首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic Analysis of the Colicin V Secretion Pathway   总被引:7,自引:0,他引:7       下载免费PDF全文
Colicin V (ColV) is peptide antibiotic secreted by Escherichia coli through a dedicated exporter composed of three proteins, CvaA, CvaB, and TolC. ColV secretion is independent of the E. coli general secretory pathway (Sec) but requires an N-terminal export signal specific for the CvaAB/TolC exporter. ColV secretion was characterized using genetic and biochemical methods. When the ColV N-terminal extension is replaced with the OmpA signal sequence, the Sec system can localize ColV to the periplasm. Periplasmic ColV is lethal to cells lacking the ColV immunity protein, Cvi. Based on this result, a genetic assay was designed to monitor for the presence of periplasmic ColV during normal CvaAB/TolC mediated secretion. Results indicate that low levels of ColV may be present in the periplasm during secretion. Precursor and mature ColV were also characterized from the wild-type system and in various exporter mutant backgrounds using immunoprecipitation. ColV processing is rapid in wild-type cells, and CvaA and CvaB are critical for processing to occur. In contrast, processing occurs normally, albeit more slowly, in a TolC mutant.  相似文献   

2.
Genes of Rhizobium leguminosarum bv. viciae VF39 coding for the regulatory elements NifA, FixL and FixK were isolated, sequenced and genetically analysed. The fixK–fixL region is located upstream of the fixNOQP operon on the non-nodulation plasmid pRleVF39c. The deduced amino acid sequence of FixL revealed an unusual structure in that it contains a receiver module (homologous to the N-terminal domain of response regulators) fused to its transmitter domain. An oxygen-sensing haem-binding domain, found in other FixL proteins, is conserved in R. leguminosarum bv. viciae FixL. R. leguminosarum bv. viciae possesses a second fnr -like gene, designated fixK , whose encoded gene product is very similar to Rhizobium meliloti and Azorhizobium caulinodans FixK. Individual R. leguminosarum bv. viciae fixK and fixL insertion mutants displayed a Fix+ phenotype. A reduced nitrogen-fixation activity was found for a R. leguminosarum bv. viciae fnrN -deletion mutant, whereas no nitrogen-fixation activity was detectable for a fixK / fnrN double mutant. The R. leguminosarum bv. viciae nifA gene is expressed independently of FixL and FixK under aerobic and microaerobic conditions, whereas fixL gene expression is induced under microaerobiosis. Another orf was identified downstream of fixK–fixL and encodes a product which has homology to pseudoazurins from different species. Mutation of this azu gene showed that it is dispensable for nitrogen fixation.  相似文献   

3.
Prediction of export pathway specificity in prokaryotes is a challenging endeavor due to the similar overall architecture of N-terminal signal peptides for the Sec-, SRP- (signal recognition particle), and Tat (twin arginine translocation)-dependent pathways. Thus, we sought to create a facile experimental strategy for unbiased discovery of pathway specificity conferred by N-terminal signals. Using a limited collection of Escherichia coli strains that allow protein oxidation in the cytoplasm or, conversely, disable protein oxidation in the periplasm, we were able to discriminate the specific mode of export for PhoA (alkaline phosphatase) fusions to signal peptides for all of the major modes of transport across the inner membrane (Sec, SRP, or Tat). Based on these findings, we developed a mini-Tn5 phoA approach to isolate pathway-specific export signals from libraries of random fusions between exported proteins and the phoA gene. Interestingly, we observed that reduced PhoA was exported in a Tat-independent manner when targeted for Tat export in the absence of the essential translocon component TatC. This suggests that initial docking to TatC serves as a key specificity determinant for Tat-specific routing of PhoA, and in its absence, substrates can be rerouted to the Sec pathway, provided they remain compatible with the Sec export mechanism. Finally, the utility of our approach was demonstrated by experimental verification that four secreted proteins from Mycobacterium tuberculosis carrying putative Tat signals are bona fide Tat substrates and thus represent potential Tat-dependent virulence factors in this important human pathogen.  相似文献   

