首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laminar arrays of distinct cell types in the vertebrate retina are built by a histogenic process in which cell fate is correlated with birth order. To explore this co-ordination mechanistically, we altered the relative timing of cell cycle exit in the developing Xenopus retina and asked whether this affected the activity of neural determinants. We found that Xath5, a bHLH proneural gene that promotes retinal ganglion cell (RGC) fate, ( Kanekar, S., Perron, M., Dorsky, R., Harris, W. A., Jan, L. Y., Jan, Y. N. and Vetter, M. L. (1997) Neuron 19, 981-994), does not cause these cells to be born prematurely. To drive cells out of the cell cycle early, therefore, we misexpressed the cyclin kinase inhibitor, p27Xic1. We found that early cell cycle exit potentiates the ability of Xath5 to promote RGC fate. Conversely, the cell cycle activator, cyclin E1, which inhibits cell cycle exit, biases Xath5-expressing cells toward later neuronal fates. We found that Notch activation in this system caused cells to exit the cell cycle prematurely, and when it is misexpressed with Xath5, it also potentiates the induction of RGCs. The potentiation is counteracted by co-expression of cyclin E1. These results suggest a model of histogenesis in which the activity of factors that promote early cell cycle exit enhances the activity of factors that promote early cellular fates.  相似文献   

2.
An emerging hypothesis considers the process of neuronal apoptosis as a consequence of unscheduled and unsynchronized induction of cell cycle mediators. Induction of several cell cycle genes precedes neuronal apoptosis and may be involved in determination of cell fate. We have now characterized changes in expression of cell cycle genes during apoptosis induced by oxidative stress in chick post-mitotic sympathetic neurons. Induction of cyclin B occurred prior to the commitment of neurons to both dopamine- and peroxide-triggered apoptosis. Both the neuronal death and the rise in cyclin B were inhibited by antioxidant treatment, suggesting a functional role for cyclin B induction during neuronal apoptosis. Induction of the cyclin dependent kinase CDK5 protein coincided with the time point when neurons were irreversibly committed to die. Expression of other cell cycle mediators such as cyclin D1 and the cyclin dependent kinases CDC2 and CDK2 was undetected and not induced by exposure to oxidative stress. Comparative analysis of the profile of cell cycle mediators induced during neuronal apoptosis of different neuronal cell populations revealed no distinct pattern of events. There are no cell cycle stage-specific mediators that are ultimately stimulated during neuronal apoptosis, suggesting that multiple pathways of re-activating the dormant cell-cycle, converge to determine entry into apoptosis. Nevertheless, the existence of some cell cycle mediators, that were not reported so far to be induced in post mitotic neurons during oxidative stress, substantiate them as part of the strong differentiating forces.  相似文献   

3.
The eukaryotic cell cycle is regulated by the sequential activation of different CDK/cyclin complexes. Two distinct classes of mitotic cyclin homologues, CYC1 and CYC2, have been identified and cloned for the first time in the ciliate Paramecium. Cyc1 is 324 amino acids long with a predicted molecular mass of 38 kDa, whereas Cyc2 is 336 amino acids long with a predicted molecular mass of 40 kDa. They display 42-51% sequence identity to other eukaryotic mitotic cyclins within the 'cyclin box' region. The conserved 'cyclin box' and 'destruction box' elements can be identified within each of the sequences. Genomic Southern blot analysis indicated that the CYC1 gene has two isoforms, with 92.3% and 85.9% identify at the amino acid level and at the nucleotide level, respectively. Both Cyc1 and Cyc2 proteins showed characteristic patterns of accumulation and destruction during the vegetative cell cycle, with Cyc1 peaking at the point of commitment to division (PCD), and Cyc2 reaching the maximal level late in the cell cycle. Immunoprecipitation experiments with antibodies specific to Cyc1 and Cyc2 indicated that Cyc1 and Cyc2 associate with distinct CDK homologues. Both immunoprecipitates exhibited histone H1 kinase activity that oscillated in the cell cycle in parallel with the respective amount of cyclins present. Histone H1 kinase activity associated with Cyc1 reached a peak at PCD while Cyc2 showed maximal activity when about 75% cells have completed cytokinesis. We propose that Cyc1 may be involved in commitment to division, in association with the CDK that binds to p13suc1, Cdk3, and that the Cyc2/Cdk2 complex may regulate cytokinesis. PCR-amplification revealed similar sequences in Tetrahymena, Sterkiella, Colpoda and Blepharisma, suggesting the conservation of the cyclin genes within ciliates. Although cell cycle regulation in ciliates differs in some respects from that of other eukaryotes, the cyclin motifs have clearly been conserved during evolution.  相似文献   

