首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five sexually differentiated enzyme activities of hepatic steroid metabolism (cytoplasmic 17 beta-hydroxysteroid dehydrogenase, 5 beta-reductase; microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and 5 alpha-reductase) were investigated in intact, gonadectomized and hypophysectomized rats after administration of a single dose of oestradiol valerate. Oestradiol administration caused a partial or complete feminization of these activities in intact male rats. The influence of oestradiol on these activities in gonadectomized rats was determined by the mode of sex hormone-dependent regulation of the individual activity: the most prominent effects were seen in the oestrogen-dependent activities (17 beta-hydroxysteroid dehydrogenase, 5 beta-reductase); no effect was seen in the completely androgen-dependent 3 alpha-hydroxysteroid dehydrogenase because gonadectomy alone was sufficient to cause complete feminization of the activity. Oestradiol administration had no effect on the activities of hypophysectomized rats. The fact that oestrogen administration to intact male rats caused greater changes than prepuberal gonadectomy demonstrates that oestrogen action is more than simple suppression of testicular function.  相似文献   

2.
In order to determine whether the gonadal and hypophyseal modes of regulation recently reported for the microsomal enzymes of hepatic steroid metabolism are also valid for cytoplasmic enzymes, three enzymes whose activities exhibit sex differences (male:female activity ratio shown in brackets), 5beta-reductase(1.7:1), 20alpha-hydroxysteroid dehydrogenase(5 : 1) and 17beta-hydroxysteroid dehydrogenase (4:1), as well as one enzyme whose activity shows no sex difference, 3beta-hydroxy-delta5-steroid dehydrogenase, were investigated after various interferences with the endocrine balance (gonadectomy, hypophysectomy, combination of both operations, administration of testosterone or oestradiol). From the results of this and a previous study the following statements can be made about the endocrine control of hepatic enzyme activities. Those enzymes whose activities show sex differences are either androgen or oestrogen dependent; the sex hormone acts in either an inductive or repressive manner. 1) Criteria for androgen dependency are the feminization of enzyme activity after testectomy or inhibition of testicular function by administration of oestradiol; masculinization of the enzyme activity after administration of testosterone to male or female castrates. Using these criteria the following enzymes investigated in this laboratory fall into this category: all microsomal enzymes which show sex differences in their activity (3alpha-, 3beta-, delta4-3beta, 20-hydroxysteroid dehydrogenase; cortisone alpha-reductase; steroid hydroxylases and 16alpha-hydroxylase) as well as the cytoplasmic 20alpha-hydroxysteroid dehydrogenase. Apart from the single exception of 20alpha-hydroxy-steroid dehydrogenase the presence of the hypophysis is obligatory for the androgen to be effective. The hypophysis does not only work in a permissive manner, but participates in establishing the sex specific activity levels in a manner which is antagonistic to the androgen action. 2) Criteria for oestrogen dependency are that the female animal reacts to gonadectomy, as well as to the inhibition of ovarian function after testosterone administration, by a masculinization of the enzyme activities. After administration of oestradiol, but not gonadectomy, the male animal exhibits typical female activity. Using these criteria the cytoplasmic 5beta-reductase and 17beta-hydroxysteroid dehydrogenase are oestrogen dependent. The repressive oestrogen effect observed on 17beta-hydroxysteroid dehydrogenase is antagonistic to hypophyseal action, whereas in the case of 5beta-reductase it is synergistic. 3) The activities of cytoplasmic 3beta-hydroxy-delta5-steroid dehydrogenase and microsomal 7alpha-hydroxylase show no sex differences and are not influenced by any interference with the endocrine balance.  相似文献   

3.
With the exception of 3beta-hydroxy-steroid dehydrogenase all the hydroxysteroid dehydrogenases of adult male and female rat kidney show significant sex differences in their activities. Interference with the organisms endocrine balance (gonadectomy on day 25 of life, hypophysectomy on day 50, a combination of both these operations, administration of testosterone or oestradiol) demonstrates that the sexually differentiated enzyme activities may be classified as androgen or oestrogen dependent, the respective sex hormone acting either in an inductive or repressive manner. The criteria for androgen dependency (microsomal 3alpha- and 20beta-, cytoplasmic 17beta- and 20alpha- hydroxysteroid dehydrogenase) are the feminization of the enzyme activity in male animals after castration and the masculinization of the activity in male and female castrates as well as in normal female animals after administration of testosterone. This latter effect on normal females cannot be a testosterone mediated inhibition of ovarian function since ovariectomy has no effect. For 3alpha-, 20alpha-, and 20beta-hydroxysteroid dehydrogenase the effects of hypophysectomy parallel those of gonadectomy. However, after hypophysectomy the activity of 17beta-hydroxysteroid dehydrogenase falls significantly below the gonadectomized level. The androgen effect on 3alpha and 20beta-hydroxysteroid dehydrogenase is independent of the hypophysis, whereas that of 17beta- and 20alpha-hydroxysteroid dehydrogenase is mediated by the hypophysis.  相似文献   

