首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial‐mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β‐catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.  相似文献   

2.
In chick limb buds, mesenchymal cells of the progress zone (PZ-cells) at different developmental stages segregate one from the other in mixed cell cultures, suggesting they have different cell affinity. In order to learn the possible roles of such differences in the cells, two heterotypic leg PZ-cell populations (cells from stages 25/26 and 20/21) in vitro were juxtaposed to allow them to form the boundary. A method with double cylindrical columns was used to make adjoining monolayer cell cultures. It was shown that heterotypic juxtaposition produced two chondrogenic patterns along the boundary: aggregates of chondrocytes formed by stage 20/21 PZ-cells and a chondrocyte-free band formed by those at stage 25/26. Juxtaposition of PZ-cells and proximal cells also formed these patterns, while that between cells from anterior and posterior PZ formed indistinct patterns along the boundary. Homotypic PZ-cell juxtaposition did not produce these patterns. The results suggest that different cell affinity has a role in the segmentation of cartilage patterns at a point along the proximodistal axis, as well as a role in retaining cells in one area so as not to be recruited to other condensation areas.  相似文献   

3.
In the developing limb bud, mesenchymal cells show position-specific affinity, suggesting that the positional identity of the cells is represented as their surface properties. Since the affinity is regulated by glycosylphosphatidylinositol (GPI)-anchored cell surface proteins, and by EphA4 receptor tyrosine kinase, we hypothesized that the GPI-anchored ligand, the ephrin-A family, also contributes to the affinity. Here, we describe the role of ephrin-A2 in the chick limb bud. Ephrin-A2 protein is uniformly distributed in the limb bud during early limb development. As the limb bud grows, expression of ephrin-A2 is strong in its proximal-to-intermediate regions, but weak distally. The position-dependent expression is maintained in vitro, and is regulated by FGF protein, which is produced in the apical ectodermal ridge. To investigate the role of ephrin-A2 in affinity and in cartilage morphogenesis of limb mesenchyme, we ectopically expressed ephrin-A2 in the limb bud using the retrovirus vector, RCAS. Overexpressed ephrin-A2 modulated the affinity of the mesenchymal cells that differentiate into autopod elements. It also caused malformation of the autopod skeleton and interfered with cartilage nodule formation in vitro without inhibiting chondrogenesis. These results suggest that ephrin-A2 regulates the position-specific affinity of limb mesenchyme and is involved in cartilage pattern formation in the limb.  相似文献   

4.
The static allometry of secondary sexual characters is currently subject to debate. While some studies suggest an almost universal positive allometry for such traits, but isometry or negative allometry for nonornamental traits, other studies maintain that any kind of allometric pattern is possible. Therefore, we investigated the allometry of sexually size dimorphic feather ornaments in 67 species of birds. We also studied the allometry of female feathers homologous to male ornaments (female ornaments in the following) and ordinary nonsexual traits. Allometries were estimated as reduced major axis slopes of trait length on tarsus length. Ornamental feathers showed positive allometric slopes in both sexes, although that was not a peculiarity for ornamental feathers, because nonsexual tail feathers also showed positive allometry. Migration distance (in males) and relative size of the tail ornament (in females) tended to be negatively related to the allometric slope of tail feather ornaments, although these results were not conclusive. Finally, we found an association between mating system and allometry of tail feather ornaments, with species with more intense sexual selection showing a smaller degree of allometry of tail ornaments. This study is consistent with theoretical models that predict no specific kind of allometric pattern for sexual and nonsexual characters.  相似文献   

5.
In developing chick leg buds, large-scale cell death occurs in the interdigital zone, which is responsible for the separation of digits from each other. Ectopic cartilage formation is known to occur upon removal of the chondrogenic digit tissue of the leg bud. To examine the mechanisms of ectopic cartilage formation in the interdigital cell death region, we performed the following operations on stage 28–29 leg buds: (i) removal of the digit-forming area; (ii) incision between the interdigital zone and digit region; (iii) insertion of an aluminum barrier into the interdigital zone; and (iv) insertion of a permeable Nuclepore filter into the interdigital zone. In all cases, the inhibition of cell death and/or the formation of ectopic cartilage in the interdigital zone were observed, although the frequency of the inhibition of cell death and the formation of ectopic cartilage varied, depending upon the position where the operations were performed. These results suggest that cell death and cell differentiation in the interdigital zone may be controlled by some factor(s) from digit cartilage.  相似文献   

