首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
Sequential 1H resonance assignments and secondary structural features of putidaredoxin (Pdx), a 106-residue globular protein consisting of a single polypeptide chain and a [2Fe-2S] cluster, are reported. No crystal structure has been obtained for Pdx or for any closely homologous protein. The sequentially assigned resonances represent ca. 83% of all the protons in Pdx and a large majority of those protons which are unaffected by the paramagnetism of the iron-sulfur cluster. A total of three alpha-helices, two beta-sheets, and two type I beta-turns have been identified from NOE (nuclear Overhauser effect) patterns. Besides the extensive beta-sheet described previously, a second sheet is identified, consisting of two short antiparallel strands (Ile 89-Thr 91 and Val 21-Leu 23), one of which ends in a tight type I turn (Thr 91-Pro 92-Glu 93-Leu 94). One short helix (Ala 26-Gly 31) and a second longer helical region (Glu 54-Cys 73) are present. This second helical region is discontinuous, breaking at Pro 61, resuming at Glu 65, and ending at Cys 73. The functionally important C-terminal tryptophan residue has been identified, and some structural constraints on this residue are described. Previously reported functional data concerning Pdx are discussed in light of present structural information. Finally, approaches to the determination of a high-resolution solution structure of the protein are discussed.  相似文献   

2.
Stability of the [2Fe-2S]-containing putidaredoxin (Pdx), the electron donor to cytochrome P450cam in Pseudomonas putida, was improved by mutating non-ligating cysteine residues, Cys73 and Cys85, to serine singly and in combination. The increasing order of stability is Cys73Ser/Cys85Ser>Cys73Ser>Cys85Ser>WT Pdx. Crystal structures of Cys73Ser/Cys85Ser and Cys73Ser mutants of Pdx, solved by single-wavelength anomalous dispersion phasing using the [2Fe-2S] iron atoms to 1.47 A and 1.65 A resolution, respectively, are nearly identical and very similar to those of bovine adrenodoxin (Adx) and Escherichia coli ferredoxin. However, unlike the Adx structure, no motion between the core and interaction domains of Pdx is observed. This higher conformational stability of Pdx might be due to the presence of a more extensive hydrogen bonding network at the interface between the two structural domains around the conserved His49. In particular, formation of a hydrogen bond between the side-chain of Tyr51 and the carbonyl oxygen atom of Glu77 and the presence of two well-ordered water molecules linking the interaction domain and the C-terminal peptide to the core of the molecule are unique to Pdx. The folding topology of the NMR model is similar to that of the X-ray structure of Pdx. The overall rmsd of Calpha positions between the two models is 1.59 A. The largest positional differences are observed for residues 18-21 and 33-37 in the loop regions and the C terminus. The latter two peptides display conformational heterogeneity in the crystal structures. Owing to flexibility, the aromatic ring of the C-terminal Trp106 can closely approach the side-chains of Asp38 and Thr47 (3.2-3.9 A) or move away and leave the active site solvent-exposed. Therefore, Trp106, previously shown to be important in the Pdr-to-Pdx and Pdx-to-P450cam electron transfer reactions is in a position to regulate and/or mediate electron transfer to or from the [2Fe-2S] center of Pdx.  相似文献   

