首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
For the first time, Cochliobolus lunatus strain CHR4D, a marine-derived ascomycete fungus isolated from historically contaminated crude oil polluted shoreline of Alang-Sosiya ship-breaking yard, at Bhavnagar coast, Gujarat has been reported showing the rapid and enhanced biodegradation of chrysene, a four ringed high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH). Mineral Salt Broth (MSB) components such as ammonium tartrate and glucose along with chrysene, pH and trace metal solution have been successfully optimized by Response Surface Methodology (RSM) using central composite design (CCD). A validated, two-step optimization protocol has yielded a substantial 93.10% chrysene degradation on the 4th day, against unoptimized 56.37% degradation on the 14th day. The results depict 1.65 fold increase in chrysene degradation and 1.40 fold increase in biomass with a considerable decrement in time. Based on the successful laboratory experiments, C. lunatus strain CHR4D can thus be predicted as a potential candidate for mycoremediation of HMW PAHs impacted environments.  相似文献   

2.
Sixty-two rotted wood and soil samples were used to screen for chrysene-degrading fungi. A strain of Fusarium, named F092, was identified as most capable of degrading chrysene. F092 was active under saline and nonsaline conditions, breaking down 48% of the chrysene in 30 d. The percentage of chrysene degraded did not change at 35‰ salinity with pH 8.2 in solid and liquid cultures. The degradation under saline conditions increased about 0.6- and 2.1-fold in cultures with polypeptone and Tween80, and 0.03-fold in agitated cultures. F092 secreted nonligninolytic enzymes named 1,2-dioxygenase and 2,3-dioxygenase. The level of 1,2-dioxygenase activity reached 203.5 U L(-1) at 30 d and that of 2,3-dioxygenase activity, 29.7 U L(-1) at 40 d. The degradation pathway was clarified from the intermediates produced; chrysene 1,2-oxide, chrysene trans-1,2-dihydrodiol, 1-hydroxy 2-naphtoic acid, and catechol. F092 is a potential degrader of chrysene for bioremediation.  相似文献   

3.
一株[艹屈]高效降解菌的分离鉴定及其降解特性   总被引:4,自引:0,他引:4  
以多环芳烃[艹屈] (Chrysene)为选择培养基的碳源, 从焦化污泥中筛选出一株[艹屈]的高效降解菌SQ-1, SQ-1可在以[艹屈]为唯一碳源的无机盐培养基中生长, 经过电镜形态学观察、生理生化和16S rDNA序列分析, 并基于16S rDNA序列结果, 构建了该菌株的系统发育树。最终确定菌株SQ-1为木糖氧化无色杆菌(Achromobacter xylosoxidans)。又考察了[艹屈]的初始浓度、投菌量、pH值对SQ-1菌株降解[艹屈]效果的影响, 确定了最佳降解条件。结果表明, 该菌对水中[艹屈]具有良好的降解特性, 在[艹屈]浓度为40 mg/L、接种量10% (V/V)、pH 7.0~7.5、温度30°C条件下, 接种5 d后对[艹屈]的降解效率达到80%以上。  相似文献   

4.
Summary Bacterial mixed cultures able to degrade the polycyclic aromatic hydrocarbons (PAH) phenanthrene, fluorene and fluoranthene, were obtained from soil using conventional enrichment techniques. From these mixed cultures three pure strains were isolated:Pseudomonas paucimobilis degrading phenanthrene;P. vesicularis degrading fluorene andAlcaligenes denitrificans degrading fluoranthene. The maximum rates of PAH degradation ranged from 1.0 mg phenanthrene/ml per day to 0.3 mg fluoranthene/ml per day at doubling times of 12 h to 35 h for growth on PAH as sole carbon source. The protein yield during PAH degradation was about 0.25 mg/mg C for all strains. Maximum PAH oxidation rates and optimum specific bacterial growth were obtained near pH 7.0 and 30°C. After growth entered the stationary phase, no dead end-products of PAH degradation could be detected in the culture fluid.  相似文献   

