首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
He XS  Xi BD  Wei ZM  Jiang YH  Geng CM  Yang Y  Yuan Y  Liu HL 《Bioresource technology》2011,102(3):2322-2327
For the purpose of evaluating the stability of municipal solid waste (MSW) excavated from a landfill, dissolved organic matter was extracted and characterized by physicochemical and spectroscopic methods. Results showed that dissolved organic carbon concentration, ratio of dissolved organic carbon to dissolved organic nitrogen, and specific ultraviolet absorbance at 254 nm were in the range of 0.383-3.502 g kg−1, 0.388-3.693 and 2.700-4.629 L mg−1 m−1, respectively, indicating the stability of MSW. Results obtained from Fourier transform infrared spectra have demonstrated that the stability of excavated MSW was characterized by disappearance of some easily biodegradable compounds; and the 1635/1406 ratio varied from 0.979 to 1.840 and was higher than that of the matured compost. The excitation-emission matrix spectra have shown that the principal components in excavated MSW comprised humic substances and the MSW was stable by the presence of a peak with wavelength pair of ∼280/420 nm.  相似文献   

2.
Lin SY  Wei YS  Hsieh TF  Li MJ 《Biopolymers》2004,75(5):393-402
We used Fourier transform infrared (FTIR) microspectroscopy to investigate pressure-induced conformational changes in secondary structure of fibrinogen (FBG). Solid state FBG was compressed on a KBr pellet (1KBr method) or between two KBr pellets (2KBr method). The peak positions of the original and second-derivative ir spectra of compressed FBG samples prepared by the 1KBr method were similar to FBG sample without pressure. When FBG was prepared by the 2KBr method and pressure was increased up to 400 kg/cm(2), peaks at 1625 (intermolecular beta-sheet) and 1611 (beta-sheet aggregates structure and/or the side-chain absorption of the tyrosine residues) cm(-1) were enhanced. The peaks near 1661 (beta-sheet) and 1652 (alpha-helix) cm(-1) also exhibited a marked change with pressure. A linear correlation was found between the peak intensity ratio of 1611/1652 cm(-1) (r = 0.9879) or 1625/1652 cm(-1) (r = 0.9752) and applied pressure. The curve-fitted compositional changes in secondary structure of FBG also indicate that the composition of the alpha-helix structure (1657-1659 cm(-1)) was gradually reduced with the increase in compression pressure, but the composition of the beta-sheet structure (1681, 1629, and 1609 cm(-1)) gradually increased. This indicates that pressure-induced conformational changes in FBG include not only transformations from alpha-helix to beta-sheet structure, but also unfolding and denaturation of FBG and the formation of aggregates.  相似文献   

3.
In this study we present the infrared spectroscopic characterization of the bound ubiquinone in cytochrome bo(3) from Escherichia coli. Electrochemically induced Fourier transform infrared (FTIR) difference spectra of DeltaUbiA (an oxidase devoid of bound ubiquinone) and DeltaUbiA reconstituted with ubiquinone 2 and with isotopically labeled ubiquinone 2, where (13)C was introduced either at the 1- or at the 4-position of the ring (C=O groups), have been obtained. The vibrational modes of the quinone bound to the discussed high-affinity binding site (Q(H)) are compared to those from the synthetic quinones in solution, leading to the assignment of the C=O modes to a split signal at 1658/1668 cm(-)(1), with both carbonyls similarly contributing. The FTIR spectra of DeltaUbiA reconstituted with the labeled quinones indicate an essentially symmetrical and weak hydrogen bonding of the two C=O groups from the neutral quinone with the protein and distinct conformations of the 2- and 3-methoxy groups. Perturbations of the vibrational modes of the 5-methyl side groups are discussed for a signal at 1452 cm(-)(1). Only negligible shifts of the aromatic ring modes can be reported for the reduced and the protonated form of the quinone. Alterations of the protein upon quinone binding are reflected in the electrochemically induced FTIR difference spectra. In particular, difference signals at 1640-1633 cm(-)(1) and 1700-1670 cm(-)(1) indicate variations of beta-sheet secondary structure elements and loops, bands at 1706 and 1678 cm(-)(1) are tentatively attributed to individual amino acids, and a difference signal a 1540 cm(-)(1) is discussed to reflect an influence on C=C modes of the porphyrin ring or on deprotonated propionate groups of the hemes. Further tentative assignments are presented and discussed. The (13)C labeling experiments allow the assignment of the vibrational modes of a bound ubiquinone 8 in the electrochemically induced FTIR difference spectra of wild-type bo(3).  相似文献   