6.
Members of the Wnt family are known to play diverse roles in the organogenesis of vertebrates. The full-coding sequences of chicken Wnt-5a were identified and the role it plays in limb development was examined by comparing its expression pattern with that of two other Wnt members, Wnt-4 and Wnt-11, and by misexpressing it with a retrovirus vector in the limb bud. Wnt-5a expression is detected in the limb-forming region at stage 14, and in the apical ectodermal ridge and distal mesenchyme of the limb bud. The signal was graded along the proximal-distal axis at stages 20-28 and also along the anterior-posterior axis during early stages. It disappeared in the cartilage-forming region after stage 26, and was restricted to the region surrounding the phalanges at stage 34. Wnt-4 and Wnt-11, other members of the Wnt-5a-subclass, were expressed with a distinct spatiotemporal pattern during the later phase. Wnt-4 was expressed in the articular structure and Wnt-11 was expressed in the dorsal and ventral mesenchyme adjacent to the ectoderm. Wnt-5a expression was partially reduced after apical ectodermal ridge removal, whereas Wnt-11 expression was down-regulated by dorsal ectoderm removal. Therefore, expression of these Wnt was differentially regulated by the ectodermal signal. Misexpression of Wnt-5a in the limb bud with the retrovirus resulted in truncation of long bones predominantly in the zeugopod because of retarded chondrogenic differentiation. Distal elements, such as the phalanges and metacarpals, were not significantly reduced in size. These results suggest that Wnt-5a is involved in pattern formation along the proximal-distal axis by regulation of chondrogenic differentiation.  相似文献   

7.
SHOX is a homeobox-containing gene, highly conserved among species as diverse as fish, chicken and humans. SHOX gene mutations have been shown to cause idiopathic short stature and skeletal malformations frequently observed in human patients with Turner, Leri-Weill and Langer syndromes. We cloned the chicken orthologue of SHOX, studied its expression pattern and compared this with expression of the highly related Shox2. Shox is expressed in central regions of early chick limb buds and proximal two thirds of later limbs, whereas Shox2 is expressed more posteriorly in the proximal third of the limb bud. Shox expression is inhibited distally by signals from the apical ectodermal ridge, both Fgfs and Bmps, and proximally by retinoic acid signaling. We tested Shox functions by overexpression in embryos and micromass cultures. Shox-infected chick limbs had normal proximo-distal patterning but the length of skeletal elements was consistently increased. Primary chick limb bud cell cultures infected with Shox showed an initial increase in cartilage nodules but these did not enlarge. These results fit well with the proposed role of Shox in cartilage and bone differentiation and suggest chick embryos as a useful model to study further the role of Shox in limb development.  相似文献   

8.
The highly homologous ERM (ezrin/radixin/moesin) proteins, molecular cross-linkers which connect the cell membrane with the underlying cytoskeleton, have molecular weights of 81, 80 and 78 kDa respectively. We present data which shows significant variation in the molecular weight and presence of multiple forms of ERM proteins in different cell lines, such that specific antibodies to each protein are essential for unambiguous detection. Biochemical fractionation of MDCK cells demonstrates that although the individual ERM fractionation patterns are unaltered by cell density, the multiple forms of moesin each associate with different subcellular fractions. Since ERM proteins can exist in dormant or active conformations corresponding to their phosphorylation state, we propose that the partitioning of ERM proteins between subcellular compartments may depend on their activation status. In addition, we show that when the co-localization between ezrin and F-actin is disrupted by cytochalasin D, MDCK cells undergo a dramatic morphology change during which long, branching, ezrin-rich protrusions are formed. Consistent with other workers, our data suggest that maintenance of ezrin:F-actin interactions are required for the maintenance of normal cellular morphology.  相似文献   