4.
5.
6.
Recently, experiments have shown that cyclin-dependent kinase (CDK) activity exhibits hysteresis in its response to total cyclin when cyclin is made nondegradable and controlled externally. This observation was taken to support mathematical modeling predictions regarding the underlying dynamics of the cell cycle. However, cell cycle dynamics can also be generated by other nonhysteretic mechanisms. To examine the robustness of the hysteretic response of CDK activity to total cyclin, we simulated various cell cycle signal transduction networks, and correlated the dynamics to the response function of CDK activity versus total cyclin. By randomly searching the parameter space, we assessed robustness by estimating the frequency of hysteretic versus nonhysteretic dynamical mechanisms. When the dynamical instabilities were caused by feedback loops in CDK phosphorylation and dephosphorylation or by feedback between cyclin and the CDK inhibitor, the response function of CDK activity versus total cyclin correlated well with the dynamical instabilities. However, when the dynamical instabilities originated from feedback between cyclin and APC-CDH1 or RB-E2F, the response function did not correlate with dynamical instabilities. Thus, although a hysteretic response is neither necessary nor sufficient, it is in general a much more robust mechanism for generating cell cycle dynamics than nonhysteretic mechanisms.  相似文献   

7.
Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins   总被引:52,自引:18,他引:34       下载免费PDF全文
《The Journal of cell biology》1993,120(6):1305-1320
Analysis of cell cycle regulation in the budding yeast Saccharomyces cerevisiae has shown that a central regulatory protein kinase, Cdc28, undergoes changes in activity through the cell cycle by associating with distinct groups of cyclins that accumulate at different times. The various cyclin/Cdc28 complexes control different aspects of cell cycle progression, including the commitment step known as START and mitosis. We found that altering the activity of Cdc28 had profound effects on morphogenesis during the yeast cell cycle. Our results suggest that activation of Cdc28 by G1 cyclins (Cln1, Cln2, or Cln3) in unbudded G1 cells triggers polarization of the cortical actin cytoskeleton to a specialized pre-bud site at one end of the cell, while activation of Cdc28 by mitotic cyclins (Clb1 or Clb2) in budded G2 cells causes depolarization of the cortical actin cytoskeleton and secretory apparatus. Inactivation of Cdc28 following cyclin destruction in mitosis triggers redistribution of cortical actin structures to the neck region for cytokinesis. In the case of pre-bud site assembly following START, we found that the actin rearrangement could be triggered by Cln/Cdc28 activation in the absence of de novo protein synthesis, suggesting that the kinase may directly phosphorylate substrates (such as actin-binding proteins) that regulate actin distribution in cells.  相似文献   

8.
Human cyclin F.   总被引:1,自引:1,他引:0  
C Bai  R Richman    S J Elledge 《The EMBO journal》1994,13(24):6087-6098
Cyclins are important regulators of cell cycle transitions through their ability to bind and activate cyclin-dependent protein kinases. In mammals several classes of cyclins exist which are thought to co-ordinate the timing of different events necessary for cell cycle progression. Here we describe the identification of a novel human cyclin, cyclin F, isolated as a suppressor of the G1/S deficiency of a Saccharomyces cerevisiae cdc4 mutant. Cyclin F is the largest cyclin, with a molecular weight of 87 kDa, and migrates as a 100-110 kDa protein. It contains an extensive PEST-rich C-terminus and a cyclin box region that is most closely related to cyclins A and B. Cyclin F mRNA is ubiquitiously expressed in human tissues. It fluctuates dramatically through the cell cycle, peaking in G2 like cyclin A and decreasing prior to decline of cyclin B mRNA. Cyclin F protein accumulates in interphase and is destroyed at mitosis at a time distinct from cyclin B. Cyclin F shows regulated subcellular localization, being localized in the nucleus in most cells, with a significant percentage of cells displaying only perinuclear staining. Overexpression of cyclin F, or a mutant lacking the PEST region, in human cells resulted in a significant increase in the G2 population, implicating cyclin F in the regulation of cell cycle transitions. The ubiquitous expression and phylogentic conservation of cyclin F suggests that it is likely to coordinate essential cell cycle events distinct from those regulated by other cyclins.  相似文献   

