首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine Autoreceptors Modulate Dopamine Release from the Prefrontal Cortex   总被引:6,自引:2,他引:4  
Electrical stimulation (at 0.3, 1, or 10 Hz, 120 pulses each) produced a calcium-dependent overflow of radioactivity from slices of the rabbit prefrontal cortex preloaded with [3H]3,4-dihydroxyphenylethylamine ([3H]DA, [3H]dopamine) in the presence of desipramine. Flat frequency-release curves were observed. Apomorphine and LY-171555 inhibited in a concentration-dependent fashion the evoked overflow of DA, an effect antagonized by haloperidol. Stimulation frequencies comparable to normal firing rates of mesocortical neurons (10 Hz) drastically reduced apomorphine-induced inhibition of DA overflow. Haloperidol produced greater facilitation of DA overflow at 10 than at 1 Hz. Nomifensine, a neuronal uptake inhibitor, enhanced DA overflow. These results indicate that mesocortical DA neurons projecting to the prefrontal cortex have release modulatory autoreceptors of the D2 subtype.  相似文献   

2.
The nigrostriatal dopaminergic system of rats was unilaterally lesioned with 6-hydroxydopamine. Part of the animals was grafted 2 weeks later with fetal dopaminergic cells on the lesioned side; untreated rats of the same strain served as controls. Both 3 and 12-14 months after surgery the striatal dopamine (DA) content and the in vivo rotational response following injection of D-amphetamine showed significant changes in grafted as compared to lesioned animals. At 12-14 months after transplantation, the electrically evoked release of tritiated DA and acetylcholine (ACh) in slices (preincubated with [3H]DA or [3H]choline, respectively) of striata of intact, lesioned, or grafted animals was also investigated. Electrical field stimulation of striatal slices of the lesioned side did not evoke any significant [3H]DA overflow, whereas a marked [3H]DA release was observed in slices of grafted and control striata. Moreover, both DL-amphetamine (3 microM) and nomifensine (10 microM) strongly enhanced basal 3H outflow in these slices. Electrically evoked [3H]ACh release was significantly reduced in slices from all striatal tissues by 0.01 microM apomorphine. In slices from denervated striata a clearcut hypersensitivity for this action of apomorphine was present, indicating supersensitivity of DA receptors on cholinergic terminals; this hypersensitivity was significantly reduced in graft-bearing striata. Furthermore, because this hypersensitivity was unchanged in slices of lesioned striata under stimulation conditions (four pulses/100 Hz) avoiding inhibition by endogenously released DA, it is concluded that lesion-induced DA receptor supersensitivity is caused by an increase in receptor density or efficacy rather than by a decreased competition between endogenous and exogenous agonists. Both reuptake blockade of DA with nomifensine (10 microM) and release of endogenous DA by DL-amphetamine (3 microM) potently reduced [3H]ACh release only in control and grafted but not in lesioned tissue. In experiments using potassium-evoked [3H]ACh release, tetrodotoxin had no effect on the inhibitory activity of amphetamine and nomifensine, indicating that the DA receptors involved in their indirect inhibitory action are located directly on the cholinergic terminals.  相似文献   

3.
Abstract: Superfused rabbit neostriatal slices prelabeled with [3H]dopamine ([3H]DA) were depolarized with electrical pulses (12 V, 1 ms). Although transmitter release showed a proportional increase with a greater number of pulses (30-360 pulses), flat frequency-release curves were obtained. Haloperidol (0.03–0.3 μ m ) enhanced 3H overflow without affecting its metabolism or time course, and antagonized apomorphine-induced inhibition of transmitter release. Maximal enhancement of release by haloperidol was obtained with 30–60 pulses delivered at a rate of 3 Hz, whereas much less facilitation of release was seen at 0.3 and 1 Hz (30–90 pulses) or with 360 pulses at either of the three frequencies. Therefore, the slope of the frequency-release curve was markedly increased by haloperidol. These results indicate that activation of presynaptic DA receptors, and thus facilitation of release by haloperidol was highly dependent on the rate and duration of stimulation of striatal dopaminergic terminals. In these neurons the feedback loop seems to act physiologically to depress the slope of the frequency-release curve.  相似文献   