4.
In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG–MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (≈300°C) peak was observed, while the weight loss experienced at high-temperature (450–550°C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.  相似文献   

5.
Unbleached cotton fabrics (UCF) with 12.5% polypropylene scrim treated with two phosphate-urea based fire-retardant (FR) formulations were evaluated for FR properties using thermogravimetry/differential thermogravimetry/differential thermal analysis (TG/DTG/DTA) method. In addition to testing the two FR-treated unbleached cotton fabrics (CF-FR1 and CF-FR2), bleached cotton fabric (BCF) treated with the two FR formulations (BCF-FR1 and BCF-FR2) was evaluated. Both formulations were washable with add-on of FR chemicals at 18.7% (FR1) or 17.4% (FR2) for UCF and 22.5% (FR1) or 24.9% (FR2) for BCF. The decreasing order of sums at maximal rates of samples degradation in air environment according to DTG method was: BCF (21.40%/min)>UCF (12.91%/min)>BCF-FR2 (12.83%/min)>BCF-FR1 (11.68%/min)>CF-FR2 (10.20%/min)>CF-FR1 (9.73%/min). It indicates that both formulations cause the decrease of thermooxidation of the products at slower rates than the starting material. Several endo- and exothermic peaks observed by DTA in inert and oxidative environment gives additional information about the degradation process. The order of decreasing thermal responses of the studied samples based on sums of DTA peak values of endothermic and exothermic peaks in air environment is: UCF (0.597°C/mg)>BCF (0.120°C/mg)>CF-FR1 (0.089°C/mg)>BCF-FR1 (0.077°C/mg)>CF-FR2 (0.062°C/mg)>BCF-FR2 (0.053°C/mg). This is in agreement with the cone calorimeter results according to which the flammability properties are improving with the decreasing heat release rates or ignition time prolongation in order: UCF>CF-FR1>CF-FR2. The advantage of TG/DTG/DTA method is slower linear heating rate, which allows the more detailed evaluation of the light and flammable cotton fabric.  相似文献   

6.
Based on Fourier transform infrared (FTIR) microspectroscopy, the conformation of rhEGF under the influence of pH, heat treatment, chaotropic salts, concentration of salt and protein structure perturbants was studied. The FTIR spectrum of rhEGF showed that major secondary structures from amide I bands composed of 40.6% beta-sheets, 25.0% reverse turns, 16.5% random coils, 13.0% loops and 4.9% side-chain structures. At extreme pH conditions (pH < 4 and pH > 8), there were changes in intensity of the bands attributed to loop (1658 cm(-1)) and random coil structures, and these bands shifted to lower wavenumbers, indicating changes in protein conformation. Thermal denaturation of rhEGF occurred at 40-76 degrees C and the formation of intermolecular beta-aggregates was revealed by the FTIR spectra. Thermal-irreversible property of rhEGF after second-heating treatment suggested that rhEGF has a poor thermal stability. While investigating the stability of rhEGF in the presence of chaotropic salts, anions induced protein unfolding of rhEGF more significantly than cations. The optimal stabilizing effect was found at the 2 M NaCl added to rhEGF, and expressed the structure of rhEGF more stable on the many components. The bands of loop structure (1654 cm(-1)), beta-sheet (1638 cm(-1)) and intermolecular antiparallel beta-aggregation formation (1694, 1619 and 1612 cm(-1)) seem to be "marked" to be more sensitive in determining environmental changes of rhEGF for FTIR microspectroscopy.  相似文献   

