首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunocytochemical and histochemical methods have been used to describe the neuronal population migrating from the rat olfactory placode and to analyze the spatio-temporal evolution of this neuronal migration during development. Several neuronal markers, such as binding to the lectin Ulex europaeus (UEA I) and the presence of neuron-specific enolase (NSE), olfactory marker protein (OMP), and luteinizing hormone-releasing hormone (LHRH), have been tested in order to determine whether migrating neurons originate from both the medial and the lateral parts of the placode and whether they all express LHRH. Our data show that a large population of differentiated migrating neurons can be identified with an antibody against NSE from the 14th day of gestation and with UEA I one day later. Migrating neurons are closely associated with both the vomeronasal axon fascicles emerging from the medial pit and the olfactory axons originating from the lateral pit. However, the neuron migration from the lateral pit appears to be more discrete than that from the medial pit. No LHRH immunoreactivity has been detected among neurons migrating from the lateral pit. Some neurons accompanying the olfactory axon fascicles exhibit a high level of maturation as shown by their OMP-positivity. Numerous neurons positive for both NSE and UEA I have also been observed within the presumptive olfactory nerve layer in early embryonic stages.  相似文献   

2.
In the male newt Cynops pyrrhogaster, prolactin (PRL) acts directly on the central nervous system and induces courtship behavior. As a step to elucidate the localization of neurons on which PRL acts, we developed a polyclonal antibody against an oligopeptide having a sequence completely identical with a part of the sequence of PRL receptors (PRLRs) of two species of newts, C. pyrrhogaster and C. ensicauda, and performed an immunohistochemical study with this antibody. PRLR-immunoreactive cells were observed in the medial amygdala, anterior preoptic area, magnocellular preoptic nucleus, suprachiasmatic nucleus, nucleus of the periventricular organ, ventral hypothalamic nucleus, and choroid plexus. We also performed in situ hybridization with a 35S-labeled newt PRLR antisense RNA probe and detected signals in the preoptic area and choroid plexus. Colocalization of both PRLR-like immunoreactivity and arginine vasotocin-like or mesotocin-like immunoreactivity was demonstrated in the magnocellular preoptic nucleus. This is the first report of PRLR localization in the amphibian brain.This study was supported by a research grant from Waseda University to S.K. and by a grant-in-aid from the Ministry of Education, Science, and Culture of Japan to I.H., F.T., and S.K.  相似文献   

3.
4.
Maas MR  Norgren RB 《Tissue & cell》2000,32(3):216-222
The olfactory placode gives rise to both olfactory receptor neurons, which remain as a component of the peripheral nervous system, and to luteinizing hormone-releasing hormone (LHRH) neurons, which migrate to the central nervous system. In this study, we used chick olfactory placode explants to ask several questions regarding LHRH neuronal differentiation. We found that explants of ectoderm from the fronto-nasal region of embryos as early as Hamilton & Hamburger (HH) stage 12 gave rise to LHRH neurons, that explants from all regions of the olfactory placode were able to generate LHRH neurons, that both brain conditioned medium and disruption of the olfactory placode increase the number of LHRH neurons observed in explants, and that the combination of these two manipulations results in the production of more LHRH neurons than either treatment alone. We conclude that LHRH neurons originate in the olfactory epithelium and that some of the same factors which influence olfactory receptor neuron development also affect LHRH neuronal development.  相似文献   

5.
During embryonic development, the olfactory placode (OP) differentiates into the olfactory epithelium (OE). Luteinizing hormone-releasing hormone (LHRH) neurons migrate out of the OE in close association with the olfactory nerve (ON) to the telencephalon. LHRH neuronal migration and ON extension to the telencephalon may be independent events which are correlated but do not represent a causal relationship. However, we hypothesize that LHRH neurons are dependent on ON axons to migrate to the brain. To test this hypothesis, we ablated the right trigeminal placode and replaced it with an OP from another chick embryo. After several days' additional incubation, the embryos were fixed, sectioned, and immunostained with antibodies against LHRH or N-CAM. The ectopic OPs were well integrated into the host and developed into relatively normal appearing OEs. The ONs extended from the OE to several different sites: the lateral rectus of the eye, the ciliary ganglion, and the trigeminal ganglion. In all cases, LHRH neurons were found in the OE and ON, regardless of where the ON terminated. When the ON extended to the trigeminal ganglion, LHRH neurons could clearly be seen entering the metencephalon. Our results support the idea that LHRH neurons are dependent on the ON for guidance as they appear to follow the nerve even when it extends away from the brain. The cues which direct the ON and LHRH neurons to the telencephalon do not appear to be unique to this brain region.  相似文献   

