首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
诱导成年大鼠海马CA1区长时程压抑的强直刺激型式   总被引:1,自引:1,他引:0  
Chen L  Jiang ML  Han TZ 《生理学报》2006,58(3):287-291
标准低频率连续刺激(1~2 Hz,15 min)能够诱导幼年大鼠(<4周)海马CA1区同突触长时程压抑(long-term depression,LTD),而只有较高频率且持续时间较长的连续刺激才能诱导出成年动物该部位稳定的LTD.本研究采用成年大鼠海马脑片标本,电刺激Schaffer侧枝传入纤维,在CA1区锥体细胞层记录群体锋电位,选用两种新的刺激参数以观测不同刺激型式在诱导成年大鼠LTD中的作用.诱导LTD的刺激参数为(1)2 Hz,5串,串长60 s,串间隔60 s;(2)5 Hz,5串,串长24 s,串间隔96 s;(3)对照组参数2 Hz,300 s.结果显示,对照参数未能诱导出LTD;而两种频率不同但脉冲总数与刺激总时程相同的多串刺激,即参数(1)与参数(2),均在成年大鼠海马CA1区诱导产生了LTD.两种参数所诱导的LTD特征具有参数特异性,该特征主要表现为LTD诱导潜伏期和LTD的幅度参数(1)、(2)诱导的LTD的潜伏期分别为15~25 min和30~40 min;强直刺激后80 min时LTD的幅度分别为(57.5±2.8)%和(67.7±3.4)%.以上结果表明特定型式的低频率刺激能够诱导成年大鼠海马CA1区的LTD,提示LTD的诱导与刺激的组合型式相关,并且2 Hz较5 Hz的多串刺激在诱导LTD中更为有效.  相似文献   

2.
Synaptic plasticity is an important mechanism that underlies learning and cognition. Protein phosphorylation by kinases and dephosphorylation by phosphatases play critical roles in the activity-dependent alteration of synaptic plasticity. In this study, we report that Wip1, a protein phosphatase, is essential for long-term potentiation (LTP) and long-term depression (LTD) processes. Wip1-deletion suppresses LTP and enhances LTD in the hippocampus CA1 area. Wip1 deficiency-induced aberrant elevation of CaMKII T286/287 and T305 phosphorylation underlies these dysfunctions. Moreover, we showed that Wip1 modulates CaMKII dephosphorylation. Wip1?/? mice exhibit abnormal GluR1 membrane expression, which could be reversed by the application of a CaMKII inhibitor, indicating that Wip1/CaMKII signaling is crucial for synaptic plasticity. Together, our results demonstrate that Wip1 phosphatase plays a vital role in regulating hippocampal synaptic plasticity by modulating the phosphorylation of CaMKII.  相似文献   

3.
A case for a non-transgenic animal model of Alzheimer's disease   总被引:1,自引:0,他引:1  
Alzheimer's disease (AD) is associated with an early impairment in memory and is the major cause of dementia in the elderly. beta-Amyloid (Abeta) is believed to be a primary factor in the pathogenic pathway leading to dementia. Mounting evidence suggests that this syndrome begins with subtle alterations in synaptic efficacy prior to extensive neuronal degeneration and that the synaptic dysfunction could be caused by diffusible oligomeric assemblies of Abeta. This paper reviews the findings from behavioral analysis, electrophysiology, neuropathology and nootropic drug screening studies involving exogenous administration of Abeta in normal rodent brains. This non-transgenic model of amyloid pathology in vivo is presented as a complementary alternative model to transgenic mice to study the cellular and molecular pathways induced by amyloid, which in turn may be a causal factor in the disruption of cognition. The data reviewed here confirm that the diffusible form of Abeta rapidly induces synaptic dysfunction and a secondary process involving cellular cascades induced by the fibrillar form of amyloid. The time-course of alteration in memory processes implicates at least two different mechanisms that may be targeted with selective therapies aimed at improving memory in some AD patients.  相似文献   

4.
1. The unique biochemical properties of Ca2+/calmodulin (CaM)-dependent protein kinase II have made this enzyme one of the paradigmatic models of the forever searched memory molecule.2. In particular, the central participation of CaMKII as a sensor of the Ca2+ signals generated by activation of NMDA receptors after the induction of long-term plastic changes, has encouraged the use of pharmacological, genetic, biochemical, and imaging tools to unveil the role of this kinase in the acquisition, consolidation, and expression of different types of memories.3. Here we review some of the more exciting discoveries related to the mechanisms involved in CaMKII activation and synaptic plasticity.  相似文献   