7.
A new zinc oxide nanoparticles/chitosan/carboxylated multiwall carbonnanotube/polyaniline (ZnO-NPs/CHIT/c-MWCNT/PANI) composite film has been synthesized on platinum (Pt) electrode using electrochemical techniques. Three enzymes, creatinine amidohydrolase (CA), creatine amidinohydrolase (CI) and sarcosine oxidase (SO) were immobilized on ZnO-NPs/CHIT/c-MWCNT/PANI/Pt electrode to construct the creatinine biosensor. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The enzyme electrode detects creatinine level as low as 0.5 μM at a signal to noise ratio of 3 within 10s at pH 7.5 and 30°C. The fabricated creatinine biosensor showed linear working range of 10-650 μM creatinine with a sensitivity of 0.030 μA μM(-1)cm(-2). The biosensor shows only 15% loss of its initial response over a period of 120 days when stored at 4°C. The fabricated biosensor was successfully employed for determination of creatinine in human blood serum.  相似文献   

8.
Meilleur F  Contzen J  Myles DA  Jung C 《Biochemistry》2004,43(27):8744-8753
Perdeuterated and hydrogenated cytochrome P450cam (P450cam), from Pseudomonas putida, has been characterized concerning thermal stability and structural dynamics. For the first time, Fourier transform infrared (FTIR) spectroscopy was used to characterize a perdeuterated protein. The secondary structure compositions were determined from the fitted amide I' spectral region, giving band populations at 10 degrees C for the perdeuterated protein of 22% between 1605 and 1624 cm(-1) (beta-sheets), 47% between 1633 and 1650 cm(-1) (alpha-helix (29%) plus unordered/3(10)-helix (18%)), and 28% between 1657 and 1677 cm(-1) (turns) and for the hydrogenated protein of 22% between 1610 and 1635 cm(-1) (beta-sheets), 52% between 1640 and 1658 cm(-1) (alpha-helix (41%) plus unordered/3(10)-helix (11%)), and 24% between 1665 and 1680 cm(-1) (turns).Thermal unfolding experiments revealed that perdeuterated P450cam was less stable than the hydrogenated protein. The midpoint transition temperatures were 60.8 and 64.4 degrees C for the perdeuterated and hydrogenated P450cam, respectively. Step-scan time-resolved FTIR was applied to the P450cam-CO complex to study the ligand-rebinding process after flash photolysis. Rebinding of the ligand occurred with the same kinetics and rate constants k(on), 8.9 x 10(4) and 8.3 x 10(4) M(-1) s(-1) for the perdeuterated and hydrogenated P450cam, respectively.Perdeuterated P450cam was expressed for a neutron crystallographic study to determine the specific hydration states and hydrogen-bonding networks at the active site. The analyses presented here show that perdeuterated P450cam is structurally similar to its hydrogenated counterpart, despite its reduced thermal stability, suggesting that information obtained from the neutron structure will be representative of the normal hydrogenated P450cam.  相似文献   

9.
Analysis of human tear fluid by Fourier transform infrared spectroscopy   总被引:1,自引:0,他引:1  
The purpose of this research is to find some useful spectroscopic factors in human tear fluid contents to monitor diurnal changes of the physicochemical ocular conditions noninvasively. All tear fluid samples were collected with glass microcapillary tubes from both eyes of three donors and analyzed by Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). We measured the peak intensities at 2852, 1735, 1546, and 1242 cm(-1), and the peak intensity ratios among those peaks in the second derivative spectra. We found significant diurnal and individual variations in those peak intensities for tear fluid obtained from right and left eyes. Among these variations, we observed significant changes in tear samples between right and left eyes. In this case the peak intensity ratio between 1242 (phosphate ester) and 2852 cm(-1) (fatty acid methylene) of right eye tear fluid was increased in the afternoon (1600 to 1900 h), while that of left eye tear fluid did not change significantly. In the ratio between 1242 (phosphate ester) and 1546 cm(-1) (amide II), the difference was not observed between both eyes. We conclude that the difference in diurnal variations of biochemical constituents between right and left eye tear fluids could be monitored noninvasively and nondestructively by FTIR technique and this method could be useful in the future for tear diagnoses.  相似文献   

