首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Total lymphoid irradiation (TLI) is a highly effective modality for inducing immunosuppression and transplantation tolerance. The cellular basis for this immunosuppression is not clear, although T cells have been implicated. To study further the effect of TLI on the immune system, we have examined the B cells and suppressor cells in the spleens from TLI-conditioned mice. Our results indicate that after TLI, the spleen is rapidly repopulated with many large, immature cells. The probable source of these cells is the shielded bone marrow (BM). The B cells from TLI-conditioned mice are transiently immature and hyporesponsive in vitro to a T-independent antigen. Spleen cells from TLI-conditioned mice nonspecifically suppress the in vitro T-independent anti-TNP response of normal B cells. The suppressor cells lack both B and T cell markers and adhere to Sephadex G-10. The suppressor cells in spleens from TLI-treated mice bear a number of similarities to those present in normal BM. When normal BM cells were analyzed by indirect immunofluorescence for the presence of the Mac-1 antigen, two populations of suppressor cells could be identified: one was Mac-1+ and the other was Mac-1-. These data are consistent with the possibility that a subpopulation of the suppressor cells found in normal BM and in the spleens from TLI-conditioned mice are immature cells of the monocytic/granulocytic lineage.  相似文献   

2.
We studied the surface markers of suppressor cells of the mixed leukocyte reaction (MLR) that are transiently present in the spleens of neonatal mice after birth and of adult mice after total lymphoid irradiation (TLI). Approximately 80% of the mononuclear cells in the spleen, within the first few days after birth or after TLI, express neither the Thy-1 antigen nor surface immunoglobulin (Ig). After 30 days, less than 20% of mononuclear cells bear this null phenotype. With the use of the panning technique, we showed that the suppressors of the MLR are confined to the null cell population. The null suppressor cells are not macrophages because they did not carry macrophage markers identified by the monoclonal antibodies anti-MAC-1 and F4/80. In addition, the suppressor cells did not stain for nonspecific esterase and did not adhere firmly to plastic or glass. Spleen cells from TLI-treated mice maintained their suppressive capacity after culture in vitro for 6 to 8 wk. The cultured suppressor cells did not develop mature T cell, B cell, or macrophage markers during this time interval. Thus, the suppressor cells did not appear to be precursors of the latter cells. There was no clear relationship between the suppressor activity of the spleens and natural killer (NK) activity; the kinetics of these activities in newborn spleen appear to be inversely related. The suppressor cells, however, are similar to NK cells in that both are found in the absence of antigenic challenge, lack antigen specificity, and bear the null surface phenotype. Thus, we have termed the former cells natural suppressor (NS) cells.  相似文献   

3.
Four days after injection of allogeneic lymphocytes BALB/c splenic T cells suppress proliferation of syngeneic cells in mixed lymphocyte reactions (MLR). Conversely, lymph node cells from the same mice amplify MLR responses. To further characterize these functional subpopulations, alloantigen-primed lymphocyte suspensions from both organs were fractionated by velocity sedimentation at unit-gravity. After fractionation MLR suppressor cells from spleens localized exclusively in rapidlly sedimenting fractions of large cells. MLR suppressor activity of cells from these fractions, as well as that of unfractionated spleen cell suspensions, was abolished by treatment with anti-Thy-1.2 serum and complement. Spleen cell fractions of similar sedimentation velocity also secreted a soluble MLR suppressor into culture supernatants. Although inhibitory of MLR, spleen cells of rapid sedimentation velocity did not suppress responses to T cell mitogens. In marked contrast with the effects of spleen cells, large 4-day-alloantigen-primed lymph node cells had no suppressive activity in MLR. MLR amplifier cells of uncertain derivation were found in fractions of medium sedimentation velocity from both spleens and lymph nodes. Fractionation of alloantigen-primed lymph node cell suspensions did reveal, however, a subpopulation of small cells with MLR suppressor acitivty which was unaffected by treatment with anti-Thy-1 serum and complement. The data thus indicate that large alloantigen-activated lymphocytes are not intrinsically suppressive nor are cells which suppress MLR necessarily large. We consequently conclude that regulation of MLR responses by alloantigen-primed lymphocytes involves a complex interaction between distinct functional subpopulations of cells which are separable both by physical and biologic properties.  相似文献   