5.
A predictive model for Pichia pastoris expression of highly active recombinant Candida rugosa LIP1 was developed by combining the Gompertz function and response surface methodology (RSM) to evaluate the effect of yeast extract concentration, glucose concentration, temperature, and pH on specific responses. Each of the responses (maximum population densities, specific growth rate (mumax), protein concentration, and minimum lag phase duration) was determined using the modified Gompertz function. RSM and 4-factor-5-level central composite rotatable design (CCRD) were adopted to evaluate the effects of growth parameters, such as temperature (21.6-38.4 degrees C), glucose concentration (0.3-3.7%), yeast extract (0.16-1.84%), and pH (5.3-8.7) on the responses of P. pastoris growth kinetics.Based on ridge maximum analysis, the optimum population density conditions were: temperature 24.4 degrees C, glucose concentration 2.0%, yeast extract 1.5%, and pH 7.6. The optimum specific growth rate conditions were: temperature 28.9 degrees C, glucose concentration 2.0%, yeast extract 1.1%, and pH 6.9. The optimum protein concentration conditions were: temperature 24.2 degrees C, glucose concentration 1.9%, yeast extract 1.5%, and pH 7.6. Based on ridge minimum analysis, the minimal lag phase conditions were: temperature 32.3 degrees C, glucose concentration 2.1%, yeast extract 1.1%, and pH 5.4. For the predicted value, the maximum population density, specific growth rate, protein concentration, and minimum lag phase duration were 15.7 mg/ml, 3.4 h(-1), 0.78 mg/ml, and 4.2 h, and the actual values were 14.3 +/- 3.5 mg/ml, 3.6 +/- 0.6 h(-1), 0.72 +/- 0.2 mg/ml, and 4.4 +/- 1.6 h, respectively.  相似文献   

6.
AIMS: To characterize some polycyclic aromatic hydrocarbons (PAH)-degrading microorganisms isolated from an enriched consortium degrading high molecular weight (HMW) PAHs in a two-liquid-phase (TLP) soil slurry bioreactor, and to determine the effect of low molecular weight (LMW) PAH on their growth and HMW PAH-degrading activity. METHODS AND RESULTS: Several microorganisms were isolated from a HMW-PAH (pyrene, chrysene, benzo[a]pyrene and perylene) degrading consortium enriched in TLP cultures using silicone oil as the organic phase. From 16S rRNA analysis, four isolates were identified as Mycobacterium gilvum B1 (99% identity),Bacillus pumilus B44 (99% identity), Microbacterium esteraromaticum B21 (98% identity), and to the genus Porphyrobacter B51 (96% identity). The two latter isolates have not previously been associated with PAH degradation. Isolate B51 grew strongly in the interfacial fraction in the presence of naphthalene vapours and phenanthrene compared with cultures without LMW PAHs. Benzo[a]pyrene was degraded in cultures containing a HMW PAH mixture but pyrene had no effect on its degradation. The growth of isolates B1 and B21 was improved in the aqueous phase than in the interfacial fraction for cultures with naphthalene vapours. Pyrene was required for benzo[a]pyrene degradation by isolate B1. For isolate B21, pyrene and chrysene were degraded only in cultures without naphthalene vapours. CONCLUSION: Consortium enriched in a TLP culture is composed of microorganisms with different abilities to grow at the interface or in the aqueous phase according to the culture conditions and the PAH that are present. Naphthalene vapours increased the growth of the microorganisms in TLP cultures but did not stimulate the HMW PAH degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: New HMW PAH-degrading microorganisms and a better understanding of the mechanisms involved in HMW PAH degradation in TLP cultures.  相似文献   

7.
A bacterial strain able to grow in pure culture with chrysene as sole added carbon and energy source was isolated from PAH-contaminated soil after successive enrichment cultures in a biphasic growth medium. Initially, growth occurred in the form of a biofilm at the interface between the aqueous and non-aqueous liquid phases. However, after a certain time, a transition occurred in the enrichment cultures, with growth occurring in suspension and a concomitant increase in the rate of chrysene degradation. The strain responsible for chrysene degradation in these cultures, named Sphingomonas sp. CHY-1, was identified by 16S rDNA sequencing as a novel sphingomonad, the closest relative in the databases being Sphingomonas xenophaga BN6T (96% sequence identity). Both these strains clustered with members of the genera Sphingobium and Rhizomonas, but could not be categorically assigned to either genus. Sphingomonas sp. CHY-1 was characterized in terms of its growth on chrysene and other PAH, and the kinetics of chrysene degradation and 14C-chrysene mineralization were measured. At an initial chrysene concentration of 0.5 g l(-1) silicone oil, and an organic/aqueous phase ratio of 1:4, chrysene was 50% degraded after 5 days incubation and 97.5% degraded after 35 days. The protein content of cultures reached a maximum value of 11.5 microg ml(-1) aqueous phase, corresponding to 92 mg g(-1) chrysene. 14C-labelled chrysene was 50% mineralized after 6-8 weeks incubation, 10.7% of the radioactivity was incorporated into cell biomass and 8.4% was found in the aqueous culture supernatant. Sphingomonas sp. CHY-1 also grew on naphthalene, phenanthrene and anthracene, and naphthalene was the preferred substrate, with a doubling time of 6.9 h.  相似文献   