10.
FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide   总被引:10,自引:0,他引:10  
Oh SY  Yoo DI  Shin Y  Seo G 《Carbohydrate research》2005,340(3):417-428
Cellulose samples treated with sodium hydroxide (NaOH) and carbon dioxide in dimethylacetamide (DMAc) were analyzed by FTIR spectroscopy. Absorbance of hydrogen-bonded OH stretching was considerably decreased by the treatment of NaOH and carbon dioxide. The relative absorbance ratio (A(4000-2995)/A(993)) represented the decrease of absorbance as a criterion of hydrogen-bond intensity (HBI). The absorbance of the band at 1430cm(-1) due to a crystalline absorption was also decreased by NaOH treatment. The absorbance ratio of the bands at 1430 and 987-893cm(-1) (A(1430)/A(900)), adopted as crystallinity index (CI), was closely related to the portion of cellulose I structure. With the help of FTIR equipped with an on-line evacuation apparatus, broad OH bending due to bound water could be eliminated. FTIR spectra of the carbon dioxide-treated cellulose samples at 1700-1525cm(-1) were divided into some bands including 1663, 1635, 1616, and 1593cm(-1). The broad OH bending due to bound water at 1641-1645cm(-1) was resolved to two bands at 1663 and 1635cm(-1). As a trace of DMAc, the band at 1616cm(-1) is disappeared by washing for the cellulose treated with carbon dioxide (Cell 1-C and Cell 2/60-C). The decrease of HBI, the easy removal of DMAc, and the band at 1593cm(-1) supported the introduction of new chemical structure in cellulose. The bands shown at 1593 and 1470cm(-1) was assigned as hydrogen-bonded carbonyl stretching and O-C-O stretching of the carbonate ion.  相似文献   

11.
A set of arabinoxylan samples differing in their arabinose composition and various samples of arabino-xylo-oligosaccharide samples were analysed by Raman spectroscopy. Specific signatures for arabinose substitution were found in several spectral regions, that is, 400-600, 800-950 and 1030-1100 cm(-1). A linear relationship was observed between the peak ratio 855/895 cm(-1) of the second derivative spectra and the A/X ratio determined by chemical analysis. Moreover, spectral changes were observed in the 400-600 cm(-1) region assigned to the coupled vibrations mode in the skeleton: while the intensity of the band at 570 cm(-1) increased with the degree of substitution, that at 494 cm(-1) decreased. Similarly, a linear relationship was observed between the peak intensity ratio 570/494 cm(-1) calculated on the second derivative spectra and the composition data. Analysis of Raman spectra of arabino-xylo-oligosaccharides allowed to identify specific spectral features of disubstitution.  相似文献   

12.
In erythrocytes, 4.1R80 (80 kDa isoform of protein 4.1R) binds to the cytoplasmic tail of the transmembrane proteins band 3 and GPC (glycophorin C), and to the membrane-associated protein p55 through the N- (N-terminal), α- (α-helix-rich) and C- (C-terminal) lobes of R30 [N-terminal 30 kDa FERM (4.1/ezrin/radixin/moesin) domain of protein 4.1R] respectively. We have shown previously that R30 binds to CaM (calmodulin) in a Ca2+-independent manner, the equilibrium dissociation constant (Kd) for R30-CaM binding being very similar (in the submicromolar range) in the presence or absence of Ca2+. In the present study, we investigated the consequences of CaM binding on R30's structural stability using resonant mirror detection and FTIR (Fourier-transform IR) spectroscopy. After a 30 min incubation above 40° C, R30 could no longer bind to band 3 or to GPC. In contrast, R30 binding to p55, which could be detected at a temperature as low as 34° C, was maintained up to 44° C in the presence of apo-CaM. Dynamic light scattering measurements indicated that R30, either alone or complexed with apo-CaM, did not aggregate up to 40° C. FTIR spectroscopy revealed that the dramatic variations in the structure of the β-sheet structure of R30 observed at various temperatures were minimized in the presence of apo-CaM. On the basis of Kd values calculated at various temperatures, ΔCp and ΔG° for R30 binding to apo-CaM were determined as -10 kJ · K(-1) · mol-1 and ~ -38 kJ · mol(-1) at 37° C (310.15 K) respectively. These data support the notion that apo-CaM stabilizes R30 through interaction with its β-strand-rich C-lobe and provide a novel function for CaM, i.e. structural stabilization of 4.1R80.  相似文献   