4.
Biphasic electrical field stimulation (0.5-5 Hz, 2 ms, 25 V, 3 min) and high K+ (10-30 mM, 5 min) released endogenous 3,4-dihydroxyphenylalanine (DOPA) from superfused rat striatal slices. Characteristics of the DOPA release were compared with those of 3,4-dihydroxyphenylethylamine (dopamine, DA). Electrical stimulation at 2 Hz evoked DOPA and DA over similar time courses. alpha-Methyl-p-tyrosine (0.2 mM) markedly reduced release of DOPA but not of DA. Maximal release (0.3 pmol) of DOPA was obtained at 2 Hz and at 15 mM K+. The impulse-evoked release of DOPA and DA was completely tetrodotoxin (0.3 microM) sensitive and Ca2+ dependent and the 15 mM K+-evoked release was also Ca2+ dependent. On L-[3,5-3H]tyrosine (1 microM) superfusion, high K+ (15 and 60 mM) released DOPA and DA together with concentration-dependent decreases in tyrosine 3-monooxygenase (EC 1.14.16.2) activity as indicated by [3H]H2O formation, followed by concentration-dependent increases after DOPA and DA release ended. These findings suggest that striatal DOPA is released by a Ca2+-dependent excitation-secretion coupling process similar to that involved in transmitter release.  相似文献   

5.
Ethanol (10–200 mM) transiently increased tritium overflow from superfused rat nucleus accumbens slices previously incubated with [3H]dopamine (DA) and [14C]choline. The effect was greater in striatal tissue and did not appear to be a non-specific membrane effect since [14C]acetylcholine (ACh) release was not affected. Lack of antagonism by picrotoxin suggested that -aminobutyric acid (GABA) receptors were not involved. Calcium was not a requirement and the DA uptake blocker, nomifensine, was without effect. Ethanol appeared to be causing [3H]DA release into the cytoplasm. K+-stimulated release of [3H]DA and [14C]ACh from nucleus accumbens and striatal slices was not affected. Clonidine-mediated inhibition of the K+-evoked release of [3H]DA remained unaltered. Ethanol attenuated the isoproterenol-induced enhancement of [3H]DA release. Ethanol therefore appeared to interact with components of the DA terminal causing a transient increase in the release of neurotransmitter without impairing K+-evoked release but apparently interfering with the isoproterenol-induced effect.  相似文献   

6.
Abstract: The release of [3H]dopamine (DA) and [14C]acetylcholine (ACh) was monitored from single slices of the rabbit striatum. In all cases, the evoked overflow of ACh showed a higher peak and was of shorter duration than that of 3H products. For ACh, the release per pulse showed a marked decline with increasing frequency of stimulation, whereas flat frequency-release curves were obtained for DA. At 0.1 and 1 Hz the evoked overflows of ACh were 15 and 7 times greater, respectively, than those of DA. Haloperidol (0.03 μM) and sulpiride (1 μM) produced large increases in the evoked overflow of DA and ACh at 3 and 10 Hz; little effect was observed at lower frequencies. These results indicate that the frequency-release curves for DA and ACh are different and that at high frequencies the slope of the curves is modified by activation of pre- and postsynaptic DA receptors. Apomorphine inhibited in a concentration-dependent fashion the evoked overflow of DA and ACh; greater inhibition was obtained at lower frequencies of stimulation. At 0.3 Hz the- DA agonist was two times more potent in inhibiting DA than ACh overflow (IC50: 12.0 ± 2.2 versus 22.0 ± 2.8 nM; p < 0.01). The greater sensitivity of pre-than postsynaptic sites to apomorphine was also seen at higher frequencies (3 Hz). Benztropine (1/μ) reduced the evoked overflow of ACh at 10 Hz, and enhanced that of 3H products at all rates of stimulation (0.3–10 Hz). These results suggest that the release of DA and ACh is regulated by dopaminergic receptors. They also indicate that the effects of DA agonists and antagonists and of uptake inhibitors on DA and ACh release are highly dependent on the frequency of stimulation used.  相似文献   