4.
The bacterial twin arginine translocation (Tat) pathway translocates across the cytoplasmic membrane folded proteins which, in most cases, contain a tightly bound cofactor. Specific amino-terminal signal peptides that exhibit a conserved amino acid consensus motif, S/T-R-R-X-F-L-K, direct these proteins to the Tat translocon. The glucose-fructose oxidoreductase (GFOR) of Zymomonas mobilis is a periplasmic enzyme with tightly bound NADP as a cofactor. It is synthesized as a cytoplasmic precursor with an amino-terminal signal peptide that shows all of the characteristics of a typical twin arginine signal peptide. However, GFOR is not exported to the periplasm when expressed in the heterologous host Escherichia coli, and enzymatically active pre-GFOR is found in the cytoplasm. A precise replacement of the pre-GFOR signal peptide by an authentic E. coli Tat signal peptide, which is derived from pre-trimethylamine N-oxide (TMAO) reductase (TorA), allowed export of GFOR, together with its bound cofactor, to the E. coli periplasm. This export was inhibited by carbonyl cyanide m-chlorophenylhydrazone, but not by sodium azide, and was blocked in E. coli tatC and tatAE mutant strains, showing that membrane translocation of the TorA-GFOR fusion protein occurred via the Tat pathway and not via the Sec pathway. Furthermore, tight cofactor binding (and therefore correct folding) was found to be a prerequisite for proper translocation of the fusion protein. These results strongly suggest that Tat signal peptides are not universally recognized by different Tat translocases, implying that the signal peptides of Tat-dependent precursor proteins are optimally adapted only to their cognate export apparatus. Such a situation is in marked contrast to the situation that is known to exist for Sec-dependent protein translocation.  相似文献   

5.
The twin-arginine translocation (Tat) system targets cofactor-containing proteins across the Escherichia coli cytoplasmic membrane via distinct signal peptides bearing a twin-arginine motif. In this study, we have analysed the mechanism and capabilities of the E. coli Tat system using green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). Fractionation studies and fluorescence measurements demonstrate that GFP is exported to the periplasm where it is fully active. Export is almost totally blocked in tat deletion mutants, indicating that the observed export in wild-type cells occurs predominantly, if not exclusively, by the Tat pathway. Imaging studies reveal a halo of fluorescence in wild-type cells corresponding to the exported periplasmic form; the GFP is distributed uniformly throughout the cytoplasm in a tat mutant. Because previous work has shown GFP to be incapable of folding in the periplasm, we propose that GFP is exported in a fully folded, active state. These data also show for the first time that heterologous proteins can be exported in an active form by the Tat pathway.  相似文献   

6.
Ray N  Oates J  Turner RJ  Robinson C 《FEBS letters》2003,534(1-3):156-160
The DmsD protein is essential for the biogenesis of DMSO reductase in Escherichia coli, and binds the signal peptide of the DmsA subunit, a Tat substrate. This suggests a role as a guidance factor to target pre-DmsA to the translocase. Here, we have analysed the export of fusion proteins in which the DmsA and TorA signal peptides are fused to green fluorescent protein. Both chimeras are efficiently exported to the periplasm in wild-type E. coli cells and we show that their export efficiencies are essentially identical in a mutant lacking DmsD. An authentic Tat substrate, TMAO reductase, is also efficiently exported in the dmsD mutant. The data indicate that DmsD carries out a critical role in DMSO reductase biogenesis/assembly but is not required for the functioning of the DmsA signal peptide.  相似文献   

7.
The Tat (twin-arginine translocation) system mediates export of periplasmic proteins in folded conformation. Proteins transported via Tat contain a characteristic twin-arginine motif in their signal peptide. Genetic determinants (tatABC genes) of the Tat system from Rhizobium leguminosarum bv. viciae were cloned and characterized, and a tatBC deletion mutant was constructed. The mutant lacked the ability for membrane targeting of hydrogenase, a known Tat substrate, and was impaired in hydrogenase activity. Interestingly, in the absence of a functional Tat system, only small, white nodules unable to fix nitrogen were induced in symbiosis with pea plants. Analysis of nodule structure and location of green fluorescent protein (GFP)-tagged bacteria within nodules indicated that the symbiotic process was blocked in the tat mutant at a stage previous to bacteria release into cortical cells. The R. leguminosarum Tat-deficient mutant lacked a functional cytochrome bc1 complex. This was consistent with the fact that R. leguminosarum Rieske protein, a key component of the symbiosis-essential cytochrome bc1 complex, contained a typical twin-arginine signal peptide. However, comparative analyses of nodule structure indicated that nodule development in the tat mutant was arrested at an earlier step than in a cytochrome bc1 mutant. These data indicate that the Tat pathway is also critical for proteins relevant to the initial stages of the symbiotic process.  相似文献   