8.
Decolorization and degradation of polyazo dye Direct Black 22 was carried out by distillery spent wash degrading mixed bacterial consortium, DMC. Response surface methodology (RSM) involving a central composite design (CCD) in four factors was successfully employed for the study and optimization of decolorization process. The hyper activities and interactions between glucose concentration, yeast extract concentration, dye concentration and inoculum size on dye decolorization were investigated and modeled. Under optimized conditions the bacterial consortium was able to decolorize the dye almost completely (>91%) within 12h. Bacterial consortium was able to decolorize 10 different azo dyes. The optimum combination of the four variables predicted through RSM was confirmed through confirmatory experiments and hence this bacterial consortium holds potential for the treatment of industrial waste water. Dye degradation products obtained during the course of decolorization were analyzed by HPTLC.  相似文献   

9.
The individual and mutual effects of glucose concentration, temperature and pH on the hydrogen production by Enterobacter aerogenes were investigated in a batch system. A Box-Behnken design and response surface methodology (RSM) were employed to determine the optimum condition for enhanced hydrogen production. The hydrogen production rate was investigated by simultaneously changing the three independent variables, which all had significant influences on the hydrogen production rate. The maximum hydrogen production rate of 425.8 ml H(2)(g dry cell h)(-1) was obtained under the optimum condition of glucose concentration 118.06 mM, temperature 38 degrees C and pH 6.13. The experimental results showed that the RSM with the Box-Behnken design was a useful tool for achieving high rate of hydrogen production by E. aerogenes.  相似文献   

10.
Response surface methodology (RSM) was successfully applied to enzymatic bio-transformation of 1-naphthol. The experiments were conducted in a closed system containing acetone and sodium acetate buffer, with laccase enzyme. Laccase enzyme used as catalyst was derived from Trametes versicolor (ATCC 200801). The enzymatic bio-transformation rate of 1-naphthol, based on measurements of initial dissolved oxygen (DO) consumption rate in the closed system, was optimized by the application of RSM. The independent variables, which had been found as the most effective variables on the initial DO consumption rate by screening experiments, were determined as medium temperature, pH and acetone content. A quadratic model was developed through RSM in terms of related independent variables to describe the DO consumption rate as the response. Based on contour plots and variance analysis, optimum operational conditions for maximizing initial DO consumption rate, while keeping acetone content at its minimum value, were 301 K of temperature, pH 6 and acetone content of 7% to obtain 9.17 x 10(-3) mM DO/min for initial oxidation rate.  相似文献   

11.
AIMS: To optimize a medium for nicotine degradation by Ochrobactrum intermedium DN2 in presence of yeast extract, glucose and Tween 80 using response surface methodology (RSM). METHODS AND RESULTS: In this study, the effects of yeast extract, glucose and Tween 80 on nicotine degradation were investigated in flasks using a novel nicotine-degrading bacterium, O. intermedium DN2. A full factorial central composite design was applied in the design of experiments and in the analysis of the experimental data. The results showed that the most significant variable influencing nicotine degradation was yeast extract, followed by glucose, and then Tween 80. Moreover these three factors interacted with each other and combined to produce positive effects on nicotine degradation. The experimental data also allowed the development of an empirical model (P < 0.0001) describing the inter-relationship between independent and dependent variables. By solving the regression equation, the optimal values of the variables were determined as: yeast extracts 0.094%, glucose 0.101% and Tween 80 0.080%. Using the medium obtained, about 1,220 mg l(-1) of nicotine was degraded (95.55%) within 10 h at the specific biodegradation of 116.59 mg l(-1) h(-1) in 30-l bioreactor containing 25-l tobacco extract. CONCLUSIONS: An optimal medium of nicotine degradation by the strain DN2 was obtained. SIGNIFICANCE AND IMPACT OF THE STUDY: RSM proved to be reliable in developing the model, optimizing factors and analysing interaction effects. The results provide better understanding on the interactions between yeast extract, glucose and Tween 80 for nicotine biodegradation.  相似文献   