3.
Interaction and electron transfer between putidaredoxin reductase (Pdr) and putidaredoxin (Pdx) from Pseudomonas putida was studied by molecular modeling, mutagenesis, and stopped flow techniques. Based on the crystal structures of Pdr and Pdx, a complex between the proteins was generated using computer graphics methods. In the model, Pdx is docked above the isoalloxazine ring of FAD of Pdr with the distance between the flavin and [2Fe-2S] of 14.6 A. This mode of interaction allows Pdx to easily adjust and optimize orientation of its cofactor relative to Pdr. The key residues of Pdx located at the center, Asp(38) and Trp(106), and at the edge of the protein-protein interface, Tyr(33) and Arg(66), were mutated to test the Pdr-Pdx computer model. The Y33F, Y33A, D38N, D38A, R66A, R66E, W106F, W106A, and Delta106 mutations did not affect assembly of the [2Fe-2S] cluster and resulted in a marginal change in the redox potential of Pdx. The electron-accepting ability of Delta106 Pdx was similar to that of the wild-type protein, whereas electron transfer rates from Pdr to other mutants were diminished to various degrees with the smallest and largest effects on the kinetic parameters of the Pdr-to-Pdx electron transfer reaction caused by the Trp(106) and Tyr(33)/Arg(66) substitutions, respectively. Compared with wild-type Pdx, the binding affinity of all studied mutants to Pdr was significantly higher. Experimental results were in agreement with theoretical predictions and suggest that: (i) Pdr-Pdx complex formation is mainly driven by steric complementarity, (ii) bulky side chains of Tyr(33), Arg(66), and Trp(106) prevent tight binding of oxidized Pdx and facilitate dissociation of the reduced iron-sulfur protein from Pdr, and (iii) transfer of an electron from FAD to [2Fe-2S] can occur with various orientations between the cofactors through multiple electron transfer pathways that do not involve Trp(106) but are likely to include Asp(38) and Cys(39).  相似文献   

4.
Kakuta Y  Horio T  Takahashi Y  Fukuyama K 《Biochemistry》2001,40(37):11007-11012
Escherichia coli ferredoxin (Fdx) is an adrenodoxin-type [2Fe-2S] ferredoxin. Recent genetic analyses show that it has an essential role in the maturation of various iron-sulfur (Fe-S) proteins. Fdx probably functions as a component of the complex machinery responsible for the biogenesis of Fe-S clusters. Its crystal structure was determined by the multiple-wavelength anomalous dispersion method using the iron atoms in the [2Fe-2S] cluster of the protein and then refined to R and R(free) values of 0.255 and 0.278, respectively, at 1.7 A resolution. The structure of Fdx is similar to the structures of bovine adrenodoxin (Adx) and Pseudomonas putida putidaredoxin (Pdx) whose respective root-mean-square deviations of the corresponding Calpha atoms are 1.8 and 2.2 A. This analysis also revealed the structure of the C-terminal residues protruding into the solvent, which is missing in Adx and Pdx. The [2Fe-2S] cluster is located at the edge of the molecule and bonds with the Sgamma atoms of Cys42, Cys48, Cys51, and Cys87. Electrostatic potential analysis showed that the surface of Fdx has two negatively charged areas separated by a hydrophobic lane. One is conserved on the surface of Adx which is an area of interaction with adrenodoxin reductase. Cys46 is located on the molecular surface in the vicinity of the [2Fe-2S] cluster, an indication that it may be involved in Fe-S cluster formation.  相似文献   

5.
Putidaredoxin (Pdx), a vertebrate-type [2Fe-2S] ferredoxin from Pseudomonas putida, transfers electrons from NADH-putidaredoxin reductase to cytochrome P450cam. Pdx exhibits redox-dependent binding affinities for P450cam and is thought to play an effector role in the monooxygenase reaction catalyzed by this hemoprotein. To understand how the reduced form of Pdx is stabilized and how reduction of the [2Fe-2S] cluster affects molecular properties of the iron-sulfur protein, crystal structures of reduced C73S and C73S/C85S Pdx were solved to 1.45 angstroms and 1.84 angstroms resolution, respectively, and compared to the corresponding 2.0 angstroms and 2.03 angstroms X-ray models of the oxidized mutants. To prevent photoreduction, the latter models were determined using in-house radiation source and the X-ray dose received by Pdx crystals was significantly decreased. Structural analysis showed that in reduced Pdx the Cys45-Ala46 peptide bond flip initiates readjustment of hydrogen bonding interactions between the [2Fe-2S] cluster, the Sgamma atoms of the cysteinyl ligands, and the backbone amide nitrogen atoms that results in tightening of the Cys39-Cys48 metal cluster binding loop around the prosthetic group and shifting of the metal center toward the Cys45-Thr47 peptide. From the metal center binding loop, the redox changes are transmitted to the linked Ile32-Asp38 peptide triggering structural rearrangement between the Tyr33-Asp34, Ser7-Asp9 and Pro102-Asp103 fragments of Pdx. The newly established hydrogen bonding interactions between Ser7, Asp9, Tyr33, Asp34, and Pro102, in turn, not only stabilize the tightened conformation of the [2Fe-2S] cluster binding loop but also assist in formation of a specific structural patch on the surface of Pdx that can be recognized by P450cam. This redox-linked change in surface properties is likely to be responsible for different binding affinity of oxidized and reduced Pdx to the hemoprotein.  相似文献   