8.
Numerous high‐value recombinant proteins that are produced in bacteria are exported to the periplasm as this approach offers relatively easy downstream processing and purification. Most recombinant proteins are exported by the Sec pathway, which transports them across the plasma membrane in an unfolded state. The twin‐arginine translocation (Tat) system operates in parallel with the Sec pathway but transports substrate proteins in a folded state; it therefore has potential to export proteins that are difficult to produce using the Sec pathway. In this study, we have produced a heterologous protein (green fluorescent protein; GFP) in Escherichia coli and have used batch and fed‐batch fermentation systems to test the ability of the newly engineered Tat system to export this protein into the periplasm under industrial‐type production conditions. GFP cannot be exported by the Sec pathway in an active form. We first tested the ability of five different Tat signal peptides to export GFP, and showed that the TorA signal peptide directed most efficient export. Under batch fermentation conditions, it was found that TorA‐GFP was exported efficiently in wild type cells, but a twofold increase in periplasmic GFP was obtained when the TatABC components were co‐expressed. In both cases, periplasmic GFP peaked at about the 12 h point during fermentation but decreased thereafter, suggesting that proteolysis was occurring. Typical yields were 60 mg periplasmic GFP per liter culture. The cells over‐expressed the tat operon throughout the fermentation process and the Tat system was shown to be highly active over a 48 h induction period. Fed‐batch fermentation generated much greater yields: using glycerol feed rates of 0.4, 0.8, and 1.2 mL h?1, the cultures reached OD600 values of 180 and periplasmic GFP levels of 0.4, 0.85, and 1.1 g L?1 culture, respectively. Most or all of the periplasmic GFP was shown to be active. These export values are in line with those obtained in industrial production processes using Sec‐dependent export approaches. Biotechnol. Bioeng. 2012; 109: 2533–2542. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The bacterial twin-arginine translocation (Tat) pathway is distinct from the Sec system by its remarkable capacity to export folded enzymes. To address the question whether the two systems are capable of translocating homologous enzymes catalyzing the same reaction, we cloned the tap gene encoding Thermus thermophilus alkaline phosphatase (Tap) and expressed it in Escherichia coli. Unlike the alkaline phosphatase of E. coli, which is translocated through the Sec system and then activated in the periplasm, Tap was exported exclusively via the Tat pathway and active Tap precursor was observed in the cytoplasm. These results demonstrate that two sequence and functional related enzymes are exported by distinct protein transport systems, which may play an integral role in the bacterial adaptation to their environment during the evolution.  相似文献   

10.
The prlA/secY gene, which codes for an integral membrane protein component of the Escherichia coli protein export machinery, is the locus of the strongest suppressors of signal sequence mutations. We demonstrate that two exported proteins of E.coli, maltose-binding protein and alkaline phosphatase, each lacking its entire signal sequence, are exported to the periplasm in several prlA mutants. The export efficiency can be substantial; in a strain carrying the prlA4 allele, 30% of signal-sequenceless alkaline phosphatase is exported to the periplasm. Other components of the E.coli export machinery, including SecA, are required for this export. SecB is required for the export of signal-sequenceless alkaline phosphatase even though the normal export of alkaline phosphatase does not require this chaperonin. Our findings indicate that signal sequences confer speed and efficiency upon the export process, but that they are not always essential for export. Entry into the export pathway may involve components that so overlap in function that the absence of a signal sequence can be compensated for, or there may exist one or more means of entry that do not require signal sequences at all.  相似文献   

11.

