首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of ant species diversity are well documented and yet the mechanisms promoting species coexistence among communities are often elusive. Two emerging hypotheses that account for coexistence in ant communities are the discovery-dominance tradeoff and the dominance-thermal tolerance tradeoff. Here we used behavioural assays and community-level sampling from ant assemblages in the southern Appalachians, USA to test for the discovery-dominance and dominance-thermal tolerance tradeoffs. Species that were behaviorally dominant during interspecific interactions tended to forage in a narrow window of generally warmer temperatures, whereas subordinate species tended to forage in a wide range of temperatures, including colder temperatures. Species that foraged at lower temperature tended to be behaviourally subordinate, suggesting that a dominance-thermal tolerance tradeoff promotes coexistence in this system. Species richness was positively related to site average annual temperature and within-site variation in ground temperature, suggesting that temperature also shapes the structure of ant communities and regulates diversity. There was no relationship between the ability of a species to discover food resources and its behavioural dominance, contrary to the predictions of the discovery-dominance tradeoff hypothesis. In sum, our results show that temperature plays numerous roles in promoting regional coexistence in this system.  相似文献   

2.
Environmental variability and adaptive foraging behavior have been shown to favor coexistence of specialists and generalists on an ecological timescale. This leaves unaddressed the question of whether such coexistence can also be expected on an evolutionary timescale. In this article, we study the attainability, through gradual evolution, of specialist-generalist coexistence, as well as the evolutionary stability of such communities when allowing for immigration. Our analysis shows that the potential for specialist-generalist coexistence is much more restricted than originally thought and strongly depends on the trade-off structure assumed. We establish that ecological coexistence is less likely for species facing a trade-off between per capita reproduction in different habitats than when the trade-off acts on carrying capacities alone. We also demonstrate that coexistence is evolutionarily stable whenever it is ecologically stable but that in most cases, such coexistence cannot be reached through gradual evolution. We conclude that an evolutionarily stable community of specialists and generalists may be created only through immigration from elsewhere or through mutations of large effect. Our results highlight that trade-offs in fitness-determining traits can have counterintuitive effects on the evolution of specialization.  相似文献   

3.
1. Trade-offs underpin local species coexistence. Trade-offs between interference and exploitative competitive ability provie a mechanism for explaining species coexistence within guilds that exploit overlapping resources. 2. Omnivorous, leaf litter ants exploit a shared food base and occur in species-rich assemblages. In these assemblages, species that excel at usurping food items from other species are poor at finding food items first. In assemblages where some members are attacked by phorid fly parasitoids, host species face an additional trade-off between defending themselves against parasitic attack and maximizing their competitive abilities. Host species thus face two trade-offs that interact via the trait-mediated indirect interaction generated by phorid defence behaviour. 3. In this study we test for the existence of these trade-offs and evaluate the predictions of a model for how they interact in an assemblage of woodland ants in which two behaviourally dominant members are attacked by phorid fly parasitoids as they attempt to harvest food resources. 4. The major findings are that unparasitized species in the assemblage follow a dominance-discovery trade-off curve. When not subject to attack by phorid flies, host species violate that trade-off by finding resources too quickly for their level of behavioural dominance. In contrast, when attacked by their phorid parasitoids, the host species dominance drops such that they fall into the assemblage trade-off. 5. These results match the predictions of the balance of terror model, which derives the optimal host response to parasitism, indicating that the host species balance the competing fitness costs of reduced competitive dominance and loss of workers to parasitism. This result supports the view that understanding the structure of ecological communities requires incorporating the indirect effects created by trait plasticity.  相似文献   

4.
1. Zooplankton exist in environments where food availability varies greatly over time, and success depends in part on the ability to store resources when food is abundant and to conserve them when food is scarce. This paper reports on interspecific differences in the size of stored reserves, and in respiration rate during food deprivation, of four species of planktonic rotifers.
2. The size of reserves varied from 42 to 71% of initial (well-fed) body mass. Interspecific differences in reserve size explained some of the previously observed differences in starvation time.
3. The initial response of respiration rate to food deprivation was quite variable between species. Brachionus calyciflorus was the only species to conserve energy by decreasing respiration rate in response to food deprivation. In contrast, the respiration rate of starved Asplanchna priodonta increased, while that of A. silvestrii and Synchaeta pectinata did not change, during food deprivation.
4. Theory predicts that temporal variation in resource level may facilitate the coexistence of competing species. This theory depends upon trade-offs between traits that confer competitive success in different environments. Although rotifers show a trade-off between competitive ability and maximum population growth rate, we found no evidence for trade-offs between either of those two traits and the size of reserves.  相似文献   