9.
Hexamethylene bisacetamide (HMBA)-induced murine erythroleukemia (MELC) differentiation is characterized by a prolongation of the initial G1 which follows passage through S phase in the presence of inducer. Commitment to terminal cell division is first detected in a portion of the cell population during this prolonged G1. HMBA-induced commitment is stochastic. This study has examined changes in two known cell cycle regulators, p34cdc2 and cyclin A, in cycle-synchronized MELC in the absence and presence of HMBA. Histone H1 kinase activity of p34cdc2, and the levels of CDC2Mm mRNA, 1.8-kilobase mRNA of cyclin A, and cyclin A protein changed during cell cycle progression in MELC, and all of them were suppressed during G1. The suppression of the H1 kinase activity and cyclin A expression continued through the prolonged G1 in MELC cultured with HMBA, whereas p34cdc2 protein level did not vary through the cell cycle in MELC cultured without or with inducer. Phosphorylation of p34cdc2 in uninduced MELC gradually increased as cells progressed from G1 to S. In induced MELC, an increase in phosphorylation of p34cdc2 occurred during the prolonged G1, and prior to the exit of the bulk of the cells from G1 to S. These results suggest that in HMBA-induced MELC, p34cdc2 phosphorylation per se is not a limiting factor in determining G1 to S progression. The persistent suppression of cyclin A expression and histone H1 kinase activity may play a role in HMBA-induced commitment to terminal differentiation.  相似文献   

10.
Cardiomyocytes withdraw from cell cycle after terminal differentiation due in part to impaired nuclear import of cyclin D1. Thus, we have previously shown that expression of nuclear localization signal-tagged cyclin D1 (D1NLS) and cyclin-dependent kinase 4 promotes cardiomyocyte proliferation both in vitro and in vivo. Here we show that cyclin D2 fails to stimulate cell cycle in cardiomocytes through a mechanism distinct from that of cyclin D1. We demonstrate that cyclin D2 can express in the nucleus much more efficiently than cyclin D1. Cyclin D2, however, was much less effective in activating CDK2 and cell proliferation than cyclin D1 when expressed transiently in the nucleus of cardiomyocytes using nuclear localization signals. Consistent with such an observation, CDK inhibitors p21cip1 and p27kip1 remained bound to CDK2 in cells expressing cyclin D2, whereas p21 and p27 were sequestered to cyclin D1 in cells expressing D1NLS. These data suggest that cyclin D2 has weaker affinities to the CDK inhibitors and therefore is less efficient in activating cell cycle than cyclin D1. According to such a notion, double knockdown of p21 and p27 in cells expressing D2NLS induced activation of CDK2/CDC2 and BrdU incorporation to levels similar to those in cells expressing D1NLS. Taken together, our data suggest that distinct mechanisms keep cyclin D1 and cyclin D2 from activating cell cycle in terminally differentiated cardiomyocytes.  相似文献   

11.
Cyclin E2, the cycle continues   总被引:3,自引:0,他引:3  
The eukaryotic cell cycle is regulated by a family of serine/threonine protein kinases known as cyclin-dependent kinases (CDKs). The activation of a CDK is dependent on its association with a cyclin regulatory subunit. The formation of distinct cyclin-CDK complexes controls the progression through the first gap phase (G(1)) and initiation of DNA synthesis (S phase). These complexes are in turn regulated by protein phosphorylation and cyclin-dependent kinase inhibitors (CKIs). Cyclin E2 has emerged as the second member of the E-type cyclin family. Cyclin E2-associated kinase activity is regulated in a cell cycle dependent manner with peak activity at the G(1) to S transition. Ectopic expression of cyclin E2 in human cells accelerates G(1), suggesting that cyclin E2 is rate limiting for G(1) progression. Although the pattern and level of cyclin E2 expression in some primary tumor and normal tissue RNAs are distinct from cyclin E1, both E-type cyclins appear to have inherent functional redundancies. This functional redundancy has facilitated the rapid characterization of cyclin E2 and uncovered unique features associated with each E-type cyclin.  相似文献   

12.
Ras-dependent cell cycle commitment during G2 phase   总被引:1,自引:0,他引:1  
Hitomi M  Stacey DW 《FEBS letters》2001,490(3):123-131
Synchronization used to study cell cycle progression may change the characteristics of rapidly proliferating cells. By combining time-lapse, quantitative fluorescent microscopy and microinjection, we have established a method to analyze the cell cycle progression of individual cells without synchronization. This new approach revealed that rapidly growing NIH3T3 cells make a Ras-dependent commitment for completion of the next cell cycle while they are in G2 phase of the preceding cell cycle. Thus, Ras activity during G2 phase induces cyclin D1 expression. This expression continues through the next G1 phase even in the absence of Ras activity, and drives cells into S phase.  相似文献   