4.
A suppressor cell that inhibits the development of a polyclonal antibody response of splenic B cells to lipopolysaccharide is generated in the bone marrow cell culture in response to a mitotic dose (10 micrograms/ml) of concanavalin A (Con A). The Con A-responding suppressor cell is radioresistant and found in a bone marrow B (BM-B) cell population of normal as well as athymic mice. The suppressor activity of Con A-treated BM-B cells was consistently higher (P less than 0.01-0.0001) than those of untreated BM-B and fresh BM cells. The BM-B cell population recovered from short-term (3-day) cultures with Con A contained about 65% surface immunoglobulin (Ig)-positive cells, about 6% T cells, and less than 0.5% plastic-adherent cells, the latter two of which did not contribute to the suppressive activity. Thus, cytolytic treatment with various anti-T-cell antibodies could not eliminate the suppressive activity of the Con A-treated BM-B cells, and the Con A-treated macrophage population provided no significant suppression. The Con A-treated BM-B cells adherent to anti-Ig or anti-Con A dishes exhibited highly enriched suppressive activity. It was therefore concluded that an immature B-cell population of bone marrow could develop in response to stimulation with Con A into surface Ig-positive suppressor cells, contributing to the regulation of nonspecific B-cell responses.  相似文献   

5.
Patients with intractable rheumatoid arthritis (RA) were treated with total lymphoid irradiation (TLI, 2000 rad). We previously reported long-lasting clinical improvement in this group associated with a persistent decrease in circulating Leu-3 (helper subset) T cells and marked impairment of in vitro lymphocyte function. In the present experiments, we studied the mechanisms underlying the decrease in pokeweed mitogen stimulated immunoglobulin (Ig) secretion observed after TLI. Peripheral blood mononuclear cells (PBL) from TLI-treated patients produced 10-fold less Ig (both IgM and IgG) in response to pokeweed mitogen than before radiotherapy. This decrease in Ig production was associated with the presence of suppressor cells in co-culture studies. By using responder cells obtained from normal individuals (allogeneic system), PBL from eight of 12 patients after TLI suppressed Ig synthesis by more than 50%. In contrast, PBL from the same patients before TLI failed to suppress Ig synthesis. Suppression by post-TLI PBL was also demonstrated in an autologous system by using responder cells cryopreserved before TLI. Again, only cells obtained after TLI were suppressive in four of seven patients. PBL with suppressive activity contained suppressor T cells, and the latter cells bore the Leu-2 surface antigen. In 50% of the patients studied, suppressor cells were also found in the non-T fraction and were adherent to plastic. Interestingly, the Leu-2+ cells from TLI-treated patients were no more potent on a cell per cell basis than purified Leu-2+ cells obtained before TLI. Additional experiments suggested that the suppression mediated by T cells after TLI is related to the increased ratio of Leu-2 to Leu-3 cells observed after radiotherapy.  相似文献   

6.
We searched for the presence of suppressor cells of the MLR in C57BL/Ka leads to BALB/c chimeras. The chimeras were made with total lymphoid irradiation (TLI) and marrow transplantation. Spleen cells from the old chimeras inhibited the MLR of BALB/c responder cells against C57BL/Ka stimulator cells. Inhibition was specific for the stimulator cells, since no effect on the MLR was observed with C3H or BALB.C3H stimulator cells. Maximal inhibition was achieved when the responder cells in the MLR shared the H-2 haplotype of the chimeric recipient. Spleen cells obtained from chimeras young 30 to 40 days after BM transplantation inhibited the MLR nonspecifically, since similar marked inhibition was observed regardless of the H-2 haplotype of the responder or stimulator cells. The finding of antigen-specific and nonspecific suppressor cells is similar to that observed in mice rendered tolerant to bovine serum albumin after treatment with TLI.  相似文献   

