首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial‐mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β‐catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.  相似文献   

2.
Selective cell death by apoptosis plays important roles in organogenesis. Apoptotic cells are observed in the developmental and homeostatic processes of several ectodermal organs, such as hairs, feathers, and mammary glands. In chick feather development, apoptotic events have been observed during feather morphogenesis, but have not been investigated during early feather bud formation. Previously, we have reported a method for generating feather buds on a bioengineered skin from dissociated skin epithelial and mesenchymal cells in three-dimensional culture. During the development of the bioengineered skin, epithelial cavity formation by apoptosis was observed in the epithelial tissue. In this study, we examined the selective epithelial cell death during the bioengineered skin development. Histological analyses suggest that the selective epithelial cell death in the bioengineered skin was induced by caspase-3-related apoptosis. The formation of feather buds of the bioengineered skin was disturbed by the treatment with a pan-caspase inhibitor. The pan-caspase inhibitor treatment suppressed the rearrangement of the epithelial layer and the formation of dermal condensation, which are thought to be essential step to form feather buds. The suppression of the formation of feather buds on the pan-caspase inhibitor-treated skin was partially compensated by the addition of a GSK-3β inhibitor, which activates Wnt/β-catenin signaling. These results suggest that the epithelial cell death is involved in the formation of feather buds of the bioengineered skin. These observations also suggest that caspase activities and Wnt/β-catenin signaling may contribute to the formation of epithelial and mesenchymal components in the bioengineered skin.  相似文献   

3.
Retinoic acid (RA) is a well-known regulator of chondrocyte phenotype. RA inhibits chondrogenic differentiation of mesenchymal cells and also causes loss of differentiated chondrocyte phenotype. The present study investigated the mechanisms underlying RA regulation of chondrogenesis. RA treatment in chondrifying mesenchymal cells did not affect precartilage condensation, but blocked progression from precartilage condensation to cartilage nodule formation. This inhibitory effect of RA was independent of protein kinase C and extracellular signal-regulated protein kinase, which are positive and negative regulators of cartilage nodule formation, respectively. The progression from precartilage condensation to cartilage nodule requires downregulation of N-cadherin expression. However, RA treatment caused sustained expression of N-cadherin and its associated proteins including alpha- and beta-catenin suggesting that modulation of expression of these molecules is associated with RA-induced inhibition of chondrogenesis. This hypothesis was supported by the observation that disruption of the actin cytoskeleton by cytochalasin D (CD) blocks RA-induced sustained expression of cell adhesion molecules and overcomes RA-induced inhibition of chondrogenesis. Taken together, our results suggest RA inhibits chondrogenesis by stabilizing cell-to-cell interactions at the post-precartilage condensation stage.  相似文献   

4.
Endochondral skeletal development begins with the formation of a cartilaginous template where mesenchymal cells aggregate and increase in density prior to their overt differentiation into chondrocytes. Prechondrogenic condensation, in which mesenchymal cells aggregate, requires cell migration and proliferation. However, the molecular mechanisms promoting this aggregation remain to be elucidated. Here, we report that rottlerin suppresses migration and cell surface expression of integrin β1 in chondrogenic progenitors. Perturbation of integrin β1 function using an anti-integrin β1 blocking antibody suppressed the migration of wing bud mesenchymal cells. Furthermore, phosphorylation levels of Src and focal adhesion kinase (FAK) were decreased by rottlerin treatment. Cell treatment with PP2, an inhibitor of Src family kinase, or electroporation of FAK specific siRNA, suppressed cell migration in a wound-healing assay. Cells treated with rottlerin showed decreased phosphorylation of Akt, independent of PKCδ inhibition. In addition, an Akt inhibitor suppressed the migration of chick limb bud mesenchymal cells. Taken together, our results point to the novel finding that rottlerin may act as a negative regulator for cell migration, an essential step for prechondrogenic condensation, by regulating integrin β1 signaling at focal adhesion complexes via modulation of Akt activity.  相似文献   