4.
The activities of cytoplasmic 3 alpha- and 17 beta-hydroxysteroid dehydrogenase, microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and microsomal 5 alpha-reductase of rat liver were determined at different time points after gonadectomy on day 75 of life. Following testectomy the activities in male rats assume female values. However this change is relatively slow, 10--14 days being necessary for significant trends in individual activities to develop, and 40--60 days before the final level of activity is reached. The changes in enzyme activities after ovariectomy are only slight. The change in microsomal 5 alpha-reductase activity following gonadectomy of male rats is biphasic, the activity increasing initially to the normal female level before falling to the intermediate "neonatally androgen-imprinted" level. The reaction of 17 beta-hydroxysteroid dehydrogenase activity to testectomy and ovariectomy indicates that in the course of several years, during which we have investigated the behaviour of this enzyme in Chbb/THOM rats, the regulation of its activity has changed from one of oestrogen dependency to one of androgen dependency.  相似文献   

5.
The subcellular distribution of 5 alpha-reductase, 17 beta-hydroxy steroid dehydrogenase, 3 alpha- and 3 beta-hydroxysteroid dehydrogenase activities was studied in human hyperplastic prostate. 5 alpha-reductase and 17 beta-hydroxysteroid dehydrogenase activities are located in the nuclear envelope. 3 alpha-hydroxysteroid dehydrogenase activity was almost equally distributed between cytosol and membranes, 3 beta-hydroxysteroid dehydrogenase activity was linked to all membranes. Direct testosterone metabolism (transformation into its active metabolite 5 alpha-DHT and into androstenedione, an inactive androgen) takes place only in the nucleus whereas indirect metabolism takes place mainly in the cytoplasm. These findings add new evidence for the mechanism of action of testosterone in prostatic tissue. Testosterone diffuses into the cell, migrates toward the nucleus and is transformed at the nuclear envelope level into two metabolites, DHT and androstenedione. After transformation into its active form, the hormone enters the nucleus whereas the inactive form is released into the cytoplasm. This metabolism could be seen as a control of the amount of active hormone entering the nucleus and being able to bind the androgen receptor.  相似文献   

6.
The curve of the specific activity of rat epididymal nuclear delta 4-5 alpha-reductase is bell shaped as a function of age, whereas that of cytoplasmic 3 alpha-hydroxysteroid dehydrogenase does not change significantly with age. The present study examines the subcellular distribution of delta 4-5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase in the caput-corpus and cauda epididymidis during development. A 5-step discontinuous sucrose gradient was developed for fractionation of epididymal homogenates. By using enzyme markers specific for different subcellular organelles, the five different subcellular fractions obtained were shown to be of cytoplasmic, microsomal, mitochondrial, nuclear and spermatozoal origin. 3 alpha-Hydroxysteroid dehydrogenase activity was associated only with the cytoplasmic fraction. The activity of the enzyme did not change significantly with age in either the caput-corpus or cauda epididymidis. delta 4-5 alpha-Reductase activity was found in fractions containing microsomal and nuclear markers. delta 4-5 alpha-Reductase activity in the nuclear fraction of the caput-corpus epididymidis was evident in the youngest age group (Day 25), increased 4-fold and peaked in the next age group (Day 35), and declined with each successive age group: Day 45 (60% of maximum), Day 60 (20% of maximum), Day 75 (15% of maximum) and Day 105 (10% of maximum). In contrast, microsomal delta 4-5 alpha-reductase activity increased successively from Day 25 to Day 105; enzyme activity doubled between these two ages. The ratio of nuclear to microsomal delta 4-5 alpha-reductase activity from the caput-corpus epididymidis thus changed markedly with age: Day 25:1.32; Day 35:3.76; Day 45:2.44; Day 60:1.03; Day 75:0.41; and Day 105:0.21. In the cauda epididymidis nuclear delta 4-5 alpha-reductase activity was only evident at Day 35 and Day 45; in microsomal fractions, activity was first found at Day 35 and did not subsequently change with age. These results demonstrate that: 1) epididymal 3 alpha-hydroxysteroid dehydrogenase activity is found only in the cytoplasmic fraction; 2) delta 4-5 alpha-reductase activity is found in nuclear and microsomal fractions; and 3) the subcellular distribution of delta 4-5 alpha-reductase activity changes markedly with age and epididymal section, suggesting differential regulation of nuclear and microsomal delta 4-5 alpha-reductase activities.  相似文献   