6.
During embryogenesis, LHRH neurons arise in the olfactory epithelium, migrate along the olfactory nerve, and enter the forebrain. We have examined the distribution of several cell adhesion molecules (CAMs) in the developing chick olfactory system and brain to determine whether differential distributions of these adhesion molecules might be important in pathway choices made by migrating LHRH neurons. Single- and double-label immunocytochemical studies indicated that high levels of N-CAM and N-cadherin were expressed throughout the olfactory epithelium and not restricted to the medial half of the olfactory epithelium where most of the LHRH neurons originate. Further, high levels of N-CAM, Ng-CAM, and N-cadherin were uniformly expressed throughout the entire olfactory nerve while migrating LHRH neurons were confined to the medial half of the nerve. However, once LHRH neurons reach the brain, they migrate dorsally and caudally, tangential to the medial surface of the forebrain, along a region enriched in N-CAM and Ng-CAM. After this first stage of migration within the brain, LHRH neurons migrate laterally. At this stage, there is no correlation between the intensity of N-CAM and Ng-CAM immunostaining and the location of LHRH neurons. These results suggest that N-CAM, Ng-CAM, and N-cadherin do not play a guiding role in LHRH neuronal migration through the olfactory epithelium and olfactory nerve but that migrating LHRH neurons may follow a "CAM-trail" of N-CAM and Ng-CAM along the medial surface of the forebrain.  相似文献   

7.
LHRH was immunocytochemically localized within the olfactory bulb of prepubertal (n = 3), ovariectomized (n = 3), and hypophyseal-stalk-transected (HST) female pigs (n = 3). Perikarya of LHRH-immunoreactive neurons of all pigs were sparsely distributed mostly in the rostral half of the olfactory bulb, along the ventromedial and ventrolateral edge of the olfactory nerve layer, or at its interace with the glomerular layer. Processes from these cells and other LHRH containing axons either entered individual glomeruli forming a network within its interior or coursed around glomeruli penetrating into the external granular layers. Additional fibers penetrated into similar regions of the accessory olfactory bulb. Irregularly shaped perikarya were also detected within the internal granular layer of the ventral olfactory bulb, but only in tissue from HST pigs. From analysis of serial sections, there was no evidence of LHRH projections across the olfactory peduncle that connects the olfactory bulb with adjacent brain regions. If olfactory LHRH neurons are involved in reproductive behavior and physiology in the pig, this pathway involves additional unidentified intervening neurons. Endocrine factors probably influence the expression of immunoreactive LHRH in the internal granule layer, since their presence was revealed only in HST pigs.  相似文献   

8.
Summary In cichlid, poecilid and centrarchid fishes luteinizing hormone releasing hormone (LHRH)-immunoreactive neurons are found in a cell group (nucleus olfactoretinalis) located at the transition between the ventral telencephalon and olfactory bulb. Processes of these neurons project to the contralateral retina, traveling along the border between the internal plexiform and internal nuclear layer, and probably terminating on amacrine or bipolar cells. Horseradish peroxidase (HRP) injected into the eye or optic nerve is transported retrogradely in the optic nerve to the contralateral nucleus olfactoretinalis where neuronal perikarya are labeled. Labeled processes leave this nucleus in a rostral direction and terminate in the olfactory bulb. The nucleus olfactoretinalis is present only in fishes, such as cichlids, poecilids and centrarchids, in which the olfactory bulbs border directly the telencephalic hemispheres. In cyprinid, silurid and notopterid fishes, in which the olfactory bulbs lie beneath the olfactory epithelium and are connected to the telencephalon via olfactory stalks, the nucleus olfactoretinalis or a comparable arrangement of LHRH-immunoreactive neurons is lacking. After retrograde transport of HRP in the optic nerve of these fishes no labeling of neurons in the telencephalon occurred. It is proposed that the nucleus olfactoretinalis anatomically and functionally interconnects and integrates parts of the olfactory and optic systems.  相似文献   