Background  

The Sec-dependent protein export apparatus of Escherichia coli is very efficient at correctly identifying proteins to be exported from the cytoplasm. Even bacterial strains that carry prl mutations, which allow export of signal sequence-defective precursors, accurately differentiate between cytoplasmic and mutant secretory proteins. It was proposed previously that the basis for this precise discrimination is the slow folding rate of secretory proteins, resulting in binding by the secretory chaperone, SecB, and subsequent targeting to translocase. Based on this proposal, we hypothesized that a cytoplasmic protein containing a mutation that slows its rate of folding would be recognized by SecB and therefore targeted to the Sec pathway. In a Prl suppressor strain the mutant protein would be exported to the periplasm due to loss of ability to reject non-secretory proteins from the pathway.  相似文献   

12.
The Tat pathway is distinct from the Sec machinery given its unusual capacity to export folded proteins, which contain a twin-arginine (RR) signal peptide, across the plasma membrane. The functionality of the Tat pathway has been demonstrated for several Gram-negative and Gram-positive mesophilic bacteria. To assess the specificity of the Tat system, and to analyze the capacity of a mesophilic bacterial Tat system to translocate cytoplasmic proteins from hyperthermophilic bacteria, we fused the Thermus thermophilus beta-glycosidase (Glc) to the twin-arginine signal peptide of the E. coli TorA protein. When expressed in E. coli, the thermophilic RR-Glc chimera was successfully synthesized and efficiently translocated into the periplasm of the wild type strain. In contrast, the beta-glycosidase accumulated within the cytoplasm of all the tat mutants analyzed. The beta-glycosidase synthesized in these strains exhibited thermophilic properties. These results demonstrated, for the first time, the capacity of the E. coli Tat system to export cytoplasmic hyperthermophilic protein, implying an important potential of the Tat system for the production of thermostable enzymes used in bioprocessing applications.  相似文献   

13.
Using various mutant strains of Rhizobium leguminosarum bv. viciae, we have investigated the role of nodO in stimulating infection thread development in vetch and pea. Analysis of R. leguminosarum bv. viciae nodE and nodO mutants revealed no significant difference from the wild-type infection phenotype. Conversely, an R. leguminosarum bv. viciae nodE nodO double mutant was severely impaired in its ability to form normal infection threads. This strain displayed a number of novel infection-related events, including intracellular accumulations of bacteria at the base of root hairs, distended and enlarged infection threads, and reversed threads growing up root hairs. Since normal infection was seen in a nodE mutant, nodO must suppress these abnormal infection phenomena A deletion mutant, retaining only the nodD and nodABCIJ genes, also formed intracellular accumulations at the base of root hairs. Addition of R. leguminosarum bv. viciae nodO could alleviate this phenotype and restore some infection thread formation, although these threads appeared to be abnormal. Exogenous application of R. leguminosarum bv. viciae Nod factors could not alleviate the aberrant infection phenotype. Our results show that the most basic Nod factor structure can allow bacterial entry into the root hair, and that nodO can promote subsequent infection thread development.  相似文献   

14.
Historically, the general secretory (Sec) pathway of Gram‐negative bacteria has served as the primary route by which heterologous proteins are delivered to the periplasm in numerous expression and engineering applications. Here we have systematically examined the twin‐arginine translocation (Tat) pathway as an alternative, and possibly advantageous, secretion pathway for heterologous proteins. Overall, we found that: (i) export efficiency and periplasmic yield of a model substrate were affected by the composition of the Tat signal peptide, (ii) Tat substrates were correctly processed at their N‐termini upon reaching the periplasm and (iii) proteins fused to maltose‐binding protein (MBP) were reliably exported by the Tat system, but only when correctly folded; aberrantly folded MBP fusions were excluded by the Tat pathway's folding quality control feature. We also observed that Tat export yield was comparable to Sec for relatively small, well‐folded proteins, higher relative to Sec for proteins that required cytoplasmic folding, and lower relative to Sec for larger, soluble fusion proteins. Interestingly, the specific activity of material purified from the periplasm was higher for certain Tat substrates relative to their Sec counterparts, suggesting that Tat expression can give rise to relatively pure and highly active proteins in one step.  相似文献   

15.
Rhizobium leguminosarum bv. viciae Exo- mutant strains RBL5523,exo7::Tn5,RBL5523,exo8::Tn5 and RBL5523,exo52::Tn5 are affected in nodulation and in the syntheses of lipopolysaccharide, capsular polysaccharide, and exocellular polysaccharide. These mutants were complemented for nodulation and for the syntheses of these polysaccharides by plasmid pMP2603. The gene in which these mutants are defective is functionally homologous to the exoB gene of Rhizobium meliloti. The repeating unit of the residual amounts of EPS still made by the exoB mutants of R. leguminosarum bv. viciae lacks galactose and the substituents attached to it. The R. leguminosarum bv. viciae and R. meliloti exoB mutants fail to synthesize active UDP-glucose 4'-epimerase.  相似文献   