12.
The present study is aimed at simultaneous cellulase synthesis and coir pith degradation by Aspergillus nidulans using coir pith as chief substrate. The lignocellulosic biomass, coir pith is known to be an excellent carbon source for microbial cellulase production under solid state fermentation. The alkali pretreatment with sodium hydroxide was seen to enhance enzymatic hydrolysis. The effect of coir pith weight, moisture content, initial pH and growth temperature on cellulase activity and yield were investigated by response surface methodology (RSM) employing a four-factor-five-level central composite design (CCD). The results of Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD) and Scanning electron microscopy (SEM) of coir pith showed structural changes through pretreatment, in favor of enzymatic hydrolysis. Maximum carboxy methyl cellulase activity (CMCase) of 28.64 U/g and cellulase yield of 66.32% were achieved with 8 g coir pith at 70% moisture content and 40 °C temperature with pH 5 as evident from run numbers 25 and 30. Filter paper (FPase) and cellobiase (CBase) activities of 10.23 U/g and 4.31 U/g respectively were observed on the 11th day after the inoculation.  相似文献   

13.
Out of a number of white-rot fungal cultures, strains ofIrpex lacteus andPleurotus ostreatus were selected for degradation of 7 three- and four-ring unsubstituted aromatic hydrocarbons (PAH) in two contaminated industrial soils. Respective data for removal of PAH in the two industrial soils byI. lacteus were: fluorene (41 and 67%), phenanthrene (20 and 56%), anthracene (29 and 49%), fluoranthene (29 and 57%), pyrene (24 and 42%), chrysene (16 and 32%) and benzo[a]anthracene (13 and 20%). In the same two industrial soilsP. ostreatus degraded the PAH with respective removal figures of fluorene (26 and 35%), phenanthrene (0 and 20%), anthracene (19 and 53%), fluoranthene (29 and 31%), pyrene (22 and 42%), chrysene (0 and 42%) and benzo[a]anthracene (0 and 13%). The degradation of PAH was determined against concentration of PAH in non-treated contaminated soils after 14 weeks of incubation. The fungal degradation of PAH in soil was studied simultaneously with ecotoxicity evaluation of fungal treated and non-treated contaminated soils. Compared to non-treated contaminated soil, fungus-treated soil samples indicated decrease in inhibition of bioluminescence in luminescent bacteria (Vibrio fischerii) and increase in germinated mustard (Brassica alba) seeds. An erratum to this article is available at .  相似文献   

14.
Guo WQ  Ren NQ  Wang XJ  Xiang WS  Ding J  You Y  Liu BF 《Bioresource technology》2009,100(3):1192-1196
The design of an optimum and cost-efficient medium for high-level production of hydrogen by Ethanoligenens harbinense B49 was attempted by using response surface methodology (RSM). Based on the Plackett-Burman design, Fe(2+) and Mg(2+) were selected as the most critical nutrient salts. Subsequently, the optimum combination of the selected factors and the sole carbon source glucose were investigated by the Box-Behnken design. Results showed that the maximum hydrogen yield of 2.21 mol/mol glucose was predicted when the concentrations of glucose, Fe(2+) and Mg(2+) were 14.57 g/L, 177.28 mg/L and 691.98 mg/L, respectively. The results were further verified by triplicate experiments. The batch reactors were operated under an optimized condition of the respective glucose, Fe(2+) and Mg(2+) concentration of 14.5 g/L, 180 mg/L and 690 mg/L, the initial pH of 6.0 and experimental temperature of 35+/-1(o)C. Without further pH adjustment, the maximum hydrogen yield of 2.20 mol/mol glucose was obtained based on the optimized medium with further verified the practicability of this optimum strategy.  相似文献   