9.
In the current study, we addressed two questions: First, is the olfactory placode necessary for the development of the olfactory bulb and the entire telencephalon? Second, does the olfactory placode contribute cells to the olfactory bulb? We addressed these questions by unilaterally ablating the olfactory placode in chick embryos before an olfactory nerve was produced and, in a second series of experiments, by replacing the ablated chick olfactory placode with a quail olfactory placode. Our results indicate that the olfactory placode is critical for olfactory bulb development, but is not necessary for the development of the rest of the telencephalon. Further, our results support the hypothesis that LHRH neurons and olfactory nerve glia originate in the olfactory placode, but do not support an olfactory placodal origin for other cell types within the olfactory bulb.  相似文献   

10.
Wray S 《Chemical senses》2002,27(6):569-572
Gonadotropin-releasing hormone (GnRH) neurons, critical for reproduction, are derived from the nasal placode and migrate into the brain along nasal axons. GnRH neurons appear to diverge from olfactory sensory cells during early stages of nasal placode differentiation. However, GnRH neurons rely on olfactory/vomeronasal axons as their pathway to the central nervous system (CNS). A novel factor, termed nasal embryonic luteinizing hormone-releasing hormone factor (NELF), was discovered in a differential screen of migrating versus nonmigrating GnRH neurons. NELF is expressed in olfactory sensory cells and GnRH cells in nasal areas. Antisense experiments demonstrated that knock-down of NELF decreased olfactory axon outgrowth and GnRH neuronal migration. These results indicate that NELF plays a role as a guidance molecule for olfactory axon projections and migration of GnRH cells. We hypothesize that NELF acts via a homophilic interaction and that NELF expression is critical for reproduction by insuring that GnRH cells reach the CNS. Furthermore, down-regulation of NELF on GnRH cells as they enter the telencephalon may allow GnRH cells to distinguish a different pathway(s) in the CNS (from those leading to olfactory regions) and thereby facilitate establishment of the appropriate adult-like GnRH distribution.  相似文献   

11.
Polysialic acid (PSA), a homopolymer attached to neural cell adhesion molecule (NCAM) is considered a major hallmark of vertebrate cell migration. We studied the distribution of PSA-NCAM by immunohistochemistry, during brain development, in two urodele amphibians, Pleurodeles waltl and the neotenic newt Ambystoma mexicanum. In both species a gradual increase of immunolabelling was observed throughout the brain from developmental stage 30 to stage 52. At the onset of metamorphosis, some differences became evident: in Pleurodeles immunostaining was gradually restricted to the olfactory system while in Ambystoma, PSA-NCAM maintained a more extended distribution (for example throughout the telencephalic walls) suggesting, for the brain of this latter species, a rather preserved neuronal plasticity. The aim of the present work was to correlate the above described PSA-NCAM-immunoreactivity (IR) with the distribution of luteinizing hormone-releasing hormone (LH-RH) containing neurons, which represent a well known example of neural elements migrating from the olfactory placode. LHRH-IR, undetectable till stage 30, was later found together with PSA-NCAM-IR in both the olfactory system and septo-hypothalamic areas. Such observations further support a role of PSA in providing a migration route toward the establishment of a part, at least, of the urodele LHRH system. The possible functional meaning of the LHRH-containing neurons localized between dorsal and ventral thalamus of Ambystoma, never reported before in this area, almost devoid of PSA-NCAM-IR, is discussed.  相似文献   

12.
The ventral skin of the wild Japanese newt Cynops pyrrhogaster is creamy at metamorphosis, but turns red when mature. The color of the ventral skin of laboratory (lab)‐reared newts stays yellow throughout their life. However, the mechanism for the red coloration of this animal still remains unknown. In this study, we have performed ultrastructural and carotenoid analyses of the red ventrum of wild and lab‐reared Japanese newts. Using electron microscopy, we observed a number of xanthophores having ring carotenoid vesicles (rcv) and homogenous carotenoid granules (hcg) in the ventral red skin of the wild newt. In the skin, β‐carotene and five other kinds of carotenoids were detected by thin‐layer chromatography (TLC). In the ventral yellow skin of lab‐reared newts, however, only β‐carotene and three other kinds of carotenoids were found. The total amount of carotenoids in the red skin of the wild adult newt was six times more than that of the yellow skin of the lab‐reared newt. Moreover, rcv were more abundant in xanthophores in red skin, but hcg were more abundant in yellow skin. These results, taken together, suggest that the presence of carotenoids in rcv in xanthophores is one of the critical factors for producing the red ventral coloration of the Japanese newt C. pyrrhogaster.  相似文献   