9.
The development of feather buds is a highly ordered process involving epithelial-mesenchymal signalling. Cellular morphology is determined by the actin cytoskeleton, which is controlled by networks of regulators such as the GTPases. EphA4 belongs to a receptor tyrosine kinase family that has been consistently shown to regulate the cytoskeleton via Rho family GTPases in neural development and is expressed in early stages of feather bud development though its role has not been defined. We therefore used an in vitro skin culture system to interfere with EphA4 levels in feather buds using anti-sense oligonucleotides, demonstrating a severe effect on both their number and morphological form. Analysis of the Rho family of GTPases revealed that this effect was mediated by the GTPase RhoB, the expression of which was altered in response to altered levels of EphA4. In addition, the inhibition of RhoB mimicked the effects of reduced EphA4 levels on feather development. Significantly, manipulation of cytoskeletal dynamics revealed that those cells undergoing morphogenetic change regulate the patterning signals responsible for initiating feather development. We propose that this molecular maintenance mechanism between EphA4-RhoB and the actin cytoskeleton converges or coordinates with other morphogenic signalling systems to control feather bud development.  相似文献   

10.
色彩图案作为最显著的外部形态特征之一,在动物生存与交流中起着重要的作用。为了解鳜(Siniperca chautsi)早期发育过程中这一形态特征变化,采用CCD-Adapter解剖镜对鳜早期(胚胎期至出膜40日龄)体表色素细胞种类与分布、主要图案(条、带、斑)的形成过程进行了观察,同时对不同部位皮肤进行组织切片观察。结果显示,胚胎期,最早观察到黑色素细胞,位于卵黄囊和油球,出膜前,头部出现黄色素细胞;出膜后,黑色素细胞发育最为显著,红色素细胞出现在眼球后部和躯干前部;5日龄后,黄色素细胞发育增加,鱼体各部位均有分布,黑色素细胞继续发育,图案形成开始。鳜早期色彩图案形成过程:(1)躯干纵带:5日龄,背部出现少量黑色素,14日龄,背鳍基部黑色素与腹部黑色素相连;(2)头部过眼条带:10日龄,鳃盖后上方黑色素明显增多,12日龄,眼球后部经鳃盖后上缘至背部前端的条带形成,17日龄,上颌至眼球前部的条带形成;(3)头顶条带:6日龄,头顶正上方黑色斑点增多,18日龄,头部上方黑色斑块分别向前、后延伸,23日龄,头顶正上方黑色条带基本形成;(4)躯干斑块:8日龄,尾部底端出现一个较小的黑色斑块,15日龄,尾柄前部出现3个不规则黑色斑块,25日龄,躯干中后部5个近圆形黑色斑块形成。结果表明,鳜胚胎期至出膜40日龄,体表出现黑色素细胞、黄色素细胞和红色素细胞,体色以黑色为主,主要条带或斑块在仔鱼5日龄后按不同方式逐渐形成,不同皮肤部位的色素层组成与分布方式不同。  相似文献   

11.
Adhesion to the extracellular matrix regulates numerous changes in the actin cytoskeleton by regulating the activity of the Rho family of small GTPases. Here, we report that adhesion and the associated changes in cell shape and cytoskeletal tension are all required for GTP-bound RhoA to activate its downstream effector, ROCK. Using an in vitro kinase assay for endogenous ROCK, we found that cells in suspension, attached on substrates coated with low density fibronectin, or on spreading-restrictive micropatterned islands all exhibited low ROCK activity and correspondingly low myosin light chain phosphorylation, in the face of high levels of GTP-bound RhoA. In contrast, allowing cells to spread against substrates rescued ROCK and myosin activity. Interestingly, inhibition of tension with cytochalasin D or blebbistatin also inhibited ROCK activity within 20 min. The abrogation of ROCK activity by cell detachment or inhibition of tension could not be rescued by constitutively active RhoA-V14. These results suggest the existence of a feedback loop between cytoskeletal tension, adhesion maturation, and ROCK signaling that likely contributes to numerous mechanochemical processes.  相似文献   