5.
In this paper, we review experimental advances in molecular neurobiology of Alzheimer's disease (AD), with special emphasis on analysis of neural function of proteins involved in AD pathogenesis, their relation with several signaling pathways and with oxidative stress in neurons. Molecular genetic studies have found that mutations in APP, PS1 and PS2 genes and polymorphisms in APOE gene are implicated in AD pathogenesis. Recent studies show that these proteins, in addition to its role in beta-amyloid processing, are involved in several neuroplasticity-signaling pathways (NMDA-PKA-CREB-BDNF, reelin, wingless, notch, among others). Genomic and proteomic studies show early synaptic protein alterations in AD brains and animal models. DNA damage caused by oxidative stress is not completely repaired in neurons and is accumulated in the genes of synaptic proteins. Several functional SNPs in synaptic genes may be interesting candidates to explore in AD as genetic correlates of this synaptopathy in a "synaptogenomics" approach. Thus, experimental evidence shows that proteins implicated in AD pathogenesis have differential roles in several signaling pathways related to neuromodulation and neurotransmission in adult and developing brain. Genomic and proteomic studies support these results. We suggest that oxidative stress effects on DNA and inherited variations in synaptic genes may explain in part the synaptic dysfunction seen in AD.  相似文献   

6.
We measured the temporal and spatial profiles of neural precursor cells, hippocampal long-term potentiation (LTP), and signaling molecules in neurogenesis-induced adult rats. Chronic lithium treatment produced a significant 54% and 40% increase in the numbers of bromodeoxyuridine [BrdU(+)] cells after 12 h and 28 days, respectively, after treatment completion in the dentate gyrus (DG). Both LTP obtained from slices perfused with artificial cerebrospinal fluid (ACSF-LTP) and LTP recorded in the presence of bicuculline (bicuculline-LTP) were significantly greater in the lithium group than in the saline controls. Although the number of BrdU(+) cells, approximately 90% of which were double-labeled with a neural marker neuronal nuclear protein, were markedly increased in the granule cell layer (GCL) 28 days after the completion of the 28-day lithium treatment, the magnitude of LTP observed at this time was similar to that observed 12 h after completing the 28-day lithium treatment. However, protein levels of calcium and calmodulin-dependent protein kinase II, p-Elk and TrkB were highly elevated until 28 days after the 28-day lithium treatment. Acute lithium treatment for 2 days also enhanced LTP, which was accompanied by the elevated expression of p-CREB, but not by neurogenesis. Our results suggest that the enhancement of LTP is independent of the increased number of neurons per se and it is more closely associated with key molecules, which are probably involved in neurogenesis.  相似文献   

7.
8.
Long-term potentiation (LTP) and long-term depression (LTD) of excitatory neurotransmission are believed to be the neuronal basis of learning and memory. Both processes are primarily mediated by neuronal activity–induced transport of postsynaptic AMPA-type glutamate receptors (AMPARs). While AMPAR subunits and their specific phosphorylation sites mediate differential AMPAR trafficking, LTP and LTD could also occur in a subunit-independent manner. Thus, it remains unclear whether and how certain AMPAR subunits with phosphorylation sites are preferentially recruited to or removed from synapses during LTP and LTD. Using immunoblot and immunocytochemical analysis, we show that phosphomimetic mutations of the membrane-proximal region (MPR) in GluA1 AMPAR subunits affect the subunit-dependent endosomal transport of AMPARs during chemical LTD. AP-2 and AP-3, adaptor protein complexes necessary for clathrin-mediated endocytosis and late endosomal/lysosomal trafficking, respectively, are reported to be recruited to AMPARs by binding to the AMPAR auxiliary subunit, stargazin (STG), in an AMPAR subunit–independent manner. However, the association of AP-3, but not AP-2, with STG was indirectly inhibited by the phosphomimetic mutation in the MPR of GluA1. Thus, although AMPARs containing the phosphomimetic mutation at the MPR of GluA1 were endocytosed by a chemical LTD-inducing stimulus, they were quickly recycled back to the cell surface in hippocampal neurons. These results could explain how the phosphorylation status of GluA1-MPR plays a dominant role in subunit-independent STG-mediated AMPAR trafficking during LTD.  相似文献   