13.
The distribution of three types of arginine vasotocin (AVT) receptors in the brain and pituitary of the newt Cynops pyrrhogaster, namely, the V1a-, V2-, and V3/V1b-type receptors, was studied by means of in situ hybridization and immunohistochemistry. mRNA signals and immunoreactive cells for the V1a-type receptor were observed in the telencephalon (mitral layer of the olfactory bulb, dorsal and medial pallium, lateral and medial amygdala, bed nucleus of the decussation of the fasciculus telencephali, bed nucleus of the stria terminalis), diencephalon (anterior preoptic area, magnocellular preoptic nucleus, suprachiasmatic nucleus, ventral thalamus, dorsal and ventral hypothalamic nucleus), mesencephalon (tegmentum, interpeduncular nucleus), and medulla oblongata (median reticular formation, nucleus motorius tegmenti). Cells expressing the V2-type receptor were found in the telencephalon (medial pallium, lateral and medial amygdala, bed nucleus of the decussation of the fasciculus telencephali), and mesencephalon (tegmentum trigemini and facialis). In the paraphysis (possibly the main site of cerebrospinal fluid production), only V2-type receptor mRNA signal and immunoreactivity were detected. V3/V1b-type receptor mRNA was expressed in the diencephalon (dorsal hypothalamic nucleus, nucleus tuberculi posterioris), mesencephalon (tegmentum, interpeduncular nucleus), and medulla oblongata (raphe nucleus), whereas V3/V1b-type-receptor-like immunoreactivity was scarcely detectable in the entire brain. The V3/V1b-type receptor was predominantly expressed in the anterior pituitary. V3/V1b-type receptor and proopiomelanocortin mRNAs were co-localized in the distal lobe of the pituitary. This is the first report of the distribution of three types of AVT receptor in the brain and pituitary of non-mammalian vertebrates.  相似文献   

14.
The olfactory epithelium in vertebrates generates the olfactory sensory neurons and several migratory cell types. Prominent among the latter are the gonadotropin-releasing hormone (GnRH) neurons that differentiate within the olfactory epithelium during embryogenesis and migrate along the olfactory nerve to the central nervous system. We initiated studies to characterize additional neuronal phenotypes of olfactory epithelial derivation. Neuropeptide Y (NPY) neurons are functionally related to the reproductive axis, modulating the release of GnRH and directly enhancing GnRH-induced luteinizing hormone (LH) secretion from gonadotrophs. We demonstrate that a population of migratory NPY neurons originates within the olfactory epithelium of the chick. At stage 25, NPY-positive fibers, but not cells, were detected in the epithelium and the nerve. By stages 28–34, NPY neurons and processes were present in the olfactory epithelium, olfactory nerve, and at the junction of the olfactory nerve and forebrain. In these regions the number of NPY neurons increased until stage 30 and then declined as development progressed. Electron microscopic immunocytochemistry confirmed the neuronal phenotype of the NPY-positive cells. The origin and migratory nature of some of these NPY cells was confirmed by double-label immunocytochemical detection of NPY and GnRH. A large percentage of the NPY-cells coexpressed the GnRH peptide. Between stages 28 and 34 single- and double-labeled NPY and GnRH neurons were found side by side along the GnRH migratory route emanating from the nasal epithelium, along the olfactory nerve, and into the ventral forebrain. These data suggest that an NPY population originates in the olfactory epithelium and migrates into the central nervous system during embryogenesis. By stage 42, no NPY/GnRH double-labeled cells were detected. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
16.
In previous work, we showed a robust γ-aminobutyric acid (GABAergic) synaptic input onto embryonic luteinizing hormone-releasing hormone (LHRH) neurons maintained in olfactory explants. In this study, we identify GABAergic neurons in olfactory pit (OP) of embryonic micein vivoand study, using patch-pipet whole-cell current and voltage clamp techniques, synaptic interactions of these neurons in explant cultures.In vivo,glutamate decarboxylase (GAD, the enzyme which synthesizes GABA) mRNA was first detected in nasal regions on Embryonic Day (E) 11.5. From E12.5 to E13.5, robust GAD expression was localized to cells primarily in the ventral aspect of the OP. GAD mRNA was not detected over dorsally located cells in olfactory sensory or respiratory epithelium. In addition, GAD mRNA was not observed in cells along olfactory axons. GAD mRNA was dramatically reduced in the OP/vomeronasal organ by E16.5. Using antibodies against both GABA and GAD, immunopositive axonal-like tracts were detected in the nasal septum on E12.5. GABAergic staining decreased by E13.5. To examine synaptic interactions of these GABAergic cells, embryonic olfactory explants were generated and maintained in serum-free media. As explants spread, neuron-like cells migrated into the periphery, sometimes forming ganglion-like clusters. Cells were recorded, marked intracellularly with Lucifer Yellow and post-fixation, immunocytochemically examined. Forty-six cells, typically multipolar, were GABAergic, had resting potentials around −50 mV, and exhibited spontaneous action potentials which were generated by spontaneous depolarizing GABAergic (GABAA) synaptic activity. OP neurons depolarized in response to GABA by increasing Clconductance. The biophysical properties of OP-derived GABAergic neurons were distinct from those reported for olfactory receptor neurons but similar to embryonic LHRH neurons. However, unlike LHRH neurons, GABAergic neurons did not migrate large distances in olfactory explants or appear to leave the olfactory pitin vivo.  相似文献   