13.
Oh SY  Yoo DI  Shin Y  Kim HC  Kim HY  Chung YS  Park WH  Youk JH 《Carbohydrate research》2005,340(15):2376-2391
Crystalline structures of cellulose (named as Cell 1), NaOH-treated cellulose (Cell 2), and subsequent CO2-treated cellulose (Cell 2-C) were analyzed by wide-angle X-ray diffraction and FTIR spectroscopy. Transformation from cellulose I to cellulose II was observed by X-ray diffraction for Cell 2 treated with 15-20 wt% NaOH. Subsequent treatment with CO2 also transformed the Cell 2-C treated with 5-10 wt% NaOH. Many of the FTIR bands including 2901, 1431, 1282, 1236, 1202, 1165, 1032, and 897 cm(-1) were shifted to higher wave number (by 2-13 cm(-1)). However, the bands at 3352, 1373, and 983 cm(-1) were shifted to lower wave number (by 3-95 cm(-1)). In contrast to the bands at 1337, 1114, and 1058 cm(-1), the absorbances measured at 1263, 993, 897, and 668 cm(-1) were increased. The FTIR spectra of hydrogen-bonded OH stretching vibrations at around 3352 cm(-1) were resolved into three bands for cellulose I and four bands for cellulose II, assuming that all the vibration modes follow Gaussian distribution. The bands of 1 (3518 cm(-1)), 2 (3349 cm(-1)), and 3 (3195 cm(-1)) were related to the sum of valence vibration of an H-bonded OH group and an intramolecular hydrogen bond of 2-OH ...O-6, intramolecular hydrogen bond of 3-OH...O-5 and the intermolecular hydrogen bond of 6-O...HO-3', respectively. Compared with the bands of cellulose I, a new band of 4 (3115 cm(-1)) related to intermolecular hydrogen bond of 2-OH...O-2' and/or intermolecular hydrogen bond of 6-OH...O-2' in cellulose II appeared. The crystallinity index (CI) was obtained by X-ray diffraction [CI(XD)] and FTIR spectroscopy [CI(IR)]. Including absorbance ratios such as A1431,1419/A897,894 and A1263/A1202,1200, the CI(IR) was evaluated by the absorbance ratios using all the characteristic absorbances of cellulose. The CI(XD) was calculated by the method of Jayme and Knolle. In addition, X-ray diffraction curves, with and without amorphous halo correction, were resolved into portions of cellulose I and cellulose II lattice. From the ratio of the peak area, that is, peak area of cellulose I (or cellulose II)/total peak area, CI(XD) were divided into CI(XD-CI) for cellulose I and CI(XD-CII) for cellulose II. The correlation between CI(XD-CI) (or CI(XD-CII)) and CI(IR) was evaluated, and the bands at 2901 (2802), 1373 (1376), 897 (894), 1263, 668 cm(-1) were good for the internal standard (or denominator) of CI(IR), which increased the correlation coefficient. Both fraction of the absorbances showing peak shift were assigned as the alternate components of CI(IR). The crystallite size was decreased to constant value for Cell 2 treated at >or= 15 wt% NaOH. The crystallite size of Cell 2-C (cellulose II) was smaller than that of Cell 2 (cellulose I) treated at 5-10 wt% NaOH. But the crystallite size of Cell 2-C (cellulose II) was larger than that of Cell 2 (cellulose II) treated at 15-20 wt% NaOH.  相似文献   