9.
Oxidative modifications are a hallmark of oxidative imbalance in the brains of individuals with Alzheimer's, Parkinson's and prion diseases and their respective animal models. While the causes of oxidative stress are relatively well-documented, the effects of chronically reducing oxidative stress on cognition, pathology and biochemistry require further clarification. To address this, young and aged control and amyloid-β protein precursor-over-expressing mice were fed a diet with added R-alpha lipoic acid for 10 months to determine the effect of chronic antioxidant administration on the cognition and neuropathology and biochemistry of the brain. Both wild type and transgenic mice treated with R-alpha lipoic acid displayed significant reductions in markers of oxidative modifications. On the other hand, R-alpha lipoic acid had little effect on Y-maze performance throughout the study and did not decrease end-point amyloid-β load. These results suggest that, despite the clear role of oxidative stress in mediating amyloid pathology and cognitive decline in ageing and AβPP-transgenic mice, long-term antioxidant therapy, at levels within tolerable nutritional guidelines and which reduce oxidative modifications, have limited benefit.  相似文献   

10.
Neurodegenerative diseases such as Huntington's disease and Alzheimer's disease, although very different in etiology, share common degenerative processes. These include neuronal dysfunction, decreased neural connectivity, and disruption of cellular plasticity. Understanding the molecular mechanisms underlying the neural plasticity deficits in these devastating conditions may lead the way toward new therapeutic targets, both disease-specific and more generalized, which can ameliorate degenerative cognitive deficits. Furthermore, investigations of 'pathological plasticity' in these diseases lend insight into normal brain function. This review will present evidence for altered plasticity in Huntington's and Alzheimer's diseases, relate these findings to symptomatology, and review possible causes and commonalities.  相似文献   

11.
12.
Apolipoprotein E: a major piece in the Alzheimer's disease puzzle   总被引:5,自引:1,他引:4  
Alzheimer's disease (AD) is a complex neurodegenerative disorder with multiple etiologies. The presence of the E4 isoform of apolipoprotein E (apoE) has been shown to increase the risk and to decrease the age of onset for AD and is the major susceptibility factor known for the disease. ApoE4 has been shown to intensify all the biochemical distrubances characteristic of AD, including beta amyloid (Aβ) deposition, tangle formation, neuronal cell death, oxidative stress, synaptic plasticity and dysfunctions of lipid homeostasis and cholinergic signalling. In contrast, other apoE isoforms are protective. Here we review and discuss these major hypotheses of the apoE4-AD association.  相似文献   

13.
Although deficits in synaptic plasticity have been identified in aged or neuroinflamed animals with memory impairments, few studies have examined the cellular basis of plasticity in such animals. Here, we examined whether chronic neuroinflammation altered long-term depression (LTD) and studied the underlying mechanism of LTD impairment by neuroinflammation. Chronic neuroinflammation was induced by administration of lipopolysaccharide (LPS) to the fourth ventricle. Excitatory postsynaptic potentials were recorded extracellularly in the rat hippocampal CA1 area to examine alterations in synaptic plasticity. Chronic administration of LPS induced remarkable memory impairment in the Morris water maze test. N-methyl-d-aspartate receptor (NMDAR)-dependent LTD was almost absent in LPS-infused animals. The AMPA receptor (AMPAR)-mediated synaptic response was reduced in the LPS-infused group. These results suggest that reduction in NMDAR-dependent LTD might arise because of alterations in postsynaptic AMPARs as well as NMDARs and that such changes may be present in mild and early forms of Alzheimer-type dementia.  相似文献   

14.
We investigated the hippocampal long-term potentiation (LTP), neurogenesis, and the activation of signaling molecules in the 20-month-old aged rats following chronic lithium treatment. Chronic lithium treatment produced a significant 79% increase in the numbers of BrdU(+) cells after treatment completion in the dentate gyrus (DG). Both LTP obtained from slices perfused with artificial cerebrospinal fluid (ACSF-LTP), and LTP recorded in the presence of bicuculline (bicuculline-LTP) were significantly greater in the lithium group than in the saline controls. Our results show that as with young rats, chronic lithium can substantially increase LTP and the number of BrdU(+) cells in the aged rats. However, neurogenesis, assessed by colocalization of NeuN and BrdU, was not detected in the aged rat DG subjected to chronic lithium treatment. Therefore, it is concluded that the increase in LTP and the number of BrdU(+) cells might not be associated with increases in neurogenesis in the granule cell layer of the DG. Lithium might has a beneficial effects through other signaling pathways in the aged brain.  相似文献   

15.
《Cell reports》2023,42(3):112146
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