17.
Summary The distribution of serotonin (5-HT) immunoreactive structures has been investigated in the brain of the crested newt by means of indirect immunofluorescence, and unlabeled antibody peroxidase-antiperoxidase-complex (PAP) or biotin-avidin-system (BAS) techniques. In the newt, the bulk of the serotoninergic system extends from the raphe region of the medulla oblongata, through the isthmus, toward the mesencephalic tegmentum, and is characterized by pyriform neurons mainly located in a subependymal position, close to the midline. Also in the caudal hypothalamus, in addition to some 5-HT-positive adenohypophysial cells, many immunoreactive CSF-contacting neurons are found lining the paraventricular organ and the nucleus infundibularis dorsalis. A rich serotoninergic innervation was observed in the preoptic area and in the habenular complex. Concerning the telencephalon, immunopositive nerve fibers are encountered in the dorsal pallium, primordium hippocampi, striatum and olfactory bulbs. The general organization of serotoninergic systems in the newt brain exhibit close similarities to that described in higher vertebrates.  相似文献   

18.
The ultrastructure of the endolymphatic sac (ES) of the late stage larva of the Japanese red-bellied newt, Cynops pyrrhogaster (stage 57), was examined by light and transmission electron microscopy. The two endolymphatic sacs are located at the dorsal-medial side of the otic vesicle on the dorsal-lateral side of the midbrain in the cranial cavity. The wall of the sac is composed of a layer of cubical epithelial cells with loose, interposed intercellular spaces. The sac contains a large luminal cavity, in which endolymph and numerous otoconia are present. The epithelial cells of different portions of the sac have a similar structure. These cells contain an abundance of cytoplasmic organelles, including ribosomes, Golgi complexes, and numerous vesicles. Two types of vesicles are found in the epithelial cells: the “floccular” vesicle and the “granular” vesicle. The floccular vesicles are located in the supra- and lateral-nuclear cytoplasm and contain flocccular material. The granular vesicles have a fine granular substance and are usually situated apposed to the apical cell membrane. The granular vesicles are suggested to be secreted into the lumen, while the floccular vesicles are thought to be absorbed from the lumen and conveyed to the intercellular spaces by the epithelial cells. The apical surfaces of the epithelial cells bear numerous microvilli. Apparently floating cells, which bear long microvilli on the free surfaces, are observed in the lumen of the ES. Based on the fine structure, the function of the endolymphatic sac of the newt Cynops pyrrhogaster is discussed.  相似文献   