5.
6.
beta-catenin signaling can initiate feather bud development.   总被引:10,自引:0,他引:10  
Intercellular signaling by a subset of Wnts is mediated by stabilization of cytoplasmic beta-catenin and its translocation to the nucleus. Immunolocalization of beta-catenin in developing chick skin reveals that this signaling pathway is active in a dynamic pattern from the earliest stages of feather bud development. Forced activation of this pathway by expression of a stabilized beta-catenin in the ectoderm results in the ectopic formation of feather buds. This construct is sufficient to induce bud formation since it does so both within presumptive feather tracts and in normally featherless regions where tract-specific signals are absent. It is also insensitive to the lateral inhibition that mediates the normal spacing of buds and can induce ectopic buds in interfollicular skin. However, additional patterning signals cooperate with this pathway to regulate gene expression within domains of stabilized beta-catenin expression. Localized activation of this pathway within the bud as it develops is required for normal morphogenesis and ectopic activation of the pathway leads to abnormally oriented buds and growths on the feather filaments. These results suggest that activation of the beta-catenin pathway initiates follicle development in embryonic skin and plays important roles in the subsequent morphogenesis of the bud.  相似文献   

7.
Cell shape alterations and accompanying cytoskeletal changes have diverse effects on cell function. We have already shown that dedifferentiated chondrocytes have a round cell morphology and undergo redifferentiation when cultured on chitosan membrane. In the present study, we investigate the role of the cytoskeleton in chondrocyte redifferentiation. Chondrocytes obtained from a micromass culture of chick limb bud mesenchymal cells were subcultured four times. Immunofluorescence analysis of F-actin showed cortical distribution of the actin cytoskeleton upon subculture of dedifferentiated chondrocytes on chitosan membrane. Treatment with cytochalasin D disrupted the cortical actin ring formed during cultivation of chondrocytes on the chitosan membrane, and inhibited chondrocyte redifferentiation. Moreover, cytochalasin D inhibited the phosphorylation of Akt and p38 mitogen activated protein kinase (MAPK), induced during redifferentiation on chitosan membrane. LY294002, an inhibitor of phosphatidylinositol-3-OH-kinase (PI3K), suppressed chondrocyte redifferentiation. These findings suggest that integrity of the actin cytoskeleton is a crucial requirement for PI3K/Akt and p38 MAPK in chondrocyte redifferentiation.  相似文献   

8.
The development of the feather buds during avian embryogenesis is a classic example of a spacing pattern. The regular arrangement of feather buds is achieved by a process of lateral inhibition whereby one developing feather bud prevents the formation of similar buds in the immediate vicinity. Lateral inhibition during feather formation implicates a role of long range signalling during this process. Recent work has shown that BMPs are able to enforce lateral inhibition during feather bud formation. However these results do not explain how the feather bud escapes the inhibition itself. We show that this could be achieved by the expression of the BMP antagonist, Follistatin. Furthermore we show that local application of Follistatin leads to the development of ectopic feather buds. We suggest that Follistatin locally antagonises the action of the BMPs and so permits the cellular changes associated with feather placode formation. We also provide evidence for the role of short range signalling during feather formation. We have correlated changes in cellular morphology in feather placodes with the expression of the gene Eph-A4 which encodes a receptor tyrosine kinase that requires direct cell-cell contact for activation. We show that the expression of this gene precedes cellular reorganisation required for feather bud formation.  相似文献   

9.
The ectoderm of the vertebrate limb and feather bud are epithelia that provide good models for epithelial patterning in vertebrate development. At the tip of chick and mouse limb buds is a thickening, the apical ectodermal ridge, which is essential for limb bud outgrowth. The signal from the ridge to the underlying mesoderm involves fibroblast growth factors. The non-ridge ectoderm specifies the dorsoventral pattern of the bud and Wnt7a is a dorsalizing signal. The development of the ridge involves an interaction between dorsal cells that express radical fringe and those that do not. There are striking similarities between the signals and genes involved in patterning the limb ectoderm and the epithelia of the Drosophila imaginal disc that gives rise to the wing. The spacing of feather buds involves signals from the epidermis to the underlying mesenchyme, which again include Wnt7a and fibroblast growth factors.  相似文献   