7.
We used total lymphoid irradiation (TLI; total dose = 3400 rad) to treat the lupus-like renal disease of 6-mo-old female NZB/NZW mice. Similar to our past studies, this treatment resulted in a marked prolongation of survival, decrease in proteinuria, and decrease in serum anti-DNA antibodies compared with untreated littermate controls. Although there was no evidence of disease recurrence in TLI-treated mice until after 12 mo of age, the in vitro proliferative response to phytohemagglutinin by NZB/NZW spleen cells recovered within 6 wk such that responses were greater than control NZB/NZW animals. A similar recovery and overshoot after TLI were evident in the primary antibody response to the T cell-dependent antigen sheep red blood cells (SRBC). Both the total and IgG anti-SRBC antibody responses after TLI were greater than those of untreated NZB/NZW controls, and were comparable with those of untreated non-autoimmune mice. Despite this increased response to mitogens and antigens after TLI, we noted a decrease in spontaneous splenic IgG-secreting cells and a decrease in IgG but not IgM antinuclear antibody production. Nonspecific suppressor cells of the mixed leukocyte response were detectable in the spleens of NZB/NZW mice early after TLI. However, the disappearance of suppressor cells was not associated with recrudescence of disease activity. Furthermore, transfer of large numbers of spleen cells from TLI-treated NZB/NZW mice did not result in disease suppression in untreated age-matched recipients. In summary, treatment of NZB/NZW mice with TLI results in a prolonged remission in autoimmune disease, which is achieved in the absence of generalized immunosuppression.  相似文献   

8.
In vitro propagation and cloning of murine natural suppressor (NS) cells   总被引:4,自引:0,他引:4  
During a short period of time after birth or after radiotherapy, the spleens of neonatal and adult TLI-treated mice contain suppressor cells of the mixed leukocyte reaction (MLR) and of graft-vs-host disease. The present report shows that the MLR suppressive activity of spleen cells from TLI-treated adult BALB/c mice can be maintained in long-term tissue culture by using conditioned medium. The suppressor cells can be cloned by limiting dilution, and reproducibly inhibit the [3H]TdR incorporation in the MLR at responder-to-suppressor cell ratios of 50:1. There is no antigen specificity or H-2 haplo-type restriction of the MLR suppression. The suppressor cells do not inhibit [3H]TdR per se, because no inhibition was observed in co-culture experiments with the EL4 tumor line or the IL 2-dependent HT-2 cell line. By using immunofluorescent staining techniques, the surface phenotype of the suppressor cells was found to be similar to that reported previously for cloned NK cells (Thy-1+, Lyt-1-, Lyt-2-, Ig-, Ia-, MAC-1-, asialo-GM1+). However, the suppressor lines showed no natural killer activity when YAC-1 target cells were used. Thus, the suppressor lines have been termed "natural suppressor" cells to indicate surface marker similarities to NK cells, both in vivo and in vitro, but different effector functions.  相似文献   

9.
Murine bone marrow cells can suppress the in vitro primary antibody response of normal spleen cells without apparent cytotoxicity. The bone marrow cells suppress the response to both T-dependent (SRBC) and T-independent (DNP-Ficoll) antigens. When bone marrow cells are fractionated on a sucrose density gradient, the suppressive activity is found in the residue rather than the lymphocyte fraction. The suppressive activity is either unaffected or enhanced by treatment with anti-T- and anti-B-cell serums. Pretreatment of mice with phenylhydrazine which reduces the number of pre-B cells did not reduce the suppressive activity of their bone marrow cells. Suppressive activity is abolished by irradiation of the marrow cells in vitro with 1000 R prior to assay. The activity is present in the marrow of thymus deficient (nude) mice, infant mice, and mice which have been made polycythemic by transfusion. Furthermore, the suppressor cell can phagocytize iron carbonyl particles, is slightly adherent to plastic and Sephadex G-10, and can bind to EA monolayers. We conclude that the suppressor cell is not a mature lymphocyte or granulocyte nor a member of the erythrocytic series, but is likely to be an immature cell possibly of the myeloid series. We speculate on the physiologic role of this cell.  相似文献   