19.
Summary 1. Two LHRH neuronal cell lines were developed by targeted tumorigenesis of LHRH neuronsin vivo. These cell lines (GN and GT-1 cells) represent a homogeneous population of neurons. GT-1 cells have been further subcloned to produce the GT1-1, GT1-3, and GT1-7 cell lines. While considerable information is accumulating about GT-1 cells, very little is currently known about the characteristics and responses of GN cells.2. By both morphological and biochemical criteria, GT-1 cells are clearly neurons. All GT-1 cells immunostain for LHRH and the levels of prohormone, peptide intermediates, and LHRH in the cells and medium are relatively high.3. GT-1 cells biosynthesize, process, and secrete LHRH. Processing of pro-LHRH appears to be very similar to that reported for LHRH neuronsin vivo. At least four enzymes may be involved in processing the prohormone to LHRH.4. LHRH neurons are unique among the neurons of the central nervous system because they arise from the olfactory placode and grow back into the preoptic-anterior hypothalamic region of the brain. Once these neurons reach this location, they send their axons to the median eminence. With respect to the immortalized neurons, GN cells were arrested during their transit to the brain. In contrast, GT-1 cells were able to migrate to the preoptic-anterior hypothalamic region but were unable correctly to target their axons to the median eminence. These problems in migration and targeting appear to be due to expression of the simian virus T-antigen.5. While GT-1 cells are a homogeneous population of neurons, they are amenable to coculture with other types of cells. Coculture experiments currently under way should help not only to reveal some of the molecular and cellular cues that are important for neuronal migration and axonal targeting, but they should also highlight the nature of the cellular interactions which normally occurin situ.6. GT-1 cells spontaneously secrete LHRH in a pusatile manner. The interpulse interval for LHRH from these cells is almost identical to that reported for release of LH and LHRHin vivo. GT-1 cells are interconnected by both gap junctions and synapses. The coordination and synchronization of secretion from these cells could occur through these interconnections, by feedback from LHRH itself, and/or by several different compounds that are secreted by these cells. One such compound is nitric oxide.7. GT-1 cells have Na+, K+, Ca2+, and Cl channels. Polymerase chain reaction experiments coupled with Southern blotting and electrophysiological recordings reveal that GT-1 cells contain at least five types of Ca2+ channels. R-type Ca2+ channels appear to be the most common type of channel and this channel is activated by phorbol esters in the GT-1 cells.8. LHRH is secreted from GT-1 cells in response to norepinephrine, dopamine, histamine, GABA (GABA-A agonists), glutamate, nitric oxide, neuropeptide Y, endothelin, prostaglandin E2, and activin A. Phorbol esters are very potent stimulators of LHRH secretion. Inhibition of LHRH release occurs in response to LHRH, GABA (GABA-B agonists), prolactin, and glucocorticoids.9. Compared to secretion studies, far fewer agents have been tested for their effects on gene expression. All of the agents which have been tested so far have been found either to repress LHRH gene expression or to have no effect. The agents which have been reported to repress LHRH steady-state mRNA levels include LHRH, prolactin, glucocorticoids, nitric oxide, and phorbol esters. While forskolin stimulates LHRH secretion, it does not appear to have any effect on LHRH mRNA levels.  相似文献   

20.
Partial deafferentation of the olfactory bulb in Xenopus embryos was performed to analyze the effects of afferent innervation on the development of the central olfactory structure. In an attempt to analyze a possible early inductive role of the olfactory axons, one olfactory placode was removed before differentiation of the neural tube began (stages 26–31). A morphological and quantitative analysis was performed on larvae at the onset of metamorphic climax (stage 58). When the single olfactory nerve innervated one side of the rostral telencephalon, a single olfactory bulb developed on that side and no olfactory bulb formed on the contralateral side. When the nerve innervated the midline of the rostral telencephalon, a smaller-than-normal, fused olfactory bulb developed. Partial deafferentation at these early stages resulted in a significant reduction in the number of olfactory axons (to approximately one-half of control values) and a corresponding decrease in the number of mitral/tufted cells (output neurons of the olfactory bulb). To control for possible damage to the neural tube during olfactory-placode removal, a portion of the neural tube directly beneath one of the olfactory placodes was removed in embryos. In these animals, the neural tube regenerated within 24 h and formed a normal olfactory bulb; olfactory axon and mitral/tufted-cell numbers were not significantly different from controls. In conclusion, olfactory-afferent innervation was critical for differentiation of the olfactory bulb, and decreasing the number of olfactory axons resulted in a reduction in the number of output neurons of the olfactory bulb. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号