7.
V Graef  S W Golf  C Tyrell  M Fehler 《Steroids》1987,49(6):553-560
Flutamide (0.5 mM) decreased in vitro the activity of NADH-5 alpha-reductase (substrate testosterone) in liver homogenate of male and female rats, whereas no change of activity of NADPH-5 alpha-reductase was observed. NADH- and NADPH-5 beta-reductase activity increased only in liver of female, but not of male rats. NAD+-3 beta-hydroxysteroid dehydrogenase and NAD+-3 alpha-hydroxysteroid dehydrogenase (substrate 5 alpha-dihydro-testosterone) in liver homogenate from female rats were inhibited by flutamide (0.5 mM), whereas the activity of NADP+-3 alpha-hydroxysteroid dehydrogenase (substrate 5 alpha-dihydrotestosterone) and of NAD+-3 alpha-hydroxysteroid dehydrogenase (substrate 5 beta-dihydrotestosterone) increased in presence of flutamide. The activity of NADH- and NADPH-5 alpha-reductase decreased after flutamide administration to female rats at a dose of 5 mg per day for 7 days.  相似文献   

8.
V Graef  S W Golf  H Jung 《Steroids》1984,44(3):267-273
Female rats, treated with allylisopropylacetamide (AIA) showed a marked decrease of hepatic NADH-5 alpha-reductase, NADPH-5 alpha-reductase, NAD+- and NADP+-3 alpha-hydroxysteroid dehydrogenase activities and an increase of the activity of NADH- and NADPH-5 beta-reductase and NAD+ and NADP+-3 beta-hydroxysteroid dehydrogenase. Administration of Sedormid decreased the activities of 5 alpha-reductases and 3 alpha-hydroxysteroid dehydrogenases (substrate, 5 alpha-dihydrotestosterone) and increased the activity of NADH-5 beta-reductase, whereas no effect was seen on NADPH-5 beta-reductase and 3 beta-hydroxysteroid dehydrogenase.  相似文献   

9.
It was previously shown that the microsomal 5 alpha-reductase activity in the male rat pituitary was increased by castration. Subcutaneous administration of androgens to castrated rats prevented the rise in 5 alpha-reductase activity. Their relative efficiency was as follows: 5 alpha-dihydrotestosterone greater than 5 alpha-androstane-3 alpha, 17 beta-diol greater than testosterone. Under our experimental conditions 5 alpha-androstane-3 beta, 17 beta-diol and estrogens were inefficient. The rise in 5 alpha-reductase activity following castration is exclusively located in hypophysis and it is probably due to an increased of the enzyme biosynthesis.  相似文献   

10.
B Ducouret  Y Valotaire 《Steroids》1989,53(6):763-774
In all subcellular pituitary fractions, 3 alpha-hydroxysteroid dehydrogenase (3 alpha-ol dehydrogenase) activity is high (1 to 3 pmol/mg/h) with NADH or NADPH as cofactor, and 3 beta-hydroxysteroid dehydrogenase (3 beta-ol dehydrogenase) activity much lower. The highest activity of the latter (0.15 pmol/mg/h) is detected in cytosol with NADH as cofactor. During sexual maturation, cytosolic (NADH-dependent) 3 alpha- and 3 beta-ol dehydrogenase activities remain constant, whereas the 5 alpha-reductase activity is maximum at 37 days. The levels of different pituitary androgens were evaluated by radioimmunoassay. At 28 days, testosterone level is 4 ng/g of tissue, then after 42 days the level remains between 4.5 and 6 ng/g at a level higher than the DHT level. In all cases during the maturation of the rat, the different 5 alpha-reduced androgens are in the same ratio: DHT greater than 3 alpha-diol greater than 3 beta-diol, and the sum of these three 5 alpha-reduced androgens decreases between the 28th and the 90th day.  相似文献   