10.
Systemic administration of a single dose (300 mg/kg) of cyclophosphamide (Cy) induced the appearance of a population of suppressor cells in the bone marrow and spleens of mice. Suppressor cells were assayed by their capacity to inhibit the concanavalin A (Con A) blastogenesis or the mixed-lymphocyte response of normal C57Bl/6 spleen cells. Cy-induced bone marrow (Cy-BM) suppressor cells were present as early as 4 days following Cy therapy and their activity gradually decreased over the next 2 weeks. Cy-induced splenic (Cy-Sp) suppressor cells were maximally present on Days 6 through 10 following Cy therapy. Studies were performed to characterize the suppressor cells of bone marrow obtained 4 days after Cy treatment and of normal bone marrow (N-BM). Some suppressor activity was present in normal bone marrow. N-BM suppressor cells resembled cells of the monocyte/macrophage lineage in that they were slightly adherent to Sephadex G-10, sensitive to L-leucine methyl ester (LME), and insensitive to treatment either with anti-T-cell antibody and complement or with anti-immunoglobulin antibody and complement. Their suppressive activity was abrogated by incubation with either indomethacin or catalase. Cy-BM suppressor cells were also resistant to treatment with anti-T-cell and anti-immunoglobulin antibody and complement but were not adherent to Sephadex G-10 and not sensitive to LME. Their suppressive activity was partially eliminated by indomethacin alone or in combination with catalase. We conclude that Cy chemotherapy induces the appearance of a population of immune suppressive cells and that these cells appear first in the bone marrow and subsequently in the spleen.  相似文献   

11.
Immunosuppressive lymphokine derived from natural suppressor cells   总被引:1,自引:0,他引:1  
Cloned natural suppressor (NS) cells derived from spleens of total lymphoid irradiated BALB/c mice were incubated with the phorbol ester, PMA, and calcimycin for 4 h. After thorough washing, the induced NS cells were incubated in serum-free medium for 24 h and the supernatants were collected. The supernatants suppressed the MLR between normal adult responder and stimulator spleen cells. There was no Ag specificity or H-2 haplotype restriction of the MLR suppression. The supernatants did not inhibit [3H]thymidine incorporation per se, because they did not suppress mitogen stimulation of spleen cells. Protease digestion of the supernatants removed the suppressive activity, and dialysis studies indicated that the molecular size of the suppressive factor was larger than 50,000 Da and smaller than 100,000 Da. The suppressive activity was stable at 56 degrees C, pH 2, for 1 h. Thus, NS cell clones can be induced to secrete an immunosuppressive lymphokine, NS factor.  相似文献   

12.
The spleens of mice bearing large M-1 fibrosarcomas have been shown to contain several populations of cells which nonspecifically suppress antibody synthesis by cocultured normal spleen cells. It has now been shown that the spleens of tumor-bearing mice also contain inducer cells which secrete soluble factors capable of activating suppressor T cells from unprimed precursor cells. The activated suppressor cells are Thy 1+, Lyt 1+2+ and secrete a soluble suppressive factor. They inhibit the in vitro generation of antibody-forming cells by cocultured normal spleen cells stimulated by T-cell-dependent antigens. They do not, however, suppress the antibody response to T-cell-independent antigens and do not inhibit antibody synthesis by cocultured nude mouse spleen cells cultured with T-cell-dependent antigens and exogenous helper factors. In addition, suppression is blocked if conditioned medium containing T-cell growth factors is added to the suppressor cell assays. These data suggest that cells in the spleens of tumor-bearing mice secrete inducing factors which activate suppressor cells. These activated suppressor cells in turn secrete soluble suppressor factors which inhibit antibody synthesis, possibly by interfering with the synthesis or release of T-cell growth factors.  相似文献   