7.
Abstract: The present study demonstrates that S (-)-nornicotine evoked a concentration-dependent increase in dopamine (DA) release from superfused rat striatal slices. The increase in DA release was indicated by an S (-)-nornicotine-induced overflow of endogenous 3,4-dihydroxyphenyl-acetic acid (DOPAC) in the striatal superfusate and by an S (-)-nornicotine-induced increase in tritium overflow from striatal slices preloaded with [3H]DA. Low concentrations (0.01–1.0 μ M ) of S (-)-nornicotine, which did not evoke endogenous DOPAC overflow, also were unable to modulate electrically evoked DOPAC overflow. The increase in DOPAC overflow induced by S (-)-nornicotine was compared with that produced by S (-)-nicotine. Comparing equimolar concentrations (0.1-100 μ M ) of S (-)-nornicotine and S (-)-nicotine, superfusion with S (-)-nornicotine resulted in a significantly greater DOPAC overflow. In contrast to the effect of S (-)-nicotine, S (-)-nornicotine evoked a sustained increase in DOPAC over-flow for the entire period of S (-)-nornicotine exposure. Furthermore, DOPAC overflow evoked by S (-)-nornicotine in control Krebs buffer was inhibited by superfusion with a low-calcium buffer. Moreover, in the low-calcium buffer, DOPAC overflow induced by 30 and 100 μ M S (-)-nornicotine was not different from that with no S (-)-nornicotine. The results indicate that S (-)-nornicotine, a constituent of tobacco products and a known metabolite of S (-)-nicotine, increases DA release in a calcium-dependent manner in superfused rat striatal slices. It is interesting that unlike S (-)-nicotine, there does not appear to be desensitization to this effect of S (-)-nornicotine.  相似文献   

8.
Rabbit neostriatal slices were prelabeled with [3H]dopamine (DA) and [14C]choline and then superfused. The electrical stimulation-evoked release of DA and of acetylcholine (ACh) was abolished by 0.33 microM tetrodotoxin and by low calcium concentrations (0.13 mM). Bromocriptine, a selective D2-DA receptor agonist, inhibited in a concentration-dependent manner the evoked overflow of DA and ACh, without affecting the basal efflux of both transmitters. The effects of bromocriptine were antagonized by sulpiride, a specific antagonist of D2-DA receptors. With stimulation at 0.3 Hz and 120 pulses, bromocriptine was eight times more potent in inhibiting the evoked overflow of DA (IC50: 11 nM) than that of ACh (IC50: 83 nM). Stimulations at 3 Hz and 360 pulses markedly reduced the potency of bromocriptine in inhibiting DA and ACh release, and diminished its selectivity for presynaptic receptors. These results indicate that DA receptors that modulate the release of DA and ACh are of the D2 subtype. The greater potency of bromocriptine at pre- than at postsynaptic sites suggests that these receptors may be different in quantity and/or quality [D2-alpha (presynaptic) versus D2-beta (postsynaptic)]. Finally, marked differences in the potency and efficacy of DA agonist actions on DA and ACh release modulatory receptors are obtained, depending on the parameters of stimulation used.  相似文献   

9.
The present study investigated the effect of halothane on acetylcholine (ACh) and dopamine (DA) release from the rat striatum. Halothane decreased DA release in a concentration-dependent manner, while increased ACh release. In our previous investigation, a volatile anesthetic, halothane, inhibited DA release from the rat striatal slices in a concentration-dependent manner. Although the release of ACh from cholinergic interneurons is tonically modulated by DA in the striatum, the effect of halothane on the relationship between the release of ACh and DA has not been discussed. Using double-labeled techniques, we investigated the effect of halothane on ACh and DA release simultaneously. The slices were incubated with [14C]-choline and [3H]-DA and superfused with modified Krebs solution containing 1 microM of hemicholinium-3. We applied electrical field stimulation (2 Hz, 240 shocks), and the amount of the release of radioactivity evoked by stimulation was calculated by subtraction of the basal radioactive outflow from the total outflow at the beginning of the respective stimulation periods. The effects of drugs on the release were expressed as the ratio of stimulation-evoked fractional releases (FR), measured in the presence and absence (FRS2/FRS1) of the drug. Halothane decreased DA release in a concentration-dependent manner (FRS2/FRS1=0.767+/-0.021, 0.715+/-0.026, 0.671+/-0.014 and 0.639+/-0.033 at the concentration of 0, 0.5, 2 and 4%, respectively), while ACh release showed a biphasic change in the presence of different concentrations of halothane. The release of ACh was significantly increased at the concentration of 2%, but not at 0.5 or 4%. Halothane failed to increase the release of ACh in striatal slices after lesion by 6-OH-dopamine. The application of amphetamine reduced the release of ACh and abolished the effect of halothane. These results indicate that the effect of halothane on ACh release is indirect: it increases the release by attenuating the inhibitory effect of DA released from the nigro-striatal pathway. The nonsynaptic interaction between DA and ACh release is involved in the effect of halothane on ACh release.  相似文献   

10.
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [3H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal3H overflow and reduced K+-induced release of [3H]DA from nucleus accumbens slices. The effect of serotonin on basal3H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [3H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [3H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.  相似文献   