15.
Bioremediation of chrysene in soil matrix was evaluated in soil slurry phase bioreactor in conjugation with metabolic functions (aerobic, anoxic and anaerobic), microenvironment (single and mixed) conditions and nature of mixed consortia (native/resident mixed microflora and bioaugmented inoculum). Twelve experiments were operated independently in agitated-batch reactor keeping all other operating conditions constant (substrate loading rate--0.084 g chrysene/kg soil-day; soil loading rate--10 kg soil/m(3)-day (3:25 soil water ratio); operating temperature--35+/-2 degrees C). Data envelopment analysis (DEA) procedure was employed to analyze the performance of experimental variations in terms of chrysene degradation and pH. The efficacy of anoxic metabolism over the corresponding aerobic and anaerobic metabolic functions was documented. Aerobic metabolic function showed effective degradation capability under mixed microenvironment after augmentation with anaerobic inoculum. Anaerobic metabolic function showed lowest degradation potential. Application of bioaugmentation showed positive influence on the chrysene degradation rate. Design of experimental methodology (DOE) by Taguchi approach was applied to evaluate the effect of four selected factors (native soil microflora, microenvironment, metabolic function and bioaugmentation) on the chrysene degradation process. The optimized factors derived from analysis depicted the requirement of native soil microflora under anoxic metabolic function using mixed microenvironment after augmenting with anaerobic inoculum for achieving effective chrysene degradation efficacy.  相似文献   

16.
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. The addition of a water-immiscible, nonbiodegradable, and biocompatible liquid, silicone oil, to a soil slurry was studied to promote the desorption of PAHs from soil and to increase their bioavailability. First, the transfer into silicone oil of phenanthrene, pyrene, chrysene, and benzo[a]pyrene added to a sterilized soil (sandy soil with 0.65% total volatile solids) was measured for 4 days in three two-liquid-phase (TLP) slurry systems each containing 30% (w/v) soil but different volumes of silicone oil (2.5%, 7.5%, and 15% [v/v]). Except for chrysene, a high percentage of these PAHs was transferred from soil to silicone oil in the TLP slurry system containing 15% silicone oil. Rapid PAH transfer occurred during the first 8 h, probably resulting from the extraction of nonsolubilized and of poorly sorbed PAHs. This was followed by a period in which a slower but constant transfer occurred, suggesting extraction of more tightly bound PAHs. Second, a HMW PAH-degrading consortium was enriched in a TLP slurry system with a microbial population isolated from a creosote-contaminated soil. This consortium was then added to three other TLP slurry systems each containing 30% (w/v) sterilized soil that had been artificially contaminated with pyrene, chrysene, and benzo[a]pyrene, but different volumes of silicone oil (10%, 20%, and 30% [v/v]). The resulting TLP slurry bioreactors were much more efficient than the control slurry bioreactor containing the same contaminated soil but no oil phase. In the TLP slurry bioreactor containing 30% silicone oil, the rate of pyrene degradation was 19 mg L(-)(1) day(-)(1) and no pyrene was detected after 4 days. The degradation rates of chrysene and benzo[a]pyrene in the 30% TLP slurry bioreactor were, respectively, 3.5 and 0.94 mg L(-)(1) day(-)(1). Low degradation of pyrene and no significant degradation of chrysene and benzo[a]pyrene occurred in the slurry bioreactor. This is the first report in which a TLP system was combined with a slurry system to improve the biodegradation of PAHs in soil.  相似文献   

17.
A microbial consortium degrading the high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) pyrene, chrysene, benzo[a]pyrene and perylene in a two-liquid-phase reactor was studied. The highest PAH-degrading activity was observed with silicone oil as the water-immiscible phase; 2,2,4,4,6,8, 8-heptamethylnonane, paraffin oil, hexadecane and corn oil were much less, or not efficient in improving PAH degradation by the consortium. Addition of surfactants (Triton X-100, Witconol SN70, Brij 35 and rhamnolipids) or Inipol EAP22 did not promote PAH biodegradation. Rhamnolipids had an inhibitory effect. Addition of salicylate, benzoate, 1-hydroxy-2-naphtoic acid or catechol did not increase the PAH-degrading activity of the consortium, but the addition of low-molecular-weight (LMW) PAHs such as naphthalene and phenanthrene did. In these conditions, the degradation rates were 27 mg l-1 d-1 for pyrene, 8.9 mg l-1 d-1 for chrysene, 1.8 mg l-1 d-1 for benzo[a]pyrene and 0.37 mg l-1 d-1 for perylene. Micro-organisms from the interface were slightly more effective in degrading PAHs than those from the aqueous phase.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that have been linked to certain human cancers. The fjord region PAH dibenzo[a,l]pyrene exhibits the highest levels of carcinogenic activity of all PAH as yet tested in rodent tumor models. Another hexacyclic aromatic hydrocarbon, dibenzo[c,p]chrysene (DBC), is a unique PAH that possesses one bay region and two fjord regions within the same molecule. Due to its structure, which is a merger of the fjord region PAHs benzo[c]phenanthrene, benzo[c]chrysene, and benzo[g]chrysene, DBC is of considerable research interest. In order to investigate the pathway of regioselective metabolism we have studied the cytotoxicity, metabolic activation and DNA adduct formation of DBC in human mammary carcinoma MCF-7 cells in culture. The cytotoxicity assay indicated undisturbed cell proliferation even at concentrations as high as 4.5 microM (1.5 micro g/ml) DBC. Concurrently, DNA adducts were detected in MCF-7 cells treated with DBC only in low amounts (0.6 pmol adducts/mg DNA). On the contrary, exposure to anti-DBC-1,2-diol-3,4-epoxide and anti-DBC-11,12-diol-13,14-epoxide, two putatively genotoxic metabolites of DBC, resulted in high levels of DNA adducts (33 and 51 pmol adducts/mg DNA, respectively). Although DBC was not efficiently transformed into DNA-reactive metabolites in MCF-7 cells in culture, the results from our study indicate that the two fjord region diol-epoxide derivatives of DBC may serve as ultimate genotoxic metabolites once they are enzymatically generated under certain circumstances in vitro or in vivo.  相似文献   