14.
Nickel oxide microfibers (NiO-MFs) were directly immobilized onto the surface of fluorine tin oxide (FTO) electrode by electrospinning and calcination without using any immobilization matrix for nonenzymatic glucose sensor. Morphology and structure of NiO-MFs were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction pattern (XRD). The electrochemical and electrocatalytic performances of the NiO-MFs modified electrodes prepared at different calcination temperatures ranging from 300 to 500°C were evaluated by cyclic voltammetry (CV). The CV results have demonstrated that NiO-MFs modified electrode prepared at 300°C displayed distinct increase in electrocatalytic activity toward the oxidation of glucose, which is explored to develop an amperometric nonenzymatic glucose sensor. The NiO-MFs prepared at 300°C based amperometric nonenzymatic glucose sensor has ultrasensitive current (1785.41 μA mM(-1) cm(-2)) response and low detection limit of 3.3×10(-8) M (signal/noise ratio (S/N)=3), which are among the best values reported in literature. Additionally, excellent selectivity and stability have also been obtained.  相似文献   

15.
Elucidating the properties of the heme Fe-Cu(B) binuclear center and the dynamics of the protein response in cytochrome c oxidase is crucial to understanding not only the dioxygen activation and bond cleavage by the enzyme but also the events related to the release of the produced water molecules. The time-resolved step-scan FTIR difference spectra show the ν(7a)(CO) of the protonated form of Tyr residues at 1247 cm(-1) and that of the deprotonated form at 1301 cm(-1). By monitoring the intensity changes of the 1247 and 1301 cm(-1) modes as a function of pH, we measured a pK(a) of 7.8 for the observed tyrosine. The FTIR spectral changes associated with the tyrosine do not belong to Tyr-237 but are attributed to the highly conserved in heme-copper oxidases Tyr-136 and/or Tyr-133 residue (Koutsoupakis, K., Stavrakis, S., Pinakoulaki, E., Soulimane, T., and Varotsis, C. (2002) J. Biol. Chem. 277, 32860-32866). The oxygenation of CO by the mixed-valence form of the enzyme revealed the formation of the ~607 nm P (Fe(IV)=O) species in the pH 6-9 range and the return to the oxidized form without the formation of the 580 nm F form. The data indicate that Tyr-237 is not involved in the proton transfer pathway in the oxygenation of CO by the mixed-valence form of the enzyme. The implication of these results with respect to the role of Tyr-136 and Tyr-133 in proton transfer/gating along with heme a(3) ring D propionate-H(2)O-ring A propionate-Asp-372 site to the exit/output proton channel (H(2)O pool) is discussed.  相似文献   