11.
The aim of the present study was to compare the release pattern of [3H]dopamine ([3H]DA) originated from [3H]tyrosine or by uptake in striatal synaptosomes. Synaptosomes prelabeled either with [3H]DA or with [3H]tyrosine were superfused in three conditions stimulating DA release by different mechanisms: (1) depolarization with high K+; (2) inversion of the Na+ gradient across the plasma membrane; (3) exposure tod-amphetamine. Since DA contained in different pools may exit from nerve endings by different processes, DA release was analyzed in the presence or in the absence of nomifensine which allows discrimination between carrier-mediated and carrier-independent processes. The pattern of DA release in the three conditions tested was identical, whether [3H]DA originated from synthesis or from uptake. Nomifensine did not affect the high-K+-induced release and inhibited that induced by the other two stimuli. The results suggest that newly synthesized and recaptured DA have a similar compartmentation in nerve endings.  相似文献   

12.
KCNQ2 and KCNQ3 subunits encode for the muscarinic-regulated current (I(KM)), a sub-threshold voltage-dependent K+ current regulating neuronal excitability. In this study, we have investigated the involvement of I(KM) in dopamine (DA) release from rat striatal synaptosomes evoked by elevated extracellular K+ concentrations ([K+]e) and by muscarinic receptor activation. [3H]dopamine ([3H]DA) release triggered by 9 mmol/L [K+]e was inhibited by the I(KM) activator retigabine (0.01-30 micromol/L; Emax = 54.80 +/- 3.85%; IC50 = 0.50 +/- 0.36 micromol/L). The I(KM) blockers tetraethylammonium (0.1-3 mmol/L) and XE-991 (0.1-30 micromol/L) enhanced K+-evoked [3H]DA release and prevented retigabine-induced inhibition of depolarization-evoked [3H]DA release. Retigabine-induced inhibition of K+-evoked [3H]DA release was also abolished by synaptosomal entrapment of blocking anti-KCNQ2 polyclonal antibodies, an effect prevented by antibody pre-absorption with the KCNQ2 immunizing peptide. Furthermore, the cholinergic agonist oxotremorine (OXO) (1-300 micromol/L) potentiated 9 mmol/L [K+]e-evoked [3H]DA release (Emax = 155 +/- 9.50%; EC50 = 25 +/- 1.80 micromol/L). OXO (100 micromol/L)-induced [3H]DA release enhancement was competitively inhibited by pirenzepine (1-10 nmol/L) and abolished by the M3-preferring antagonist 4-diphenylacetoxy N-methylpiperidine methiodide (1 micromol/L), but was unaffected by the M1-selective antagonist MT-7 (10-100 nmol/L) or by Pertussis toxin (1.5-3 microg/mL), which uncouples M2- and M4-mediated responses. Finally, OXO-induced potentiation of depolarization-induced [3H]DA release was not additive to that produced by XE-991 (10 micromol/L), was unaffected by retigabine (10 micromol/L), and was abolished by synaptosomal entrapment of anti-KCNQ2 antibodies. Collectively, these findings indicate that, in rat striatal nerve endings, I(KM) channels containing KCNQ2 subunits regulate depolarization-induced DA release and that I(KM) suppression is involved in the reinforcement of depolarization-induced DA release triggered by the activation of pre-synaptic muscarinic heteroreceptors.  相似文献   

13.
Traumatic brain injury features deficits are often ameliorated by dopamine (DA) agonists. We have previously shown deficits in striatal DA neurotransmission using fast scan cyclic voltammetry after controlled cortical impact (CCI) injury that are reversed after daily treatment with the DA uptake inhibitor methylphenidate (MPH). The goal of this study was to determine how a single dose of MPH (5 mg/kg) induces changes in basal DA and metabolite levels and with electrically evoked overflow (EO) DA in the striatum of CCI rats. MPH-induced changes in EO DA after a 2-week daily pre-treatment regime with MPH was also assessed. There were no baseline differences in basal DA or metabolite levels. MPH injection significantly increased basal [DA] output in dialysates for control but not injured rats. Also, MPH injection increased striatal peak EO [DA] to a lesser degree in CCI (176% of baseline) versus control rats (233% of baseline). However, daily pre-treatment with MPH resulted in CCI rats having a comparable increase in EO [DA] after MPH injection when compared with controls. The findings further support the concept that daily MPH therapy restores striatal DA neurotransmission after CCI.  相似文献   