19.
A previous bioremediation survey on a creosote-contaminated soil showed that aeration and optimal humidity promoted depletion of three-ringed polycyclic aromatic hydrocarbons (PAHs), but residual concentrations of four-ringed benzo(a)anthracene (B(a)A) and chrysene (Chry) remained. In order to explain the lack of further degradation of heavier PAHs such as four-ringed PAHs and to analyze the microbial population responsible for PAH biodegradation, a chemical and microbial molecular approach was used. Using a slurry incubation strategy, soil in liquid mineral medium with and without additional B(a)A and Chry was found to contain a powerful PAH-degrading microbial community that eliminated 89% and 53% of the added B(a)A and Chry, respectively. It is hypothesized that the lack of PAH bioavailability hampered their further biodegradation in the unspiked soil. According to the results of the culture-dependent and independent techniques Mycobacterium parmense, Pseudomonas mexicana, and Sphingobacterials group could control B(a)A and Chry degradation in combination with several microorganisms with secondary metabolic activity.  相似文献   

20.
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. Although several PAH-degrading bacterial species have been isolated, it is not expected that a single isolate would exhibit the ability to degrade completely all PAHs. A consortium composed of different microorganisms can better achieve this. Two-liquid phase (TLP) culture systems have been developed to increase the bioavailability of poorly soluble substrates for uptake and biodegradation by microorganisms. By combining a silicone oil–water TLP system with a microbial consortium capable of degrading HMW PAHs, we previously developed a highly efficient PAH-degrading system. In this report, we characterized the bacterial diversity of the consortium with a combination of culture-dependent and culture-independent methods. Polymerase chain reaction (PCR) of part of the 16S ribosomal RNA gene (rDNA) sequences combined with denaturing gradient gel electrophoresis was used to monitor the bacterial population changes during PAH degradation of the consortium when pyrene, chrysene, and benzo[a]pyrene were provided together or separately in the TLP cultures. No substantial changes in bacterial profiles occurred during biodegradation of pyrene and chrysene in these cultures. However, the addition of the low-molecular-weight PAHs phenanthrene or naphthalene in the system favored one bacterial species related to Sphingobium yanoikuyae. Eleven bacterial strains were isolated from the consortium but, interestingly, only one—IAFILS9 affiliated to Novosphingobium pentaromativorans—was capable of growing on pyrene and chrysene as sole source of carbon. A 16S rDNA library was derived from the consortium to identify noncultured bacteria. Among 86 clones screened, 20 were affiliated to different bacterial species–genera. Only three strains were represented in the screened clones. Eighty-five percent of clones and strains were affiliated to Alphaproteobacteria and Betaproteobacteria; among them, several were affiliated to bacterial species known for their PAH degradation activities such as those belonging to the Sphingomonadaceae. Finally, three genes involved in the degradation of aromatic molecules were detected in the consortium and two in IAFILS9. This study provides information on the bacterial composition of a HWM PAH-degrading consortium and its dynamics in a TLP biosystem during PAH degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号