16.
The independent influence of peak oxygen uptake (Vo(? peak)) on changes in thermoregulatory responses during exercise in a neutral climate has not been previously isolated because of complex interactions between Vo(? peak), metabolic heat production (H(prod)), body mass, and body surface area (BSA). It was hypothesized that Vo(? peak) does not independently alter changes in core temperature and sweating during exercise. Fourteen males, 7 high (HI) Vo(? peak): 60.1 ± 4.5 ml·kg?1·min?1; 7 low (LO) Vo(? peak): 40.3 ± 2.9 ml·kg?1·min?1 matched for body mass (HI: 78.2 ± 6.1 kg; LO: 78.7 ± 7.1 kg) and BSA (HI: 1.97 ± 0.08 m2; LO: 1.94 ± 0.08 m2), cycled for 60-min at 1) a fixed heat production (FHP trial) and 2) a relative exercise intensity of 60% Vo(? peak) (REL trial) at 24.8 ± 0.6°C, 26 ± 10% RH. In the FHP trial, H(prod) was similar between the HI (542 ± 38 W, 7.0 ± 0.6 W/kg or 275 ± 25 W/m2) and LO (535 ± 39 W, 6.9 ± 0.9 W/kg or 277 ± 29 W/m2) groups, while changes in rectal (T(re): HI: 0.87 ± 0.15°C, LO: 0.87 ± 0.18°C, P = 1.00) and aural canal (T(au): HI: 0.70 ± 0.12°C, LO: 0.74 ± 0.21°C, P = 0.65) temperature, whole-body sweat loss (WBSL) (HI: 434 ± 80 ml, LO: 440 ± 41 ml; P = 0.86), and steady-state local sweating (LSR(back)) (P = 0.40) were all similar despite relative exercise intensity being different (HI: 39.7 ± 4.2%, LO: 57.6 ± 8.0% Vo(2 peak); P = 0.001). At 60% Vo(2 peak), H(prod) was greater in the HI (834 ± 77 W, 10.7 ± 1.3 W/kg or 423 ± 44 W/m2) compared with LO (600 ± 90 W, 7.7 ± 1.4 W/kg or 310 ± 50 W/m2) group (all P < 0.001), as were changes in T(re) (HI: 1.43 ± 0.28°C, LO: 0.89 ± 0.19°C; P = 0.001) and T(au) (HI: 1.11 ± 0.21°C, LO: 0.66 ± 0.14°C; P < 0.001), and WBSL between 0 and 15, 15 and 30, 30 and 45, and 45 and 60 min (all P < 0.01), and LSR(back) (P = 0.02). The absolute esophageal temperature (T(es)) onset for sudomotor activity was ~0.3°C lower (P < 0.05) in the HI group, but the change in T(es) from preexercise values before sweating onset was similar between groups. Sudomotor thermosensitivity during exercise were similar in both FHP (P = 0.22) and REL (P = 0.77) trials. In conclusion, changes in core temperature and sweating during exercise in a neutral climate are determined by H(prod), mass, and BSA, not Vo(? peak).  相似文献   

17.
Khanh D  Quan L  Zhang W  Hira D  Furukawa K 《Bioresource technology》2011,102(24):11147-11154
The feasibility of treating low-strength wastewater with an up-flow anaerobic sludge blanket (UASB) reactor, using a poly(vinyl alcohol)-gel carrier, at various temperatures and hydraulic retention times (HRTs) was examined. The temperature was decreased from 35°C to 25°C and then to 15°C. The HRT was reduced from 2.0 h to 0.22 h. The COD removal rate reached 28 kg-COD m(-3)d(-1) at 35°C, 16 kg-COD m(-3)d(-1) at 25°C, and 6 kg-COD m(-3)d(-1) at 15°C. The COD removal rate was reduced by half for each temperature reduction of 10°C.  相似文献   

18.
Quinn PJ 《The FEBS journal》2011,278(18):3518-3527
Specific lipid-lipid interactions are believed to be responsible for lateral domain formation in the lipid bilayer matrix of cell membranes. The miscibility of glucocerebroside and sphingomyelin extracted from biological tissues has been examined by synchrotron X-ray powder diffraction methods. Fully hydrated binary mixtures of egg-sphingomyelin codispersed with glucosylceramide rich in saturated C22 and C24 N-acyl fatty acids were subjected to heating scans between 20 and 90 °C at 2 °C·min(-1). X-ray scattering intensity profiles were recorded at 1 °C intervals simultaneously in both small-angle and wide-angle scattering regions. A gel phase characterized by a single symmetric peak in the wide-angle scattering region was transformed in all mixtures examined to a fluid phase at about 40 °C, similar to dispersions of pure egg-sphingomyelin. A coexisting lamellar structure was identified at temperatures up to about 75 °C which was characterized by a broad Bragg reflection. The scattering intensity of this structure increased relative to the structure assigned as bilayers of pure sphingomyelin with increasing proportions of glucosylceramide in the mixture. The relationship between the scattering intensities of the two peaks and the relative mass fractions of the two lipids showed that the bilayers assigned to a glucosylceramide-rich structure were composed of sphingomyelin and glucosylceramide in molar ratios of 1 : 1 and 2 : 1, respectively, at temperatures below and above the order-disorder phase transition temperature of the sphingomyelin (40 °C).  相似文献   