16.
Rapid modulation of hippocampal synaptic plasticity by estrogen has long been a hot topic, but analysis of molecular mechanisms via synaptic estrogen receptors has been seriously difficult. Here, two types of independent synaptic plasticity, long-term depression (LTD) and spinogenesis, were investigated, in response to 17beta-estradiol and agonists of estrogen receptors using hippocampal slices from adult male rats. Multi-electrode investigations demonstrated that estradiol rapidly enhanced LTD not only in CA1 but also in CA3 and dentate gyrus. Dendritic spine morphology analysis demonstrated that the density of thin type spines was selectively increased in CA1 pyramidal neurons within 2 h after application of 1 nm estradiol. This enhancement of spinogenesis was completely suppressed by mitogen-activated protein (MAP) kinase inhibitor. Only the estrogen receptor (ER) alpha agonist, (propyl-pyrazole-trinyl)tris-phenol (PPT), induced the same enhancing effect as estradiol on both LTD and spinogenesis in the CA1. The ERbeta agonist, (4-hydroxyphenyl)-propionitrile (DPN), suppressed LTD and did not affect spinogenesis. Because the mode of synaptic modulations by estradiol was mostly the same as that by the ERalpha agonist, a search was made for synaptic ERalpha using purified RC-19 antibody qualified using ERalpha knockout (KO) mice. Localization of ERalpha in spines of principal glutamatergic neurons was demonstrated using immunogold electron microscopy and immunohistochemistry. ERalpha was also located in nuclei, cytoplasm and presynapses.  相似文献   

17.
神经元长时程突触可塑性是学习和记忆的基础,神经元长时程突触可塑性的维持依赖于基因的转录和蛋白质合成.然而,这些转录产物和新合成的蛋白质是如何从胞体运输到突触点,还不甚清楚.近年来的研究显示,当长时程突触可塑性发生时,被激活的突触能通过建立突触标记(synaptic tag)来识别、捕捉和利用其所需要的基因产物,以维持突触可塑性的长时程变化.这一过程或现象被称为突触标识(synaptic tagging).本文就近年来突触标识的研究进展作一概述.  相似文献   

18.
Prior research has reported beneficial effects of melatonin in rodent models of Alzheimer's disease (AD). This study evaluated the effect of ramelteon (Rozerem, a melatonin receptor agonist) on spatial learning & memory and neuropathological markers in a transgenic murine model of AD (the B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J transgenic mouse strain; hereafter 'AD mice'). Three months of daily ramelteon treatment (~3mg/kg/day), starting at 3 months of age, did not produce an improvement in the cognitive performance of AD mice (water maze). In contrast to wild-type control mice, AD mice did not show any evidence of having learned the location of the escape platform. The cortex and hippocampus of AD mice contained significant quantities of beta-amyloid plaques and PARP-positive (poly ADP ribose polymerase) cells, indicating apoptosis. Six months of ramelteon treatment, starting at 3 months of age, did not produce any change in these neuropathological markers. The ability of long term melatonin treatment to improve cognition and attenuate neuropathology in AD mice did not generalize to this dosage of ramelteon.  相似文献   

19.
In animal models of diabetes mellitus, such as the streptozotocin-diabetic rat (STZ-rat), spatial learning impairments develop in parallel with a reduced expression of long-term potentiation (LTP) and enhanced expression of long-term depression (LTD) in the hippocampus. This study examined the time course of the effects of STZ-diabetes and insulin treatment on the hippocampal post-synaptic glutamate N-methyl-D-aspartate (NMDA) receptor complex and other key proteins regulating hippocampal synaptic transmission in the post-synaptic density (PSD) fraction. In addition, the functional properties of the NMDA-receptor complex were examined. One month of STZ-diabetes did not affect the NMDA receptor complex. In contrast, 4 months after induction of diabetes NR2B subunit immunoreactivity, CaMKII and Tyr-dependent phosphorylation of the NR2A/B subunits of the NMDA receptor were reduced and alphaCaMKII autophosphorylation and its association to the NMDA receptor complex were impaired in STZ-rats compared with age-matched controls. Likewise, NMDA currents in hippocampal pyramidal neurones measured by intracellular recording were reduced in STZ-rats. Insulin treatment prevented the reduction in kinase activities, NR2B expression levels, CaMKII-NMDA receptor association and NMDA currents. These findings strengthen the hypothesis that altered post-synaptic glutamatergic transmission is related to deficits in learning and plasticity in this animal model.  相似文献   

20.
Zhang L  Luo XP 《生理学报》2011,63(2):124-130
热性癫痫发作是儿童常见病,能损害认知功能,而突触可塑性和再可塑性(metaplasticity)是维系大脑认知功能的重要神经基础.本文通过脑片灌流和细胞外场电位记录术研究了热性癫痫发作大鼠海马齿状回外侧支的突触可塑性和再可塑性.制作对照组和热性癫痫发作组大鼠的脑切片后,记录电极置于齿状回外侧支的外分子层获取兴奋性突触后...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号