16.
17.
The nifA gene has been identified between the fixX and nifB genes in the clover microsymbiont Rhizobium leguminosarum biovar trifolii (R.I. bv. trifolii) strain ANU843. Expression of the nifA gene is induced in the symbiotic state and site-directed mutagenesis experiments indicate that nifA expression is essential for symbiotic nitrogen fixation. Interestingly, the predicted R.I. bv. trifolii NifA protein lacks an N-terminal domain that is present in the homologous proteins from R.I. bv. viciae, Rhizobium meliloti, Bradyrhizobium japonicum, Klebsiella pneumoniae and all other documented NifA proteins. This indicates that this N-terminal domain is not essential for NifA function in R.I. bv. trifolii.  相似文献   

18.
The Escherichia coli maltose-binding protein (MBP) R2 signal peptide is a truncated version of the wild-type structure that still facilitates very efficient export of MBP to the periplasm. Among single amino acid substitutions in the R2 signal peptide resulting in an export-defective precursor MBP (pMBP) were two that replaced residues in the consensus Ala-X-Ala sequence (residues -3 to -1) that immediately precedes the cleavage site. It was suggested that the functional hydrophobic core and signal peptidase recognition sequence of this signal peptide substantially overlap and that these two alterations affect both pMBP translocation and processing. In this study, the export of pMBP by the mutants, designated CC15 and CC17, with these two alterations was investigated further. The pMBP of mutant CC17 has an Arg substituted for Leu at the -2 position. It was found that CC17 cells exported only a very small amount of MBP, but that which was exported appeared to be correctly processed. This result was consistent with other studies that have concluded that virtually any amino acid can occupy the -2 position. For mutant CC15, which exhibits a fully Mal+ phenotype, an Asp is substituted for the Ala at the -3 position. CC15 cells were found to export large quantities of unprocessed, soluble pMBP to the periplasm, although such export was achieved in a relatively slow, posttranslational manner. This result was also consistent with other studies that suggested that charged residues are normally excluded from the -3 position of the cleavage site. Using in vitro oligonucleotide-directed mutagenesis, we constructed a new signal sequence mutant in which Asp was substituted for Arg at the -3 position of an otherwise wild-type MBP signal peptide. This alteration had no apparent effect on pMBP translocation across the cytoplasmic membrane, but processing by signal peptidase was inhibited. This pMBP species with its full-length hydrophobic core remained anchored to the membrane, where it could still participate in maltose uptake. The implications of these results for models of protein export are discussed.  相似文献   

19.
20.
Synthesis of chitin oligosaccharides by NodC is the first committed step in the biosynthesis of rhizobial lipochitin oligosaccharides (LCOs). The distribution of oligosaccharide chain lengths in LCOs differs between various Rhizobium species. We expressed the cloned nodC genes of Rhizobium meliloti, R. leguminosarum bv. viciae, and R. loti in Escherichia coli. The in vivo activities of the various NodC proteins differed with respect to the length of the major chitin oligosaccharide produced. The clearest difference was observed between strains with R. meliloti and R. loti NodC, producing chitintetraose and chitinpentaose, respectively. In vitro experiments, using UDP-[14C]GlcNAc as a precursor, show that this difference reflects intrinsic properties of these NodC proteins and that it is not influenced by the UDP-GlcNAc concentration. Analysis of oligosaccharide chain lengths in LCOs produced by a R. leguminosarum bv. viciae nodC mutant, expressing the three cloned nodC genes mentioned above, shows that the difference in oligosaccharide chain length in LCOs of R. meliloti and R. leguminosarum bv. viciae is due only to nodC. The exclusive production of LCOs which contain a chitinpentaose backbone by R. loti strains is not due to NodC but to end product selection by Nod proteins involved in further modification of the chitin oligosaccharide. These results indicate that nodC contributes to the host specificity of R. meliloti, a conclusion consistent with the results of several studies which have shown that the lengths of the oligosaccharide backbones of LCOs can strongly influence their activities on host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号