13.
The development of methods of avoiding graft-versus-host disease (GVHD) while retaining the alloengraftment-promoting and anti-leukemic effects of allogeneic T cells is a major goal of research in bone marrow transplantation (BMT). We have recently obtained evidence suggesting that natural suppressor (NS) cells derived from T cell-depleted (TCD) syngeneic marrow can protect against GVHD while permitting alloengraftment. We have now attempted to enrich and then propagate NS cells in vitro, with the goal of obtaining an enhanced anti-GVHD effect by adoptive transfer in vivo. Two long-term cell lines were generated culturing BMC depleted of Mac1-positive cells and of Mac1-positive plus Thy1-positive cells in high concentrations of IL-2. Both cell lines showed anti-GVHD effects when administered along with a GVHD-producing inoculum, while permitting complete allogeneic reconstitution. A clone derived from Mac1-depleted BMC protected completely against a more chronic pattern of GVHD. These cell lines demonstrated suppressive activity in vitro, cytolytic activity against a broad range of natural killer (NK)-sensitive and NK-resistant targets, and a novel cell surface phenotype, with characteristics of both alpha beta-TcR-bearing T cells and of NK cells. In some respects, these cells resemble LAK cells and differ from fresh NS cells, and from the cloned NS cells derived from spleens of total lymphoid irradiation (TLI)-treated mice and neonatal mice. To our knowledge, this is the first detailed phenotypic analysis of cell lines with in vivo anti-GVHD activity. If applicability can be demonstrated in large animal models, the ability to use bone marrow as a source of such protective cell lines might also have potential utility in clinical BMT.  相似文献   

14.
Demonstration of active suppressor cells in spleens of young NZB mice   总被引:1,自引:0,他引:1  
NZB mice, a strain prone to the development of autoimmune disease, have during the first 2 weeks of life suppressor cells in their spleens which can in coculture with adult spleen cells suppress the antibody response to sheep red blood cells (SRBC) generated in culture by the adult cells. The suppressive activity of spleen cells from NZB mice in the first week after birth is similar to that of spleen cells from 4-day-old C57BL/6 mice, a strain which does not spontaneously develop autoimmune disease. As in “normal” strains of mice, suppressor cell activity in NZB mice is diminished at 2 weeks and undetectable at 3 weeks of age. The data indicate that there is no defect inherent in the suppressor cells detected in the spleens of newborn and young NZB mice and suggest that the development of autoimmune responses does not result from a lack of suppressor cells in the young animals.  相似文献   

15.
Spleen cells from BALB/c mice treated with total lymphoid irradiation (TLI) and from normal, unirradiated mice were compared in the mixed leukocyte reaction (MLR). Although the percentage of CD4+ cells in the spleen was close to normal, 4 to 6 weeks after TLI, the MLR of unfractionated spleen cells from irradiated mice was more than 10-fold lower than controls. A similar reduction was observed when purified CD4+ cells were used as responders in the MLR. Secretion of IL-2 by cells from irradiated mice was also about 10-fold lower than controls. However, the percentage of CD4+ and CD8+ cells which expressed IL-2 surface receptors during the MLR was similar using spleen cells from irradiated and control mice. Addition of an exogenous source of IL-2 restored the proliferative capacity of the irradiated cells and suggests that the lack of IL-2 secretion is the likely explanation of the marked deficit in the MLR of CD4+ spleen cells after TLI.  相似文献   

16.
The effects of injection of linoleic acid into C57Bl/6 mice on hematopoietic and immunological parameters were examined. Administration of linoleic acid stimulated hematopoiesis as it increased spleen weight and cellularity, increased the number of bone marrow and splenic granulocytic-monocytic progenitor cells, and increased the colony stimulating factor activity in the serum of the treated mice. Associated with the hematopoietic stimulation in linoleic acid-treated mice was a decline in the spleen cell blastogenic responses and the appearance of bone marrow suppressor cells which were inhibitory to normal spleen cell blastogenesis. The linoleic acid-induced bone marrow suppressor cells resembled cells of the monocyte lineage in that they were sensitive to treatment with L-leucine methyl ester, partially sensitive to treatment with anti-Ia antibodies and complement, and their suppressor activity was minimized by indomethacin, a prostaglandin synthesis inhibitor. These results suggest that administration of linoleic acid results in hematopoietic stimulation and, concurrently, in the appearance of suppressor cells in the bone marrow. The bone marrow suppressor cells resemble immature cells of the monocyte lineage and appear to mediate their suppressive effects through the production of prostaglandins.  相似文献   