14.
Dopamine release is impaired in a mouse model of DYT1 dystonia   总被引:2,自引:1,他引:1  
Early onset torsion dystonia, the most common form of hereditary primary dystonia, is caused by a mutation in the TOR1A gene, which codes for the protein torsinA. This form of dystonia is referred to as DYT1. We have used a transgenic mouse model of DYT1 dystonia [human mutant-type (hMT)1 mice] to examine the effect of the mutant human torsinA protein on striatal dopaminergic function. Analysis of striatal tissue dopamine (DA) and metabolites using HPLC revealed no difference between hMT1 mice and their non-transgenic littermates. Pre-synaptic DA transporters were studied using in vitro autoradiography with [(3)H]mazindol, a ligand for the membrane DA transporter, and [(3)H]dihydrotetrabenazine, a ligand for the vesicular monoamine transporter. No difference in the density of striatal DA transporter or vesicular monoamine transporter binding sites was observed. Post-synaptic receptors were studied using [(3)H]SCH-23390, a ligand for D(1) class receptors, [(3)H]YM-09151-2 and a ligand for D(2) class receptors. There were again no differences in the density of striatal binding sites for these ligands. Using in vivo microdialysis in awake animals, we studied basal as well as amphetamine-stimulated striatal extracellular DA levels. Basal extracellular DA levels were similar, but the response to amphetamine was markedly attenuated in the hMT1 mice compared with their non-transgenic littermates (253 +/- 71% vs. 561 +/- 132%, p < 0.05, two-way anova). These observations suggest that the mutation in the torsinA protein responsible for DYT1 dystonia may interfere with transport or release of DA, but does not alter pre-synaptic transporters or post-synaptic DA receptors. The defect in DA release as observed may contribute to the abnormalities in motor learning as previously documented in this transgenic mouse model, and may contribute to the clinical symptoms of the human disorder.  相似文献   

15.
Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory drug, which also act as a mitochondrial toxin. As it is known that selective mitochondrial complex I inhibition combined with mild oxidative stress causes striatal dopaminergic dysfunction, we tested whether DCF also compromise dopaminergic function in the striatum. [3H]Dopamine ([3H]DA) release was measured from rat striatal slices after in vitro (2 h, 10-25 micromol/L) or in vivo (3 mg/kg i.v. for 28 days) DCF treatment. In vitro treatment significantly decreased [3H]DA uptake and dopamine (DA) content of the slices. H2O2 (0.1 mmol/L)-evoked DA release was enhanced. Intracellular reactive oxygen species production was not significantly changed in the presence of DCF. After in vivo DCF treatment no apparent decrease in striatal DA content was observed and the uptake of [3H]DA into slices was increased. The intensity of tyrosine hydroxylase immunoreactivity in the striatum was highly variable, and both decrease and increase were observed in individual rats. The H2O2-evoked [3H]DA release was significantly decreased and the effluent contained a significant amount of [3H]octopamine, [3H]tyramine, and [3H]beta-phenylethylamine. The ATP content and adenylate energy charge were decreased. In conclusion, whereas in vitro DCF pre-treatment resembles the effect of the mitochondrial toxin rotenone, in vivo it rather counteracts than aggravates dopaminergic dysfunction.  相似文献   

16.
We examined the properties of voltage-dependent Ca(2+) channels (VDCCs) mediating 1-methyl-4-phenylpyridinium (MPP(+))-evoked [3H]DA release from rat striatal slices. In some cases, the Ca(2+)-independent efflux of neurotransmitters is mediated by the high-affinity neurotransmitter-uptake systems. To determine whether such a mechanism might be involved in MPP(+)-evoked [3H]DA release. MPP(+) (1,10 and 100 microM) evoked the release of [3H]DA from rat striatal slices in a concentration-dependent manner. In the absence of Ca(2+), MPP(+) (10 and 100 microM)-evoked [3H]DA release was significantly decreased to approximately 50% of control (a physiological concentration of Ca(2+)). In the presence of Ca(2+), nomifensine (0.1,1 and 10 microM) dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA. Nomifensine (1 and 10 microM) also dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA under Ca(2+)-free conditions. MPP(+)-evoked [3H]DA release was partly inhibited by nicardipine (1 and 10 microM), an L-type Ca(2+) channel blocker. On the other hand, the N-type Ca(2+) channel blocker omega-conotoxin-GVIA (omega-CTx-GVIA) (1 and 3 microM) did not affect this release. omega-agatoxin-IVA (omega-Aga-IVA) at low concentrations (0.1 microM), which are sufficient to block P-type Ca(2+) channels alone, also had no effect. On the other hand, MPP(+)-evoked [3H]DA release was significantly decreased by high concentrations of omega-Aga-IVA (0.3 microM) that would inhibit Q-type Ca(2+) channels. In addition, application of the Q-type Ca(2+) channel blocker omega-conotoxin-MVIIC (omega-CTx-MVIIC) (0.3 and 1 microM) also significantly inhibited MPP(+)-evoked [3H]DA release. These results suggest that MPP(+)-evoked [3H]DA release from rat striatal slices is largely mediated by Q-type Ca(2+) channels, and the Ca(2+)-independent component is mediated by reversal of the DA transport system.  相似文献   