10.
In a previous study, we showed that the proline-rich divergent homeobox gene Hex/Prh is expressed in dorsal skin of the chick embryo before and during feather bud development and that the pattern of Hex mRNA expression in the epidermis is similar to that of Wnt7a mRNA. In order to study the function of Hex and the relationship between Hex and Wnt7a in feather bud development, sense and/or antisense sequences of Hex or Wnt7a were ectopically and transiently expressed in the dorsal skin with the epidermal side toward the cathode by electroporation at the placode stage and then the skin was cultured. Increased expression of Wnt7a and beta-catenin mRNA was observed in the same region where Hex-EGFP fusion protein was expressed 2 days after culture, which was followed by extra bud formation a few days later as a result of the stimulation of cell proliferation. Concomitantly, expression of Notch1 mRNA, which is expressed in normal bud development, increased in Hex-overexpressing skin. However, ectopic Wnt7a expression induced neither Hex expression nor extra bud formation in normal skin. Antisense Wnt7a specifically inhibited bud initiation in Hex-overexpressing skin but did not in normal skin. Taken together, these results suggest that Hex is upstream of Wnt7a and beta-catenin and regulates the Wnt signaling pathway in feather bud initiation and that some other Wnt signals in addition to Wnt7a may be required for bud initiation.  相似文献   

11.
12.
Szymanski DB  Marks MD  Wick SM 《The Plant cell》1999,11(12):2331-2347
Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern.  相似文献   

13.
14.
The formation of periodic patterns is of fundamental importance in embryonic development. One of the simplest and most frequently observed patterns is the maintenance of a minimum distance between neighbouring elements, for example between teeth, hair, feathers, digits etc. Theoretical models describing these phenomena have been proposed for feather patterning. However, there has been no detailed quantitative analysis of the relationship between cell population density and feather spacing. To define the relation between these quantities and specifically to test the prediction of a mathematical model, we have examined the formation of the feather pattern after varying proportions of the dermal cells have been killed by X-irradiation. It is known that the development of a feather primordium is normally associated with an increase in cell population density in the dermis. Using X-ray irradiation of the skin in vivo and in vitro, we show that the relation between cell population density and spacing of feather primordia indicates the importance of a threshold number of cells for feather patterning. Moreover, there is a prima facie case for supposing that X-rays act on feather spacing system, reducing the ability of dermal cells to prevent spreading of the pattern. Thus, X-irradiation may have a secondary effect on the spacing of primordia rather than, or as well as, affecting the mechanisms that determine their primary positions.  相似文献   

15.
Hyaluronan (HA) is a large glycosaminoglycan that is not only a structural component of extracellular matrices, but also interacts with cell surface receptors to promote cell proliferation, migration, and intracellular signaling. HA is a major component of the extracellular matrix of the distal subapical mesenchymal cells of the developing limb bud that are undergoing proliferation, directed migration, and patterning in response to the apical ectodermal ridge (AER), and has the functional potential to be involved in these processes. Here we show that the HA synthase Has2 is abundantly expressed by the distal subridge mesodermal cells of the chick limb bud and also by the AER itself. Has2 expression and HA production are downregulated in the proximal central core of the limb bud during the formation of the precartilage condensations of the skeletal elements, suggesting that downregulation of HA may be necessary for the close juxtaposition of cells and the resulting cell-cell interactions that trigger cartilage differentiation during condensation. Overexpression of Has2 in the mesoderm of the chick limb bud in vivo results in the formation of shortened and severely malformed limbs that lack one or more skeletal elements. Skeletal elements that do form in limbs overexpressing Has2 are reduced in length, exhibit abnormal morphology, and are positioned inappropriately. We also demonstrate that sustained HA production in micromass cultures of limb mesenchymal cells inhibits formation of precartilage condensations and subsequent chondrogenesis, indicating that downregulation of HA is indeed necessary for formation of the precartilage condensations that trigger cartilage differentiation. Taken together these results suggest involvement of HA in various aspects of limb morphogenesis.  相似文献   