17.
Spleen cells from newborn BALB/c mice were added to the mixed leukocyte reaction (MLR) between a variety of responder and stimulator cells. The newborn cells nonspecifically suppressed the uptake of (3H)-thymidine and the generation of cytolytic cells regardless of the responder-stimulator combination used. Suppressor cell activity fell rapidly during the first 4 days after birth, and could not be detected by day 20. Newborn spleen cells inhibited the generation of nonspecific suppressor cells during the MLR but did not inhibit the generation of antigen-specific suppressor cells. Thus, newborn spleen cells exhibit a pattern of regulation of the MLR similar to that reported previously for spleen cells from adult mice given total lymphoid irradiation (TLI). These regulatory interactions provide a model that explains the ease of induction of transplantation tolerance in vivo in newborn mice and in TLI-treated adult mice.  相似文献   

18.
Natural suppressor cells were induced by culturing spleen cells from normal adult mice for 2 to 3 wk. The suppressor cells were large in size, nonadherent and nonspecifically suppressed the plaque-forming cells response of fresh spleen cells to SRBC in vitro. The suppressive activity of the cells was not affected by treatment with indomethacin or anti-Thy-1, anti-Ig, anti-Ia, or anti-asialoGM1 plus complement. Phenotype analysis by FACS showed that Thy-1, L3T4, Ly-2, CD3-epsilon, TCR-alpha beta, Ig, B220, Ia, and asialoGM1 Ag were all absent in the suppressor cells, although they were wheat germ agglutinin receptor positive. The suppressor cells did not demonstrate cytotoxicity against either YAC-1 or P-815 cells. Enriched large cell populations from fresh normal spleens expressed the same phenotypes and also exhibited the suppressive activity. These findings suggest that a minor population of natural suppressor cells exist in the normal adult mouse spleen and they proliferate during the in vitro culture of spleen cells.  相似文献   

19.
Total lymphoid irradiation (TLI) was administered to mice as 17 fractions of 200 rads delivered to the major lymphoid organs. Spleen cells capable of suppressing the in vitro mixed leukocyte response (MLR) and in vivo graft-vs-host disease (GVHD) were found in mice after treatment with TLI. Suppression was not antigen specific and was markedly reduced by treatment of the spleen cells with anti-Thy-1.2 antiserum and complement. Suppressor activity declined with time after irradiation and disappeared within 30 to 40 days. The evidence suggests that the suppressor cells may prevent initial BM rejection and acute GVHD in allogeneic BM transplant recipients prepared with TLI.  相似文献   

20.
Lymphocytes taken from the cord blood of newborns have active suppressor activity. Using in vitro PWM-stimulated cocultures, unfractionated T cells from newborns potently suppressed the expected immunoglobulin G (IgG) synthesis of their mothers' peripheral blood lymphocytes (PBL). Using positive and negative selection techniques, we characterized the active suppressor cell as expressing the OKT4+T8- phenotype. This cord blood lymphocyte subset suppressed maternal IgG synthesis after depletion of maternal suppressor cells, implicating the ability of newborn T cells to suppress directly rather than by inducing adult suppressor activity. Sublethal amounts (1500 rad) of gamma-irradiation fully abrogated the suppressor activity of cord blood T lymphocytes. Radioresistant cord T cells provided T cell help. Irradiation of cord OKT4+ and OKT8+ populations and their subsequent culture with maternal B cells determined that helper activity was a radioresistant subpopulation of the OKT4+ subset. These results indicate significant differences in the functional properties of T cell subsets from adults and newborns. Population studies determined that cord blood lymphocytes had a greater proportion of OKT4+ cells and lower proportion of OKT8+ cells than PBL from unrelated adults. The mothers tested had similar proportions of OKT4+ cells as their babies, and these levels are significantly higher than those of unrelated adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号