17.
The effect of opiate peptides on basal and potassium-stimulated endogenous dopamine (DA) release from striatal slices was studied in vitro. Dual stimulation of the striatal slices gave a reproducible increase in DA release that was calcium dependent. Addition of the delta-opiate receptor agonists Met5-enkephalin, [D-Ala2,D-Leu5]enkephalin (DADLE), and [D-Ser2]Leu-enkephalin-Thr (DSLET), increased the basal DA release without affecting potassium-stimulated release in a dose-dependent manner. The effect of DADLE was antagonized by the addition of naloxone. In contrast, the mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAGO) and the epsilon-opioid agonist beta-endorphin inhibited the stimulated DA release without changing the basal release. The inhibitory effect of DAGO on potassium-stimulated release was antagonized by naloxone. The addition of ethanol (75 mM) to the incubation media produced a delayed increase of both the basal and stimulated DA release. There was no change in stimulated DA release when the change in basal release was subtracted, suggesting that ethanol produced a dose-dependent, selective increase in basal DA release. Naloxone and the selective delta-opiate antagonist ICI 174864 inhibited the ethanol-induced increase in basal DA release. Naloxone and ICI 174864 added alone did not alter either basal or stimulated DA release. We therefore suggest that the ethanol-induced increase in basal DA release is an indirect effect involving an endogenous delta-opiate agonist.  相似文献   

18.
Excitatory amino acids such asl-glutamate (Glu) and quisqualate (QUIS) markedly potentiated K+-evoked release of exogeneous [3H]dopamine (DA) from rat striatal slices. Intranstriatal kainic acid injections resulted in a total disappearance of the stimulatory effects of Glu on evoked-release of [3H]DA as well as in a parallel reduction in the maximal number (Bmax) of ad-aspartate-insensitivel-[3H]Glu binding site in striatal particulate fractions. Following cortical ablation, the potentiating effect of Glu on [3H]DA release in decorticated striatal slices lasted longer, compared to normal slices, and occured during the 2nd min following K+-depolarization. However, the extent (%) of Glu stimulation on [3H]DA release remained the same in decorticated and normal striatal slices. Cortical ablation produced also a significant decrease in the Bmax and in theK d of thed-aspartateinsensitive binding site towardsl[3H]Glu. These results support the proposal that thed-aspartate-insensitive Glu binding site is somehow related to an amino acid receptor-mediated modulation of dopaminergic transmission in the rat corpus striatum.  相似文献   

19.
Midbrain dopamine (DA) cells of the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) exhibit somatodendritic release of DA. To address how somatodendritic release is regulated by synaptic glutamatergic and GABAergic input, we examined the effect of ionotropic-receptor antagonists on locally evoked extracellular DA concentration ([DA]o) in guinea pig midbrain slices. Evoked [DA]o was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. In SNc, evoked [DA]o was 160% of control in the presence of the AMPA-receptor antagonist, GYKI-52466, or the NMDA-receptor antagonist, AP5. Similar increases were seen with the GABAA-receptor antagonist, picrotoxin, or the GABA(B)-receptor antagonist, saclofen. The increase seen with GYKI-52466 was prevented when both picrotoxin and saclofen were present, consistent with normal, AMPA-receptor mediated activation of GABAergic inhibition. The increase with AP5 persisted, however, implicating NMDA-receptor mediated activation of another inhibitory circuit in SNc. In the VTA, by contrast, evoked [DA]o was unaffected by GYKI-52466 and fell slightly with AP5. Neither picrotoxin nor saclofen alone or in combination had a significant effect on evoked [DA]o. When GABA receptors were blocked in the VTA, evoked [DA]o was decreased by 20% with either GYKI-52466 or AP5. These data suggest that in SNc, glutamatergic input acts predominantly on GABAergic or other inhibitory circuits to inhibit somatodendritic DA release, whereas in VTA, the timing or strength of synaptic input will govern whether the net effect on DA release is excitatory or inhibitory.  相似文献   

20.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号