13.
This study addresses the nature of the critical labile event that couples at restriction point mitogenic cascades with the autonomous part of the cell cycle. In primary cultures of dog thyroid epithelial cells, kinetic experiments indicate that a labile cAMP-dependent event positively controls a late G1 commitment to DNA replication and RB phosphorylation. As previously shown in this system, the cAMP-dependent mitogenic pathway differs from the most generally envisaged growth factor cascades as it stimulates the accumulation of p27(kip1) but not of cyclins D. Nevertheless, cyclin D3 and CDK4 activity are essential in the cAMP-dependent mitogenesis, and cAMP unmasks the DCS-22 epitope of cyclin D3 and induces the nuclear translocations and assembly of cyclin D3 and CDK4 in a complex that also contains p27(kip1). Unexpectedly, the washing out of forskolin rapidly arrested S phase entry and the accumulation of hyperphosphorylated RB, but did not reverse any of the above events associated with cyclin D3-CDK4 activation. This implies that even after induction of stable nuclear cyclin D3-CDK4 complexes, dog thyrocytes still depend on cAMP for RB phosphorylation and commitment to DNA synthesis, which suggests that a key labile event responsible for a last control of restriction point passage remains to be uncovered, in the cAMP-dependent cell cycle of dog thyrocytes and possibly other systems.  相似文献   

14.
Tissue homeostasis requires precise control of cell proliferation and arrest in response to environmental cues. In situation such as wound healing, injured cells are stimulated to divide, but as soon as confluence is reached proliferation must be blocked. Such reversible cell cycle exit occurs in G1, requires pRb family members, and is driven by p27Kip1-dependent Cdk inactivation. This implies that, while dividing, cells should simultaneously prepare the exit once mitosis is accomplished. For a long time, the decision to cycle or not was presumed to occur in G1, prior to the restriction point, beyond which the cells were bound to divide even in the absence of mitogens, before finally arresting after mitosis. However, more recent reports suggested that the commitment to cycle in response to serum occurs already in G2 phase and requires the Ras-dependent induction of cyclin D1, which promotes following G1/S transition. To test whether this hypothesis applies to arrest induced by contact inhibition, we used an in vitro wounding model where quiescent human dermal fibroblasts, stimulated to proliferate by mechanical injury, synchronously exit cell cycle after mitosis due to renewed confluence. We show that this exit is preceded by p27-dependent inhibition of cyclin A-Cdk1/2, cyclin D1 downregulation and reduced pre-mitotic pRb pocket protein phosphorylation. Over-expression of cyclin D1 but not p27 depletion reversed this phenotype and compromised confluence-driven cell cycle exit. Thus, a balance between cyclin D1 and p27 may provide sensitive responses to variations in proliferative cues operating throughout the cell cycle.  相似文献   

15.
Cyclin A is required at two points in the human cell cycle.   总被引:115,自引:21,他引:115       下载免费PDF全文
  相似文献   

16.
The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.

Plant cell cycle and division are linked to specific cell fates and respond to growth-related cues, such as metabolic state, cell size, cell shape, and mechanical stress.  相似文献   

17.
During their development, T cells are rescued from apoptotic cell death to follow distinct lineage fates. Recent data concerned with the role of the Notch transmembrane receptor in these events are interpreted to show that Notch promotes survival, but contrary to earlier reports has no function in lineage commitment.  相似文献   

18.
19.
b-catenin and cyclin D1 have attracted considerable attention due to their proto-oncogenic roles in human cancer. The finding of cyclin D1 as a direct target gene of b-catenin in colon cancer cells led to the assumption that cyclin D1 upregulation is pivotal to b-catenin's oncogenicity. Our recent paper shows that this is not the case; cyclin D1 dampens the oncogenicity of activated b-catenin (MMTV-DN89b-catenin). The relationships and dependencies of b-catenin and cyclin D1 point to distinct, essential and sequential roles during alveologenisis. These results support the concept that both b-catenin's and cyclin D1's actions are more sophisticated than simple acceleration of the cell cycle clock. These proteins are employed at critical junctures involving cell fate decisions that we speculate require specific types of cel cycle to traverse.  相似文献   

20.
R Nash  G Tokiwa  S Anand  K Erickson    A B Futcher 《The EMBO journal》1988,7(13):4335-4346
WHI1-1 is a dominant mutation that reduces cell volume by allowing cells to commit to division at abnormally small sizes, shortening the G1 phase of the cell cycle. The gene was cloned, and dosage studies indicated that the normal gene activated commitment to division in a dose-dependent manner, and that the mutant gene had a hyperactive but qualitatively similar function. Mild over-expression of the mutant gene eliminated G1 phase, apparently entirely relaxing the normal G1 size control, but revealing hitherto cryptic controls. Sequence analysis showed that the hyperactivity of the mutant was caused by the loss of the C-terminal third of the wild-type protein. This portion of the protein contained PEST regions, which may be signals for protein degradation. The WHI1 protein had sequence similarity to clam cyclin A, to sea urchin cyclin and to Schizosaccharomyces pombe cdc13, a cyclin homolog. Since cyclins are inducers of mitosis, WHI1 may be a direct regulator of commitment to division. A probable accessory function of the WHI1 activator is to assist recovery from alpha factor arrest; WHI1-1 mutant cells could not be permanently arrested by pheromone, consistent with a hyperactivation of division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号