6.
The hyperfine-shifted 1H NMR resonances of oxidized and reduced Trichomonas vaginalis ferredoxin, a functionally unique [2Fe-2S] ferredoxin, have been studied. The oxidized protein spectrum displayed a pattern of six broad upfield-shifted resonances between 13 and 40 ppm with chemical shifts distinct from those of other [2Fe-2S] ferredoxins. All hyperfine 1H resonances of the oxidized ferredoxin displayed anti-Curie temperature dependences. Reduced T. vaginalis ferredoxin displayed hyperfine resonances both upfield and downfield of the diamagnetic region. These resonances showed Curie temperature dependences. Overall the hyperfine-shifted NMR spectrum of T. vaginalis ferredoxin, along with other spectroscopic properties, suggested different structural properties for the active center of oxidized hydrogenosomal ferredoxins from those of other [2Fe-2S] ferredoxins.  相似文献   

7.
Mo H  Pochapsky SS  Pochapsky TC 《Biochemistry》1999,38(17):5666-5675
Terpredoxin (Tdx) is a 105-residue bacterial ferredoxin consisting of a single polypeptide chain and a single Fe2S2 prosthetic group. Tdx was first identified in a strain of Pseudomonas sp. capable of using alpha-terpineol as sole carbon source. The Tdx gene, previously cloned from the plasmid-encoded terp operon, that carries genes encoding for proteins involved in terpineol catabolism, has been subcloned and expressed as the holoprotein in E. coli. Physical characterization of the expressed Tdx has been performed, and a model for the solution structure of oxidized Tdx (Tdxo) has been determined. High-resolution homo- and heteronuclear NMR data have been used for structure determination in diamagnetic regions of the protein. The structure of the metal binding site (which cannot be determined directly by NMR methods due to paramagnetic broadening of resonances) was modeled using restraints obtained from a crystal structure of the homologous ferredoxin adrenodoxin (Adx) and loose restraints determined from paramagnetic broadening patterns in NMR spectra. Essentially complete 1H and 15N NMR resonance assignments have been made for the diamagnetic region of Tdxo (ca. 80% of the protein). A large five-stranded beta-sheet and a smaller two-stranded beta-sheet were identified, along with three alpha-helices. A high degree of structural homology was observed between Tdx and two other ferredoxins with sequence and functional homology to Tdx for which structures have been determined, Adx and putidaredoxin (Pdx), a homologous Pseudomonas protein. 1H/2H exchange rates for Tdx backbone NH groups were measured for both oxidation states and are rationalized in the context of the Tdx structure. In particular, an argument is made for the importance of the residue following the third ligand of the metal cluster (Arg49 in Tdx, His49 in Pdx, His56 in Adx) in modulating protein dynamics as a function of oxidation state. Some differences between Tdx and Pdx are detected by UV-visible spectroscopy, and structural differences at the C-terminal region were also observed. Tdx exhibits only 2% of the activity of Pdx in turnover assays performed using the reconstituted camphor hydroxylase system of which Pdx is the natural component.  相似文献   