5.
A species may modify its relative habitat use with changing availability, generating functional responses in habitat selection. Functional responses in habitat selection are expected to occur when animals experience trade-offs influencing their habitat selection, but only a few studies to date have explicitly linked functional responses to the underlying trade-offs faced by the animals. We used data from 39 female moose fitted with GPS telemetry collars in two nearby study areas in Canada to investigate if moose (1) were faced with a food/cover trade-off in habitat selection, as typically acknowledged in the literature, and (2) showed a functional response in their use of food/cover-rich habitats. We also examined how habitat selection patterns varied seasonally, and between study areas. The occurrence of functional responses varied strongly between study areas, and could not always be related to a measurable food/cover trade-off. Functional responses were observed more often in the study area where the environmental conditions were more severe (colder temperatures, higher precipitations, and lower food availability). Selection coefficients were also less variable among individuals in that study area, suggesting that severe environmental conditions may constrain individuals to a few selection tactics and promote the development of functional responses. Moose reacted to the availability of different habitat types in different seasons, reflecting the changing trade-offs faced by the animals. We found considerable behavioral differences between individuals from two adjacent study areas, and therefore recommend caution when extrapolating habitat selection results. We advocate for the wider use of functional responses to identify critical habitats for a species from a management or conservation perspective.  相似文献   

6.
Structural complexity generally reduces predation and cannibalism rates. Although the benefits from this effect vary among environmental contexts and through time, it has been the common explanation for high species abundance in complex habitats. We hypothesized that oviposition habitat selection for structural complexity depends on the expected trophic function of the progeny. In Salamandra infraimmaculata larvae, expected trophic function is dictated by their sequence of deposition. First cohorts cannibalize later-arriving cohorts, while all compete for shared prey resources. In a mesocosm experiment, we show that gravid salamanders facing conspecific-free pools preferred structurally simple habitats (no rocks), while females facing only pools with older conspecific larvae preferred complex habitats (with rocks). Context-dependent preference of habitat complexity for managing food/safety trade-offs may be extended from classic foraging patch decisions to breeding habitat selection. These trade-offs vary with dynamic larval processes such as priority effects and ontogenetic diet shifts, potentially leading to complex maternal parturition behaviours.  相似文献   

7.
If two species exhibit different nonlinear responses to a single shared resource, and if each species modifies the resource dynamics such that this favors its competitor, they may stably coexist. This coexistence mechanism, known as relative nonlinearity of competition, is well understood theoretically, but less is known about its evolutionary properties and its prevalence in real communities. We address this challenge by using adaptive dynamics theory and individual-based simulations to compare community stabilization and evolutionary stability of species that coexist by relative nonlinearity. In our analysis, evolution operates on the species'' density-compensation strategies, and we consider a trade-off between population growth rates at high and low resource availability. We confirm previous findings that, irrespective of the particular model of density dependence, there are many combinations of overcompensating and undercompensating density-compensation strategies that allow stable coexistence by relative nonlinearity. However, our analysis also shows that most of these strategy combinations are not evolutionarily stable and will be outcompeted by an intermediate density-compensation strategy. Only very specific trade-offs lead to evolutionarily stable coexistence by relative nonlinearity. As we find no reason why these particular trade-offs should be common in nature, we conclude that the sympatric evolution and evolutionary stability of relative nonlinearity, while possible in principle, seems rather unlikely. We speculate that this may, at least in part, explain why empirical demonstrations of this coexistence mechanism are rare, noting, however, that the difficulty to detect relative nonlinearity in the field is an equally likely explanation for the current lack of empirical observations, and that our results are limited to communities with non-overlapping generations and constant resource supply. Our study highlights the need for combining ecological and evolutionary perspectives for gaining a better understanding of community assembly and biogeographic patterns.  相似文献   