16.
We show that tyrosine phosphorylation of FAK was increased as precartilage condensation occurred, followed by a subsequent decrease in proliferation of in vitro micromass culture of wing bud mesenchymal cells. FAK was associated with fibronectin and paxillin, which were maximal at day 3 of culture. FAK was also associated with signaling molecules such as PLC-gamma and PI3-kinase through c-Src. The beta1 integrin antibody and several inhibitors of signaling molecules such as herbimycin A, U73122, LY294002, as well as cytochalasin D, an actin depolymerizing agent, remarkably decreased tyrosine phosphorylation of FAK and its association with fibronectin and paxillin during condensation. resulting in a marked inhibition of condensation and chondrogenesis. Taken together, our findings suggest that beta1 integrin-mediated interaction of mesenchymal cells and fibronectin signals to accelerate the precartilage condensation through tyrosine phosphorylation of FAK and its association with paxillin. This signaling pathway is required for precartilage condensation and subsequent cartilage nodule formation in chondrogenesis.  相似文献   

17.
18.
19.
Organogenesis involves a series of dynamic morphogenesis and remodeling processes. Since feathers exhibit complex forms, we have been using the feather as a model to analyze how molecular pathways and cellular events are used. While several major molecular pathways have been studied, the roles of matrix degrading proteases and inhibitors in feather morphogenesis are unknown. Here we addressed this knowledge gap by studying the temporal and spatial expression of proteases and inhibitors in developing feathers using mammalian antibodies that cross react with chicken proteins. We also investigated the effect of protease inhibitors on feather development employing an in vitro feather bud culture system. The results show that antibodies specific for mammalian MMP2 and TIMP2 stained positive in both feather epithelium and mesenchyme. The staining co-localized in structures of E10-E13 developing feathers. Interestingly, MMP2 and TIMP2 exhibited a complementary staining pattern in developing E15 and E20 feathers and in maturing feather filaments. Although they exhibited a slight delay in feather bud development, similar patterns of MMP2 and TIMP2 staining were observed in in vitro culture explants. The broad spectrum pharmacological inhibitors AG3340 and BB103 (MMP inhibitors) but not Aprotinin (a plasmin inhibitor) showed a reversible effect on epithelium invagination and feather bud elongation. TIMP2, a physiological inhibitor to MMPs, exhibited a similar effect. Markers of feather morphogenesis showed that MMP activity was required for both epithelium invagination and mesenchymal cell proliferation. Inhibition of MMP activity led to an overall delay in the expression of molecules that regulate either early feather bud growth and/or differentiation and thereby produced abnormal buds with incomplete follicle formation. This work demonstrates that MMPs and their inhibitors are not only important in injury repair, but also in development tissue remodeling as demonstrated here for the formation of feather follicles.  相似文献   

20.
To understand cell interactions during induction of skin appendages, we studied the roles of adhesion molecules N-CAM, tenascin, integrin, and fibronectin during feather development. Tenascin appeared in a periodic pattern on epithelia and was so far the earliest molecule detected in placodes. Three placode domains were identified: the anterior was positive for tenascin, the distal positive for N-CAM, and the posterior lacking both. Integrin appeared in dermal-epidermal junctions of placodes. In feather buds, sagittal sections revealed a transient anterior-posterior asymmetry with tenascin and N-CAM enriched in the anterior mesoderm. Tangential sections revealed a lateral-medial asymmetry with tenascin distributed in a ring shape and N-CAM in an "X" shape. Integrin was diffusely distributed within buds. Later tenascin and N-CAM were enriched in dermal papilla, the inducer of skin appendages. Perturbation of embryonic skin explant cultures with antibodies showed that anti-integrin beta 1 and anti-fibronectin blocked epithelial-mesenchymal interaction, anti-N-CAM caused uneven segregation of mesenchymal condensation, and anti-tenascin inhibited feather bud elongation. Dose-response curves showed gradual effects by these antibodies. The results indicated that these adhesion molecules are independently regulated and each contributes in different phases during morphogenesis of skin appendages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号