8.
The structure of aconitase   总被引:15,自引:0,他引:15  
A H Robbins  C D Stout 《Proteins》1989,5(4):289-312
The crystal structure of the 80,000 Da Fe-S enzyme aconitase has been solved and refined at 2.1 A resolution. The protein contains four domains; the first three from the N-terminus are closely associated around the [3Fe-4S] cluster with all three cysteine ligands to the cluster being provided by the third domain. Association of the larger C-terminal domain with the first three domains creates an extensive cleft leading to the Fe-S cluster. Residues from all four domains contribute to the active site region, which is defined by the Fe-S cluster and a bound SO4(2-) ion. This region of the structure contains 4 Arg, 3 His, 3 Ser, 2 Asp, 1 Glu, 3 Asn, and 1 Gln residues, as well as several bound water molecules. Three of these side chains reside on a three-turn 3(10) helix in the first domain. The SO4(2-) ion is bound 9.3 A from the center of the [3Fe-4S] cluster by the side chains of 2 Arg and 1 Gln residues. Each of 3 His side chains in the putative active site is paired with Asp or Glu side chains.  相似文献   

9.
An N-terminal domain of Clostridium pasteurianum hydrogenase I, encompassing 76 residues out of the 574 composing the full-size enzyme, had previously been overproduced in Escherichia coli and shown to form a stable fold around a [2Fe-2S] cluster. This domain displays only marginal sequence similarity with [2Fe-2S] proteins of known structure, and therefore, two-dimensional 1H NMR has been implemented to elucidate features of the polypeptide fold. Despite the perturbing presence of the paramagnetic [2Fe-2S] cluster, 57 spin systems were detected in the TOCSY spectra, 52 of which were sequentially assigned through NOE connectivities. Several secondary structure elements were identified. The N terminus of the protein consists of two antiparallel beta strands followed by an alpha helix contacting both strands. Two additional antiparallel beta strands, one of them at the C terminus of the sequence, form a four-stranded beta sheet together with the two N-terminal strands. The proton resonances that can be attributed to this beta2alphabeta2 structural motif undergo no paramagnetic perturbations, suggesting that it is distant from the [2Fe-2S] cluster. In plant- and mammalian-type ferredoxins, a very similar structural pattern is found in the part of the protein farthest from the [2Fe-2S] cluster. This indicates that the N-terminal domain of C. pasteurianum hydrogenase folds in a manner very similar to those of plant- and mammalian-type ferredoxins over a significant part (ca. 50%) of its structure. Even in the vicinity of the metal site, where 1H NMR data are blurred by paramagnetic interactions, the N-terminal domains of hydrogenase and mammalian- and plant-type ferredoxins most likely display significant structural similarity, as inferred from local sequence alignments and from previously reported circular dichroism and resonance Raman spectra. These data afford structural information on a kind of [2Fe-2S] cluster-containing domain that occurs in a number of redox enzymes and complexes. In addition, together with previously published sequence alignments, they highlight the widespread distribution of the plant-type ferredoxin fold in bioenergetic systems encompassing anaerobic metabolism, photosynthesis, and aerobic respiratory chains.  相似文献   

10.
11.
Jain NU  Tjioe E  Savidor A  Boulie J 《Biochemistry》2005,44(25):9067-9078
Structural differences in the [2Fe-2S] ferredoxin, putidaredoxin (Pdx), from the camphor hydroxylation pathway of Pseudomonas putida have been investigated as a function of oxidation state of the iron cluster. Pdx is involved in biological electron transfer to cytochrome P450(cam) (CYP101). Redox-dependent differences have been observed previously for Pdx in terms of binding affinities to CYP101, NMR spectral differences, and dynamic properties. To further characterize these differences, structure refinement of both oxidized and reduced Pdx has been carried out using a hybrid approach utilizing paramagnetic distance restraints and NMR orientational restraints in the form of backbone (15)N residual dipolar couplings. Use of these new restraints has improved the structure of oxidized Pdx considerably over the earlier solution NMR structure without RDC restraints, with the new structure now much closer in overall fold to the recently published X-ray crystal structures. We now observe better defined relative orientations of the major secondary structure elements as also of the conformation of the metal binding loop region. Extension of this approach to structure calculation of reduced Pdx has identified structural differences that are primarily localized for residues in the C-terminal interaction domain consisting of the functionally important residue Trp 106 and regions near the metal binding loop in Pdx. These redox-dependent structural differences in Pdx correlate to dynamic changes observed before and may be linked to differences in binding and electron transfer properties between oxidized and reduced Pdx.  相似文献   