8.
One of the common assumptions in the study of the evolution of parental care is that trade-offs exist between parental investment and other fitness-related traits. In general, this body of work follows the traditional definition that parental investment (in the current offspring) decreases that individual's ability to invest in future reproduction ( Trivers 1972 ). However, examination of the empirical evidence shows that assuming a trade-off between parental and mating effort is not always appropriate. This overemphasis on a trade-off between mating and parental effort has arisen in part because of an oversimplification of female reproductive strategies, a failure to consider interactions between the sexes, and a tendency to consider behaviours as unifunctional, thereby ignoring the more complex relationship between mating and parental effort in many species. Here, we first examine the empirical evidence for trade-offs between mating and parental effort in males and females to ask when trade-offs occur and what pattern they take. By highlighting a number of exemplar species, we then explore how the presence or absence of trade-offs relates to mate choice and sexual selection in both sexes. Finally, we highlight the importance of considering individual variation, which has been particularly overlooked in examinations of female investment, and how preferences in one sex may influence the existence and our interpretation of apparent trade-offs in the other sex.  相似文献   

9.
The evolution of ecological trade-offs is an important component of ecological specialization and adaptive radiation. However, the pattern that would show that evolutionary trade-offs have occurred between traits among species has not been clearly defined. In this paper, we propose a phylogeny-based definition of an evolutionary trade-off, and apply it to an analysis of the evolution of trade-offs in locomotor performance in emydid turtles. We quantified aquatic and terrestrial speed and endurance for up to 16 species, including aquatic, semi-terrestrial and terrestrial emydids. Emydid phylogeny was reconstructed from morphological characters and nuclear and mitochondrial DNA sequences. Surprisingly, we find that there have been no trade-offs in aquatic and terrestrial speed among species. Instead, specialization to aquatic and terrestrial habitats seems to have involved trade-offs in speed and endurance. Given that trade-offs between speed and endurance may be widespread, they may underlie specialization to different habitats in many other groups.  相似文献   

10.
Although an interspecific trade-off between competitive and colonizing ability can permit multispecies coexistence, whether this mechanism controls the structure of natural systems remains unresolved. We used models to evaluate the hypothesized importance of this trade-off for explaining coexistence and relative abundance patterns in annual plant assemblages. In a nonspatial model, empirically derived competition-colonization trade-offs related to seed mass were insufficient to generate coexistence. This was unchanged by spatial structure or interspecific variation in the fraction of seeds dispersing globally. These results differ from those of the more generalized competition-colonization models because the latter assume completely asymmetric competition, an assumption that appears unrealistic considering existing data for annual systems. When, for heuristic purposes, completely asymmetric competition was incorporated into our models, unlimited coexistence was possible. However, in the resulting abundance patterns, the best competitors/poorest colonizers were the most abundant, the opposite of that observed in natural systems. By contrast, these natural patterns were produced by competition-colonization models where environmental heterogeneity permitted species coexistence. Thus, despite the failure of the simple competition-colonization trade-off to explain coexistence in annual plant systems, this trade-off may be essential to explaining relative abundance patterns when other processes permit coexistence.  相似文献   

11.
Metacommunity theories predict multispecies coexistence based on the interplay between local species interactions and regional migration. To date, most metacommunity models implicitly assume that evolution can be ignored. Yet empirical studies indicate a substantial potential for contemporary evolution. I evaluate how evolution alters species diversity in a simulated mass-effects (sink-source) metacommunity. Populations inhabiting source habitats became locally adapted, while subordinate competitors became maladapted because of assumed ecological and phenotypic trade-offs between habitats. This maladaptation decreased and leveled relative abundances among subordinate populations. These two effects produced two regions of departure from nonevolutionary predictions. Assuming low proportional migration, maladaptation reduced local species richness via an overall reduction in reproductive rates in sink populations. With intermediate proportional migration, a greater absolute reduction of reproductive rates in intermediate competitors leveled reproductive rates and thereby enhanced local species richness. Although maladaptation is usually viewed as a constraint on species coexistence, simulations suggest that its effects on diversity are manifold and dependent on interpatch migration and community context. Hence, metacommunity predictions often may profit from an evolutionary perspective. Results indicate that modifications of community connectivity, such as might occur during habitat fragmentation, could elicit rapid shifts in communities from regions of high to low biodiversity.  相似文献   

