cell line 16HBE, lentivirus delivering Analog2 shRNA induced significant G2/M arrest and subsequent apoptosis in A549 cells, but not in 16HBE cells. Western blot analysis revealed that key factors regulating cell cycle were downregulated following RAF1 inhibition. In vivo xenograft experiments showed that lentivirus carrying Analog2 shRNA markedly decreased tumor size. Therefore, lentiviral delivery of Analog2 shRNA is a valid RNA interference-based treatment against NSCLC with high potency and specificity.  相似文献   

15.
Adult renal progenitor cells (ARPCs) isolated from the human kidney may contribute to repair featuring acute kidney injury (AKI). Bone morphogenetic proteins (BMPs) regulate differentiation, modeling, and regeneration processes in several tissues. The aim of this study was to evaluate the biological actions of BMP-2 in ARPCs in vitro and in vivo. BMP-2 was expressed in ARPCs of normal adult human kidneys, and it was upregulated in vivo after delayed graft function (DGF) of renal transplantation, a condition of AKI. ARPCs expressed BMP receptors, suggesting their potential responsiveness to BMP-2. Incubation of ARPCs with this growth factor enhanced reactive oxygen species (ROS) production, NADPH oxidase activity, and Nox4 protein expression. In vivo, Nox4 was localized in BMP-2-expressing CD133+ cells at the tubular level after DGF. BMP-2 incubation induced α-smooth muscle actin (SMA), collagen I, and fibronectin protein expression in ARPCs. Moreover, α-SMA colocalized with CD133 in vivo after DGF. The oxidative stimulus (H(2)O(2)) induced α-SMA expression in ARPCs, while the antioxidant N-acetyl-cysteine inhibited BMP-2-induced α-SMA expression. Nox4 silencing abolished BMP-2-induced NADPH oxidase activation and myofibroblastic induction. We showed that 1) ARPCs express BMP-2, 2) this expression is increased in a model of AKI; 3) BMP-2 may induce the commitment of ARPCs toward a myofibroblastic phenotype in vitro and in vivo; and 4) this profibrotic effect is mediated by Nox4 activation. Our findings suggest a novel mechanism linking AKI with progressive renal damage.  相似文献   

16.
The relationship between circular RNA (circRNA) and cancer stem cells (CSCs) is uncertain. We have investigated the combined influence of CSCs, circRNA (hsa_circ_0003222), and immune checkpoint inhibitors in NSCLC progression and therapy resistance. We constructed lung CSCs (LCSCs; PC9 and A549). The effects of hsa_circ_0003222 in vitro were determined by cell counting, colony and sphere formation, and Transwell assays. A tumor xenograft model of metastasis and orthotopic model were built for in vivo analysis. We found that hsa_circ_0003222 was highly expressed in NSCLC tissues and LCSCs. Higher levels of hsa_circ_0003222 were associated with the stage, metastasis, and survival rate of patients with NSCLC. Reduced levels of hsa_circ_0003222 decreased tumor cell proliferation, migration, invasion, stemness-like properties, and chemoresistance. The silencing of hsa_circ_0003222 was found to downregulate PHF21B expression and its downstream, β-catenin by relieving the sponging effect of miR-527. Moreover, silencing hsa_circ_0003222 alleviated NSCLC resistance to anti-programmed cell death-ligand 1 (PD-L1)-based therapy in vivo. Our data demonstrate the significant role of hsa_circ_0003222 in NSCLC cell stemness-like properties. The manipulation of circRNAs in combination with anti-PD-L1 therapy may alleviate NSCLC stemness and progression.Subject terms: Cancer microenvironment, Cancer stem cells  相似文献   

17.
Genetic and epigenetic plasticity allows tumors to evade single-targeted treatments. Here we direct Bcl2-specific short interfering RNA (siRNA) with 5'-triphosphate ends (3p-siRNA) against melanoma. Recognition of 5'-triphosphate by the cytosolic antiviral helicase retinoic acid-induced protein I (Rig-I, encoded by Ddx58) activated innate immune cells such as dendritic cells and directly induced expression of interferons (IFNs) and apoptosis in tumor cells. These Rig-I-mediated activities synergized with siRNA-mediated Bcl2 silencing to provoke massive apoptosis of tumor cells in lung metastases in vivo. The therapeutic activity required natural killer cells and IFN, as well as silencing of Bcl2, as evidenced by rescue with a mutated Bcl2 target, by site-specific cleavage of Bcl2 messenger RNA in lung metastases and downregulation of Bcl-2 protein in tumor cells in vivo. Together, 3p-siRNA represents a single molecule-based approach in which Rig-I activation on both the immune- and tumor cell level corrects immune ignorance and in which gene silencing corrects key molecular events that govern tumor cell survival.  相似文献   

18.
19.
Migration of mesenchymal stem cells plays a key role in regeneration of injured tissues. Rheumatoid arthritis (RA) is a chronic inflammatory disease and synovial fluid (SF) reportedly contains a variety of chemotactic factors. This study was undertaken to investigate the role of SF in migration of human bone marrow-derived mesenchymal stem cells (hBMSCs) and the molecular mechanism of SF-induced cell migration. SF from RA patients greatly stimulated migration of hBMSCs and the SF-induced migration was completely abrogated by pretreatment of the cells with the lysophosphatidic acid (LPA) receptor antagonist Ki16425 and by small interfering RNA- or lentiviral small hairpin RNA-mediated silencing of endogenous LPA1/Edg2. Moreover, SF from RA patients contains higher concentrations of LPA and an LPA-producing enzyme autotoxin than normal SF. In addition, SF from RA patients increased the intracellular concentration of calcium through a Ki16425-sensitive mechanism and pretreatment of the cells with the calmodulin inhibitor W7 or calmodulin-dependent protein kinase II inhibitor KN93 abrogated the SF-induced cell migration. These results suggest that LPA-LPA1 plays a key role in the migration of hBMSCs induced by SF from RA patients through LPA1-dependent activation of calmodulin-dependent protein kinase II.  相似文献   

20.
Periostin is over expressed in many epithelial malignant cancers, including lung cancer, breast cancer, ovarian cancer and colon cancer. It is related with the progression and migration of breast and ovarian cancer cells in vitro. The aim of this study was to investigate the serum level of periostin in non-small cell lung cancer (NSCLC) and its relationship with established biological and prognostic factors by enzyme-linked-immunosorbent serologic assay. We also observe the function of periostin on the proliferation and migration of human lung adenocarcinoma cell line (A549) and discuss the mechanism. The mean value for serum periostin (POSTN) was elevated in NSCLC patients (242.84 ± 5.33 pg/ml) compared to the normal healthy volunteers (215.66 ± 11.67 pg/ml) (p = 0.030). The serum level of periostin of NSCLC patients had no connection with gender, age, pathological type, TNM stage, lymph node status, tumor size and invasiveness. We constructed a plasmid named pEGFP-N1/POSTN expressing full-length human periostin. Transfecting the plasmid to A549 cells and periostin was efficiently expressed in transfected A549 cells. Our data showed that periostin could promote the proliferation and migration of A549 cells by inducing vimentin and N-cadherin expression and downregulating E-cadherin expression. These results strongly suggest that periostin is a novel molecular which play an important role during the progression and development of NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号