12.
Overexpression in Escherichia coli of the fdx4 gene from Aquifex aeolicus has allowed isolation and characterization of the first hyperthermophilic [2Fe-2S](Scys)(4) protein, a homodimer of M = 2 x 12.4 kDa with one [2Fe-2S] cluster per subunit. This protein is undamaged by heating to 100 degrees C for at least three hours. The primary structure, in particular the characteristic distribution of the four cysteine ligands of the metal site, and the spectroscopic properties of the A. aeolicus protein relate it to well characterized [2Fe-2S] proteins from Clostridium pasteurianum and Azotobacter vinelandii. These proteins are also homologous to subunits or domains of hydrogenases and NADH-ubiquinone oxidoreductase (Complex I) of respiratory chains. The A. aeolicus [2Fe-2S] protein is thus representative of a presumably novel protein fold involved in a variety of functions in very diverse cellular backgrounds.  相似文献   

13.
The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. M?ssbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.  相似文献   

14.
15.
Structures of mitochondrial bc1 complex have been reported based on four different crystal forms by three different groups. In these structures, the extrinsic domain of the Rieske [2Fe-2S] protein, surprisingly, appeared at three different positions: the "c1" position, where the [2Fe-2S] cluster exists in close proximity to the heme c1; the "b" position, where the [2Fe-2S] cluster exist in close proximity to the cytochrome b; and the "intermediate" position where the [2Fe-2S] cluster exists in-between "c1" and "b" positions. The conformational changes between these three positions can be explained by a combination of two rotations; (1) a rotation of the entire extrinsic domain and (2) a relative rotation between the cluster-binding fold and the base fold within the extrinsic domain. The hydroquinone oxidation and the electron bifurcation mechanism at the Q(P) binding pocket of the bc1 complex is well explained using these conformational changes of the Rieske [2Fe-2S] protein.  相似文献   

16.
Cooper SJ  Garner CD  Hagen WR  Lindley PF  Bailey S 《Biochemistry》2000,39(49):15044-15054
The three-dimensional structure of the hybrid cluster protein from Desulfovibrio vulgaris (Hildenborough) has been determined at 1.6 A resolution using synchrotron X-ray radiation. The protein can be divided into three domains: an N-terminal mainly alpha-helical domain and two similar domains comprising a central beta-sheet flanked by alpha-helices. The protein contains two 4Fe clusters with an edge-to-edge distance of 10.9 A. Four cysteine residues at the N-terminus of the protein are ligands to the iron atoms of a conventional [4Fe-4S] cubane cluster. The second cluster has an unusual asymmetric structure and has been named the hybrid cluster to reflect the variety of protein ligands, namely two mu-sulfido bridges, two mu(2)-oxo bridges, and a further disordered bridging ligand. Anomalous differences in data collected at 1.488 A and close to the iron edge at 1.743 A have been used to confirm the identity of the metal and sulfur atoms. The hybrid cluster is buried in the center of the protein, but is accessible through a large hydrophobic cavity that runs the length of domain 3. Hydrophobic channels have previously been identified as access routes to the active centers in redox enzymes with gaseous substrates. The hybrid cluster is also accessible by a hydrophilic channel. The [4Fe-4S] cubane cluster is close to an indentation on the surface of the protein and can also be approached on the opposite side by a long solvent channel. At the present time, neither the significance of these channels nor, indeed, the function of the hybrid cluster protein is known.  相似文献   