19.
Nabedryk E  Breton J  Joshi HM  Hanson DK 《Biochemistry》2000,39(47):14654-14663
The photoreduction of the secondary quinone Q(B) in native reaction centers (RCs) of Rhodobacter capsulatus and in RCs from the GluL212 --> Gln and GluL212 --> Ala mutants has been investigated at pH 7 in (1)H(2)O and (2)H(2)O by light-induced Fourier transform infrared (FTIR) difference spectroscopy. The Q(B)(-)/Q(B) FTIR difference spectra reflect changes of quinone-protein interactions and of protonation state of carboxylic acid groups as well as reorganization of the protein upon electron transfer. Comparison of Q(B)(-)/Q(B) spectra of native and mutant RCs indicates that the interactions between Q(B) or Q(B)(-) and the protein are similar in all RCs. A differential signal at approximately 1650/1640 cm(-1), which is common to all the spectra, is associated with a movement of a peptide carbonyl or a side chain following Q(B) reduction. On the other hand, Q(B)(-)/Q(B) spectra of native and mutant RCs display several differences, notably between 1700 and 1650 cm(-1) (amide I and side chains), between 1570 and 1530 cm(-1) (amide II), and at 1728-1730 cm(-1) (protonated carboxylic acid groups). In particular, the latter region in native RCs is characterized by a main positive band at 1728 cm(-1) and a negative signal at 1739 cm(-1). In the L212 mutants, the amplitude of the positive band is strongly decreased leading to a differential signal at 1739/1730 cm(-1) that is insensitive to (1)H/(2)H isotopic exchange. In native RCs, only the 1728 cm(-1) band is affected in (2)H(2)O while the 1739 cm(-1) signal is not. The effects of the mutations and of (1)H/(2)H exchange on the Q(B)(-)/Q(B) spectra concur in the attribution of the 1728 cm(-1) band in native RCs to (partial) proton uptake by GluL212 upon the first electron transfer to Q(B), as previously observed in Rhodobacter sphaeroides RCs [Nabedryk, E., Breton, J., Hienerwadel, R., Fogel, C., M?ntele, W., Paddock, M. L., and Okamura, M. Y. (1995) Biochemistry 34, 14722-14732]. More generally, strong homologies of the Q(B) to Q(B)(-) transition in the RCs from Rb. sphaeroides and Rb. capsulatus are detected by differential FTIR spectroscopy. The FTIR data are discussed in relation with the results from global proton uptake measurements and electrogenic events concomitant with the reduction of Q(B) and with a model of the Q(B) turnover in Rb. sphaeroides RCs [Mulkidjanian, A. Y. (1999) FEBS Lett. 463, 199-204].  相似文献   

20.
Arabidopsis eceriferum (cer) mutants with unique alterations in their rosette leaf cuticular wax accumulation and composition established by gas chromatography have been investigated using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in combination with univariate and multivariate analysis. Objectives of this study were to evaluate the utility of ATR-FTIR for detection of chemical diversity in leaf cuticles, obtain spectral profiles of cer mutants in comparison with the wild type, and identify changes in leaf cuticles caused by drought stress. FTIR spectra revealed both genotype- and treatment-dependent differences in the chemical make-up of Arabidopsis leaf cuticles. Drought stress caused specific changes in the integrated area of the CH3 peak, asymmetrical and symmetrical CH2 peaks, ester carbonyl peak and the peak area ratio of ester CO to CH2 asymmetrical vibration. CH3 peak positively correlated with the total wax accumulation. Thus, ATR-FTIR spectroscopy is a valuable tool that can advance our understanding of the role of cuticle chemistry in plant response to drought and allow selection of superior drought-tolerant varieties from large genetic resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号