11.
Alveolar macrophages obtained by bronchoalveolar lavage of lungs of male and female guinea pigs were incubated with tritium-labelled androstenedione to evaluate the steroid metabolizing enzymes in these cells. The radiolabeled metabolites were isolated and thereafter characterized as testosterone, 5 alpha-androstanedione, 5 alpha-dihydrotestosterone, androsterone, isoandrosterone, 5 alpha-androstane-3 alpha, 17 beta-diol and 5 alpha-androstane-3 beta, 17 beta-diol. Thus, the following androstenedione metabolizing enzymes are present in guinea-pig alveolar macrophages: 17 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase, 3 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase. The predominant androstenedione metabolizing enzyme activity present in alveolar macrophages was 17 beta-hydroxysteroid dehydrogenase. The rate of testosterone formation increased with incubation time up to 4 h, and with macrophage number up to 1.6 X 10(7) cells per ml. Androstenedione metabolism was similar in alveolar macrophages obtained both from male and female guinea pigs. These results suggest that alveolar macrophages may be a site of peripheral transformation of blood-borne androstenedione to biologically potent androgens in vivo and, therefore, these cells may contribute to the plasma levels of testosterone in the guinea pig.  相似文献   

12.
Steroidogenic enzymes belonging to the aldo-keto reductase family (AKR) possess highly homologous sequences while having different activities. To gain further knowledge about the function as well as the regulation of these enzymes in the monkey, we have isolated cDNA sequences encoding monkey type 5 17beta-hydroxysteroid dehydrogenase, 20alpha-hydroxysteroid dehydrogenase and 3alpha-hydroxysteroid dehydrogenase, and characterized their enzymatic activity and mRNA tissue distribution. Sequence analysis indicates that these enzymes share approximately 94 and 76% amino acid identity with human and mouse homologs, respectively. Monkey type 5 17beta-HSD possesses 95.9% amino acid sequence identity with human type 5 17beta-HSD. It catalyzes the transformation of 4-androstenedione into testosterone, but it lacks 20alpha-hydroxysteroid dehydrogenase activity that is present in the human enzyme. This activity seems to be specific to human, since mouse type 5 17beta-HSD does not show significant 20alpha-HSD activity. In addition, monkey and mouse 20alpha-HSD possess relatively high 20alpha-, 3alpha-, and 17beta-HSD activities, while their human counterpart is confined to 20alpha-HSD activity. The monkey 3alpha-HSD possesses relatively high 3alpha-, 17beta-, and 20alpha-HSD activities; human type 1 3alpha-HSD exerts 3alpha- and 20alpha-HSD activities; the mouse 3alpha-HSD displays a unique 3alpha-HSD activity. Quantification of mRNA expression shows that the monkey 3alpha-HSD is exclusively expressed in the liver, while the type 5 17beta-HSD is predominately found in the kidney, with lower levels observed in the stomach, liver, and colon. Monkey 20alpha-HSD mRNA is highly expressed in the kidney, stomach, and liver. Our study provides the basis for future investigations on the regulation and function of these enzymes in the monkey.  相似文献   

13.
Rat liver contains two cytosolic enzymes (TBER1 and TBER2) that reduce 6-tert-butyl-2,3-epoxy-5-cyclohexene-1,4-dione into its 4R- and 4S-hydroxy metabolites. In this study, we cloned the cDNA for TBER1 and examined endogenous substrates using the homogenous recombinant enzyme. The cDNA encoded a protein composed of 323 amino acids belonging to the aldo-keto reductase family. The recombinant TBER1 efficiently oxidized 17beta-hydroxysteroids and xenobiotic alicyclic alcohols using NAD+ as the preferred coenzyme at pH 7.4, and showed low activity towards 20alpha- and 3alpha-hydroxysteroids, and 9-hydroxyprostaglandins. The enzyme was potently inhibited by diethylstilbestrol, hexestrol and zearalenone. The coenzyme specificity, broad substrate specificity and inhibitor sensitivity of the enzyme differed from those of rat NADPH-dependent 17beta-hydroxysteroid dehydrogenase type 5, which was cloned from the liver and characterized using the recombinant enzyme. The mRNA for TBER1 was highly expressed in rat liver, gastrointestinal tract and ovary, in contrast to specific expression of 17beta-hydroxysteroid dehydrogenase type 5 mRNA in the liver and kidney. Thus, TBER1 represents a novel type of 17beta-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. In addition, TBER2 was identified as 3alpha-hydroxysteroid dehydrogenase on chromatographic analysis of the enzyme activities in rat liver cytosol and characterization of the recombinant 3alpha-hydroxysteroid dehydrogenase.  相似文献   