12.
When applied at the individual patch level, the classic competition-colonization models of species coexistence assume that propagules of superior competitors can displace adults of inferior competitors (displacement competition). But if adults are invulnerable to displacement by propagules (as trees are to seeds), and propagules compete to replace adults that die for reasons independent of the outcome of juvenile competition (a lottery system), a competition-colonization trade-off alone is not able to produce coexistence. However, we show that coexistence is possible if patch density varies spatially, such that it becomes a niche axis. We also show how a dispersal-fecundity trade-off can partition variation in patch density. We discuss the application of these models to empirical systems. An important implication of communities coexisting via variation in patch density is that the amount of habitat loss necessarily interacts with the pattern of loss in affecting extinctions, invasions, and coexistence, in contrast to displacement competition models, for which the spatial pattern of loss is not important or is less important. Finally, with respect to mechanisms promoting coexistence, we suggest that trade-offs between different stages of colonization could be far more common in nature than a trade-off between competitive ability and colonization ability.  相似文献   

13.
Limberger R  Wickham SA 《Oecologia》2011,167(3):723-732
There is considerable theoretical evidence that a trade-off between competitive and colonization ability enables species coexistence. However, empirical studies testing for the presence of a competition–colonization (CC) trade-off and its importance for species coexistence have found mixed results. In a microcosm experiment, we looked for a CC trade-off in a community of six benthic ciliate species. For each species, we measured the time needed to actively disperse to and colonize an empty microcosm. By measuring dispersal rates and growth rates of the species, we were able to differentiate between these two important components of colonization ability. Competitive ability was investigated by comparing species’ growth with or without a competitor in all pairwise species combinations. Species significantly differed in their colonization abilities, with good colonizers having either high growth rates or high dispersal rates or both. Although species showed a clear competitive hierarchy, competitive and colonization ability were uncorrelated. The weakest competitors were also the weakest colonizers, and the strongest competitor was an intermediate colonizer. However, some of the inferior competitors had higher colonization abilities than the strongest competitor, indicating that a CC trade-off may enable coexistence for a subset of the species. Absence of a community-wide CC trade-off may be based on the lack of strong relationships between the traits underlying competitive and colonization ability. We show that temporal effects and differential resource use are alternative mechanisms of coexistence for the species that were both slow colonizers and poor competitors.  相似文献   

14.
JM Kneitel 《PloS one》2012,7(7):e41809
Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure.  相似文献   

15.
Mathematical models and ecological theory suggest that low-dimensional life history trade-offs (i.e. negative correlation between two life history traits such as competition vs. colonisation) may potentially explain the maintenance of species diversity and community structure. In the absence of trade-offs, we would expect communities to be dominated by ‘super-types’ characterised by mainly positive trait expressions. However, it has proven difficult to find strong empirical evidence for such trade-offs in species-rich communities. We developed a spatially explicit, rule-based and individual-based stochastic model to explore the importance of low-dimensional trade-offs. This model simulates the community dynamics of 288 virtual plant functional types (PFTs), each of which is described by seven life history traits. We consider trait combinations that fit into the trade-off concept, as well as super-types with little or no energy constraints or resource limitations, and weak PFTs, which do not exploit resources efficiently. The model is parameterised using data from a fire-prone, species-rich Mediterranean-type shrubland in southwestern Australia. We performed an exclusion experiment, where we sequentially removed the strongest PFT in the simulation and studied the remaining communities. We analysed the impact of traits on performance of PFTs in the exclusion experiment with standard and boosted regression trees. Regression tree analysis of the simulation results showed that the trade-off concept is necessary for PFT viability in the case of weak trait expression combinations such as low seed production or small seeds. However, species richness and diversity can be high despite the presence of super-types. Furthermore, the exclusion of super-types does not necessarily lead to a large increase in PFT richness and diversity. We conclude that low-dimensional trade-offs do not provide explanations for multi-species co-existence contrary to the prediction of many conceptual models.  相似文献   

16.
Although individual‐level variation (IV) is ubiquitous in nature, it is not clear how it influences species coexistence. Theory predicts that IV will hinder coexistence but empirical studies have shown that it can facilitate, inhibit, or have a neutral effect. We use a theoretical model to explore the consequences of IV on local and regional species coexistence in the context of spatial environmental structure. Our results show that individual variation can have a positive effect on species coexistence and that this effect will critically depend on the spatial structure of such variation. IV facilitates coexistence when a negative, concave‐up relationship between individuals’ competitive response and population growth rates propagates to a disproportionate advantage for the inferior competitor, provided that each species specialises in a habitat. While greater variation in the preferred habitat generally fosters coexistence, the opposite is true for non‐preferred habitats. Our results reconcile theory with empirical findings.  相似文献   