12.
A key issue in stem cell biology is the differentiation of homogeneous stem cells towards different fates which are also organized into desired configurations. Little is known about the mechanisms underlying the process of periodic patterning. Feather explants offer a fundamental and testable model in which multi-potential cells are organized into hexagonally arranged primordia and the spacing between primordia. Previous work explored roles of a Turing reaction-diffusion mechanism in establishing chemical patterns. Here we show that a continuum of feather patterns, ranging from stripes to spots, can be obtained when the level of p-ERK activity is adjusted with chemical inhibitors. The patterns are dose-dependent, tissue stage-dependent, and irreversible. Analyses show that ERK activity-dependent mesenchymal cell chemotaxis is essential for converting micro-signaling centers into stable feather primordia. A mathematical model based on short-range activation, long-range inhibition, and cell chemotaxis is developed and shown to simulate observed experimental results. This generic cell behavior model can be applied to model stem cell patterning behavior at large.  相似文献   

13.
Vertebrate muscle morphogenesis is a complex developmental process, which remains quite yet unexplored at cellular and molecular level. In this work, we have found that sculpturing programmed cell death is a key morphogenetic process responsible for the formation of individual foot muscles in the developing avian limb. Muscle fibers are produced in excess in the precursor dorsal and ventral muscle masses of the limb bud and myofibers lacking junctions with digital tendons are eliminated via apoptosis. Microsurgical experiments to isolate the developing muscles from their specific tendons are consistent with a role for tendons in regulating survival of myogenic cells. Analysis of the expression of Raldh2 and local treatments with retinoic acid indicate that this signaling pathway mediates apoptosis in myogenic cells, appearing also involved in tendon maturation. Retinoic acid inhibition experiments led to defects in muscle belly segmentation and myotendinous junction formation. It is proposed that heterogeneous local distribution of retinoids controlled through Raldh2 and Cyp26A1 is responsible for matching the fleshy and the tendinous components of each muscle belly.  相似文献   

14.
15.
16.
Pattern formation during epithelial development requires the coordination of multiple signaling pathways. Here, we investigate the functions of an ovary-enriched miRNA, miR-318, in epithelial development during Drosophila oogenesis. mir-318 maternal loss-of-function mutants were female-sterile and laid eggs with abnormal morphology. Removal of mir-318 disrupted the dorsal–anterior follicle cell patterning, resulting in abnormal dorsal appendages. mir-318 mutant females also produced thin and fragile eggshells due to impaired chorion gene amplification. We provide evidence that the ecdysone signaling pathway activates expression of miR-318 and that miR-318 cooperates with Tramtrack69 to control the switch from endocycling to chorion gene amplification during differentiation of the follicular epithelium. The multiple functions of miR-318 in oogenesis illustrate the importance of miRNAs in maintaining cell fate and in promoting the developmental transition in the female follicular epithelium.  相似文献   

17.
In the 1950s, embryology was conceptualized as four relatively independent problems: cell differentiation, growth, pattern formation and morphogenesis. The mechanisms underlying the first three traditionally have been viewed as being chemical in nature, whereas those underlying morphogenesis have usually been discussed in terms of mechanics. Often, morphogenesis and its mechanical processes have been regarded as subordinate to chemical ones. However, a growing body of evidence indicates that the biomechanics of cells and tissues affect in striking ways those phenomena often thought of as mainly under the control of cell-cell signalling. This accumulation of data has led to a revival of the mechano-transduction concept in particular, and of complexity in general, causing us now to consider whether we should retain the traditional conceptualization of development. The researchers' semantic preferences for the terms 'patterning', 'pattern formation' or 'morphogenesis' can be used to describe three main 'schools of thought' which emerged in the late 1970s. In the 'molecular school', the term patterning is deeply tied to the positional information concept. In the 'chemical school', the term 'pattern formation' regularly implies reaction-diffusion models. In the 'mechanical school', the term 'morphogenesis' is more frequently used in relation to mechanical instabilities. Major differences among these three schools pertain to the concept of self-organization, and models can be classified as morphostatic or morphodynamic. Various examples illustrate the distorted picture that arises from the distinction among differentiation, growth, pattern formation and morphogenesis, based on the idea that the underlying mechanisms are respectively chemical or mechanical. Emerging quantitative approaches integrate the concepts and methods of complex sciences and emphasize the interplay between hierarchical levels of organization via mechano-chemical interactions. They draw upon recent improvements in mathematical and numerical morphogenetic models and upon considerable progress in collecting new quantitative data. This review highlights a variety of such models, which exhibit important advances, such as hybrid, stochastic and multiscale simulations.  相似文献   