17.
The bidirectional hydrogenase from Clostridium pasteurianum W5 is an iron-sulfur protein containing approximately 12 Fe atoms and 12 labile sulfides. We have studied oxidized samples of the enzyme with M?ssbauer and electron nuclear double resonance (ENDOR) spectroscopy to elucidate the nature of the center that gives rise to the EPR signal with principal g-values at 2.10, 2.04, and 2.01. The g = 2.10 center exhibits two well-resolved 57Fe ENDOR resonances. One is isotropic with A1 = 9.5 MHz; the other is nearly isotropic with A2 = 17 MHz. These magnetic hyperfine coupling constants are substantially (approximately 50%) smaller than those observed for [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters. The M?ssbauer and ENDOR data, taken together, suggest that the g = 2.10 center contains at least two but not more than four iron atoms. Comparison of our data with recent results reported for Escherichia coli sulfite reductase and the ferricyanide-treated [4Fe-4S] cluster from Azotobacter vinelandii ferredoxin I suggests that the g = 2.10 center may possibly be formed, by oxidation, from a structure with a [4Fe-4S] core. The M?ssbauer spectra give evidence that at least 8 of the 12 Fe atoms of oxidized hydrogenase are organized in two ferredoxin-type [4Fe-4S] clusters, supporting conclusions derived previously from EPR studies of the reduced enzyme.  相似文献   

18.
The crystal structure of Escherichia coli adenylate kinase (AKe) revealed three main components: a CORE domain, composed of a five-stranded parallel beta-sheet surrounded by alpha-helices, and two peripheral domains involved in covering the ATP in the active site (LID) and binding of the AMP (NMPbind). We initiated a long-term NMR study aiming to characterize the solution structure, binding mechanism and internal dynamics of the various domains. Using single (15N) and double-labeled (13C and 15N) samples and double- and triple-resonance NMR experiments we assigned 97% of the 1H, 13C and 15N backbone resonances, and proton and 13Cbeta resonances for more than 40% of the side chains in the free protein. Analysis of a 15N-labeled enzyme in complex with the bi-substrate analogue [P1,P5-bis(5'-adenosine)-pentaphosphate] (Ap5A) resulted in the assignment of 90% of the backbone 1H and 15N resonances and 42% of the side chain resonances. Based on short-range NOEs and 1H and 13C secondary chemical shifts, we identified the elements of secondary structure and the topology of the beta-strands in the unliganded form. The alpha-helices and the beta-strands of the parallel beta-sheet in solution have the same limits (+/- 1 residue) as those observed in the crystal. The first helix (alpha1) appears to have a frayed N-terminal side. Significant differences relative to the crystal were noticed in the LID domain, which in solution exhibits four antiparallel beta-strands. The secondary structure of the nucleoside-bound form, as deduced from intramolecular NOEs and the 1Halpha chemical shifts, is similar to that of the free enzyme. The largest chemical shift differences allowed us to map the regions of protein-ligand contacts. 1H/2H exchange experiments performed on free and Ap5A-bound enzymes showed a general decrease of the structural flexibility in the complex which is accompanied by a local increased flexibility on the N-side of the parallel beta-sheet.  相似文献   

19.
The presence of a linear [3Fe-4S] cluster in a protein was first observed in beef-heart aconitase. Here, we report the formation of linear [3Fe-4S] clusters upon guanidine hydrochloride (GuHCl)-induced unfolding of Aquifex aeolicus [2Fe-2S] ferredoxins (Fd) (AaeFd1, AaeFd4, and AaeFd5) at alkaline conditions (pH 10, 20 degrees C). We find the mechanism of linear [3Fe-4S] cluster formation to depend critically on the speed of polypeptide unfolding. In similarity to seven-iron Fds, polypeptide unfolding determines the rate by which linear [3Fe-4S] clusters form in AaeFd4 and AaeFd5. In contrast, in a disulfide-lacking variant of AaeFd1, which unfolds faster than AaeFd4 and AaeFd5, the polypeptides unfold first and the majority of clusters decompose. Next, unfolded polypeptides retaining intact clusters scavenge iron and sulfur to form linear [3Fe-4S] clusters in a bimolecular reaction. Wild-type AaeFd1 unfolds slower than the speed of linear-cluster decomposition, and the linear species is never populated. Linear [3Fe-4S] clusters may be intermediates during folding of iron-sulfur proteins.  相似文献   

20.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号