17.
Abstract The relationship between traits that compete for resources is influenced by variance in the acquisition and allocation of resources. The difficulty of accurately measuring these underlying physiological processes has hampered studies of resource-based trade-offs. Here, we explore the ability of principal components analysis (PCA) to extract axes corresponding to acquisition and allocation in a bivariate trade-off by comparing these axes to estimates obtained using physiological measurements. We validate the method using simulations and then test it using empirical data for the well-characterized trade-off between flight capability and reproduction in female sand crickets, Gryllus firmus. We find a high correspondence between our physiological estimates and the estimates obtained using PCA. Our results demonstrate that PCA provides a robust and efficient method for estimating acquisition and allocation directly from the traits involved in a resource-based trade-off.  相似文献   

18.
Interactions between plants and soil microbes can strongly influence plant diversity and community dynamics. Soil microbes may promote plant diversity by driving negative frequency‐dependent plant population dynamics, or may favor species exclusion by providing one species an average fitness advantage over others. However, past empirical research has focused overwhelmingly on the consequences of frequency‐dependent feedbacks for plant species coexistence and has generally neglected the consequences of microbially mediated average fitness differences. Here we use theory to develop metrics that quantify microbially mediated plant fitness differences, and show that accounting for these effects can profoundly change our understanding of how microbes influence plant diversity. We show that soil microbes can generate fitness differences that favour plant species exclusion when they disproportionately harm (or favour) one plant species over another, but these fitness differences may also favor coexistence if they trade off with competition for other resources or generate intransitive dominance hierarchies among plants. We also show how the metrics we present can quantify microbially mediated fitness differences in empirical studies, and explore how microbial control over coexistence varies along productivity gradients. In all, our analysis provides a more complete theoretical foundation for understanding how plant–microbe interactions influence plant diversity.  相似文献   

19.
Trade-offs between different components of a pathogen''s replication and transmission cycle are thought to be common. A number of studies have identified trade-offs that emerge across scales, reflecting the tension between strategies that optimize within-host proliferation and large-scale population spread. Most of these studies are theoretical in nature, with direct experimental tests of such cross-scale trade-offs still rare. Here, we report an analysis of avian influenza A viruses across scales, focusing on the phenotype of temperature-dependent viral persistence. Taking advantage of a unique dataset that reports both environmental virus decay rates and strain-specific viral kinetics from duck challenge experiments, we show that the temperature-dependent environmental decay rate of a strain does not impact within-host virus load. Hence, for this phenotype, the scales of within-host infection dynamics and between-host environmental persistence do not seem to interact: viral fitness may be optimized on each scale without cross-scale trade-offs. Instead, we confirm the existence of a temperature-dependent persistence trade-off on a single scale, with some strains favouring environmental persistence in water at low temperatures while others reduce sensitivity to increasing temperatures. We show that this temperature-dependent trade-off is a robust phenomenon and does not depend on the details of data analysis. Our findings suggest that viruses might employ different environmental persistence strategies, which facilitates the coexistence of diverse strains in ecological niches. We conclude that a better understanding of the transmission and evolutionary dynamics of influenza A viruses probably requires empirical information regarding both within-host dynamics and environmental traits, integrated within a combined ecological and within-host framework.  相似文献   

20.
Coexistence and food web theory are two cornerstones of the long‐standing effort to understand how species coexist. Although competition and predation are known to act simultaneously in communities, theory and empirical study of these processes continue to be developed largely independently. Here, we integrate modern coexistence theory and food web theory to simultaneously quantify the relative importance of predation and environmental fluctuations for species coexistence. We first examine coexistence in a theoretical, multitrophic model, adding complexity to the food web using machine learning approaches. We then apply our framework to a stochastic model of the rocky intertidal food web, partitioning empirical coexistence dynamics. We find the main effects of both environmental fluctuations and variation in predator abundances contribute substantially to species coexistence. Unexpectedly, their interaction tends to destabilise coexistence, leading to new insights about the role of bottom‐up vs. top‐down forces in both theory and the rocky intertidal ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号