14.
D A Holt  M A Levy  M Brandt  B W Metcalf 《Steroids》1986,48(3-4):213-222
A novel A-ring pyrazole steroid, 2,3-bisaza-A-nor-1,5(10)-estradien-17 beta-ol (3), was synthesized as a potential inhibitor of steroidal NAD(P)H-dependent oxidoreductases. Compound 3 proved to be a potent inhibitor of 3(17)beta-hydroxysteroid dehydrogenase (from P. testosteroni) exhibiting a Ki of 90 +/- 20 nM. The activities of 3 alpha,20 beta-hydroxysteroid dehydrogenase (from S. hydrogenans), steroid-5 alpha-reductase (from rat prostate), and 3 alpha-hydroxysteroid dehydrogenase (from rat liver) were unaffected by pyrazole 3. Dead end inhibition studies indicate an ordered binding of cofactor prior to substrate or pyrazole inhibitor.  相似文献   

15.
The mouse epididymis was studied to localize histochemically a number of hydroxysteroid dehydrogenases in the various zones. The epithelium of the posterior half of the initial segment (head) and the anterior half of the middle segment (body) shows a strong reaction for delta5-3beta-, 3alpha,5alpha-, 3alpha,5beta-, 11beta, 16alpha-, 17beta, 20alpha-hydroxysteroid dehydrogenases. This activity attenuates posteriorly. Only the 11beta-hydroxysteroid dehydrogenase is present throughout the length of the epididymis. The luminal contents of the middle segment also show the histochemical utilization of a number of steroids.  相似文献   

16.
Ingestion of licorice or treatment with chemical derivatives of glycyrrhetinic acid (GA), an active principle of licorice, can cause hypertension, sodium retention, and hypokalemia. Although GA has been shown to inhibit 11 beta-hydroxysteroid dehydrogenase, it may not be the only hepatic enzyme affected by this licorice derivative. Therefore, we studied the effects of GA on other major hepatic steroid-metabolizing enzymes from adrenalectomized male rats using aldosterone as the substrate; namely, delta 4-5 alpha- and delta 4-5 beta-reductases and 3 alpha- and 3 beta-hydroxysteroid dehydrogenases (3 alpha- and 3 beta-HSD). From these in vitro studies, we demonstrated that GA does not affect either microsomal 5 alpha-reductase or cytosolic 3 alpha-HSD activity. However, GA is a potent inhibitor of cytosolic 5 beta-reductase; the K(is) and K(ii) were calculated from enzyme kinetic analysis to be 6.79 and 5.41 microM, respectively, using the Cleland equation, indicating that GA is a noncompetitive inhibitor of aldosterone. In addition, GA specifically inhibited microsomal 3 beta-HSD enzyme activity by what appears to be a competitive inhibition mechanism, causing a build-up of the intermediate, 5 alpha-dihydroaldosterone (DHAldo). Thus, this study has indicated that GA has a profound effect on hepatic ring A-reduction of aldosterone. Inhibition of 5 beta-reductase and 3 beta-HSD results in decreased synthesis of both 3 alpha, 5 beta-tetrahydroaldosterone (THAldo) and 3 beta, 5 alpha-THAldo and, hence, accumulation of aldosterone and 5 alpha-DHAldo, both potent mineralocorticoids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Mixtures of 17 beta-hydroxy-5 alpha-[16,16,17 alpha-2H3]androstan-3-one 17-sulphate and 5 alpha-[3 beta (or 3 alpha)-2H]androstane-3 alpha (or 3 beta), 17 beta-diol 17-sulphate were incubated with isolated hepatocytes from female rats or infused intravenously in female rats with bile fistulas. The androstanediols formed were analyzed by gas chromatography-mass spectrometry. Metabolism of 3H-labelled steroids was also studied in corresponding experiments. Isolated hepatocytes rapidly reduced the 3-oxosteroid to the corresponding 3 alpha-hydroxysteroid, which was more rapidly sulphated than the incubated 3 alpha-androstanediol. The 3 alpha-hydroxysteroid was extensively oxidoreduced both in vivo and in isolated hepatocytes. The intermediate formed during oxidoreduction in vivo was incompletely mixed with the infused 3-oxosteroid indicating extrahepatic uptake of the latter. The 3 beta-hydroxysteroid was sulphated without significant oxidoreduction and a minor fraction was converted to 3 alpha-hydroxysteroid both in vivo and in isolated hepatocytes. The incubated 3 beta-hydroxysteroid contributed more to the disulphate of the isolated 3 alpha-hydroxysteroid than to the monosulphate, indicating that the incubated 3-oxosteroid and the intermediate in the inversion were not completely mixed. Deuterium from the 3 beta- or 3 alpha-positions of the incubated [3-2H]androstanediols was not incorporated in androstanediol molecules derived from the 3-oxosteroid. However, both in vivo and in isolated hepatocytes the 5 alpha-[3 alpha-2H]androstane-3 beta,17 beta-diol 17-sulphate molecules which underwent inversion at C-3 retained 50-80% of the deuterium. This indicates that the inversion was not caused by two separate oxidoreductases.  相似文献   