18.
During the sequencing of the genome of Arabidopsis thaliana a gene has been identified that encodes a novel NADPH-protochlorophyllide oxidoreductase (POR)-like protein (accession number AC 002560). This protein has been named POR C. We have expressed the POR C protein in Escherichia coli and have determined its in vitro activity. POR C shows the characteristics of a light-dependent and NADPH-requiring POR similar to POR A and POR B. The expression of the POR C gene differs markedly from that of the POR A and POR B genes. In contrast to the POR A and POR B mRNAs, the POR C mRNA has been shown previously to accumulate only after the beginning of illumination. In light-adapted mature plants only POR B and POR C mRNAs were detectable. The amounts of both mRNAs show pronounced diurnal rhythmic fluctuations. While the oscillations of POR B mRNA are under the control of the circadian clock, those of POR C mRNA are not. Another difference between POR B and POR C was found in seedlings that were grown under continuous white light. The concentration of POR C mRNA rapidly declined and soon dropped beyond the limit of detection, after these seedlings were transferred to the dark. On the other hand, POR B mRNA was unaffected by this light/dark shift. When seedlings were exposed to different light intensities, the amounts of POR B mRNA remained the same, while POR A and POR C mRNAs were modulated in an inverse way by these light intensity changes. POR A mRNA was still detectable in seedlings grown under low light intensities but disappeared at higher light intensities, while the mRNA concentration of POR C rose with increasing light intensities. These different responses to light suggest that the functions of the three PORs of Arabidopsis are not completely redundant, but may allow the plant to adapt its needs for chlorophyll biosynthesis more selectively by using preferentially one of the three enzymes under a given light regime.  相似文献   

19.
20.
We analyzed the interactions between mutations in antagonistic BMP pathway signaling components to examine the roles that the antagonists play in regulating BMP signaling activity. The dorsalized mutants swirl/bmp2b, snailhouse/bmp7, lost-a-fin/alk8, and mini fin/tolloid were each analyzed in double mutant combinations with the ventralized mutants chordino/chordin and ogon, whose molecular nature is not known. Similar to the BMP antagonist chordino, we found that the BMP ligand mutants swirl/bmp2b and snailhouse/bmp7 are also epistatic to the putative BMP pathway antagonist, ogon, excluding a class of intracellular antagonists as candidates for ogon. In ogon;mini fin double mutants, we observed a mutual suppression of the ogon and mini fin mutant phenotypes, frequently to a wild type phenotype. Thus, the Tolloid/Mini fin metalloprotease that normally cleaves and inhibits Chordin activity is dispensable, when Ogon antagonism is reduced. These results suggest that Ogon encodes a Tolloid and Chordin-independent antagonistic function. By analyzing genes whose expression is very sensitive to BMP signaling levels, we found that the absence of Ogon or Chordin antagonism did not increase the BMP activity remaining in swirl/bmp2b or hypomorphic snailhouse/bmp7 mutants. These results, together with other studies, suggest that additional molecules or mechanisms are essential in generating the presumptive gastrula BMP activity gradient that patterns the dorsal-ventral axis. Lastly we observed a striking increased penetrance of the swirl/bmp2b dominant dorsalized phenotype, when Chordin function is also absent. Loss of the BMP antagonist Chordin is expected to increase BMP signaling levels in a swirl heterozygote, but instead we observed an apparent decrease in BMP signaling levels and a loss of ventral tail tissue. As has been proposed for the fly orthologue of chordin, short gastrulation, our paradoxical results can be explained by a model whereby Chordin both antagonizes and promotes BMP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号