18.
The effects of unilateral orchidectomy on the adult rat epidiymal testosterone metabolizing enzymes, delta 4-5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase, are investigated. Five weeks following unilateral orchidectomy, it is found that the activity of 3 alpha-hydroxysteroid dehydrogenase per organ is not altered, whereas delta 4-5 alpha-reductase activity decreased by more than 80% on the side of the orchidectomy. Neither accessory sex tissue weights, ventral prostate and seminal vesicles, nor the concentration of circulating testosterone, luteinizing hormone, follicle-stimulating hormone, or prolactin is altered by unilateral orchidectomy. These data indicate that (1) epididymal 3 alpha-hydroxysteroid dehydrogenase activity can be maintained by circulating androgens and that (2) the major factor regulating delta 4-5 alpha-reductase activity is not a substance secreted by the testes into the peripheral circulation. It is suggested that a substance directly secreted into the epididymis by the testis regulates epididymal delta 4-5 alpha-reductase activity.  相似文献   

19.
5 alpha-Dihydrotestosterone, the principal androgen mediating prostate growth and function in the rat, is formed from testosterone by steroid 5 alpha-reductase. The inactivation of 5 alpha-dihydrotestosterone involves reversible reduction to 5 alpha-androstane-3 beta,17 beta-diol by 3 beta-hydroxysteroid oxidoreductase followed by 6 alpha-, 7 alpha-, or 7 beta-hydroxylation. 5 alpha-Androstane-3 beta,17 beta-diol hydroxylation represents the ultimate inactivation step of dihydrotestosterone in rat prostate and is apparently catalyzed by a single, high-affinity (Km approximately 0.5 microM) microsomal cytochrome P450 enzyme. The present studies were designed to determine if 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes is inhibited by agents that are known inhibitors of androgen-metabolizing enzymes. Inhibitors of steroid 5 alpha-reductase (4-azasteroid analogs; 10 microM) or inhibitors of 3 beta-hydroxysteroid oxidoreductase (trilostane, azastene, and cyanoketone; 10 microM) had no appreciable effect on the 6 alpha-, 7 alpha-, or 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol (10 microM) by rat prostate microsomes. Imidazole-type antimycotic drugs (ketoconazole, clotrimazole, and miconazole; 0.1-10 microM) all markedly inhibited 5 alpha-androstane-3 beta,17 beta-diol hydroxylation in a concentration-dependent manner, whereas triazole-type antimycotic drugs (fluconazole and itraconazole; 0.1-10 microM) had no inhibitory effect. The rank order of inhibitory potency of the imidazole-type antimycotic drugs was miconazole greater than clotrimazole greater than ketoconazole. In the case of clotrimazole, the inhibition was shown to be competitive in nature, with a Ki of 0.03 microM. The imidazole-type antimycotic drugs inhibited all three pathways of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation to the same extent, which provides further evidence that, in rat prostate microsomes, a single cytochrome P450 enzyme catalyzes the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol. These studies demonstrate that certain imidazole-type compounds are potent, competitive inhibitors of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes, which is consistent with the effect of these antimycotic drugs on cytochrome P450 enzymes involved in the metabolism of other androgens and steroids.  相似文献   

20.
NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号