共查询到20条相似文献,搜索用时 15 毫秒
1.
R Derouiche M Gavioli H Bndetti A Prilipov C Lazdunski R Lloubs 《The EMBO journal》1996,15(23):6408-6415
TolA is an inner membrane protein with three domains: a transmembrane N-terminus and periplasmic central and C-terminal domains. The interaction of TolA with outer membrane porins of Escherichia coli was investigated. Western blot analyses of cell extracts with anti-TolA antibodies indicated that TolA forms high molecular weight complexes specifically with trimeric OmpF, OmpC, PhoE and LamB, but not with OmpA. The interaction of purified TolA domains with purified porins was also studied. TolA interacted with OmpF, PhoE and LamB porins via its central domain, but not with either their denatured monomeric forms or OmpA. Moreover, the presence or absence of lipopolysaccharides associated with trimeric porins did not modify the interactions. These results suggest that the specific interaction of TolA with outer membrane porins might be relevant to the function of Tol proteins. 相似文献
2.
TolB protein of Escherichia coli K-12 interacts with the outer membrane peptidoglycan-associated proteins Pal, Lpp and OmpA 总被引:3,自引:3,他引:0
Thierry Clavel Pierre Germon Anne Vianney Raymond Portalier & Jean Claude Lazzaroni 《Molecular microbiology》1998,29(1):359-367
The Tol–Pal proteins of Escherichia coli are involved in maintaining outer membrane integrity. Transmembrane domains of TolQ, TolR and TolA interact in the cytoplasmic membrane, while TolB and Pal form a complex near the outer membrane. TolB and the central domain of TolA interact in vitro with the outer membrane porins. In this study, both genetic and biochemical analyses were carried out to analyse the links between TolB, Pal and other components of the cell envelope. It was shown that TolB could be cross-linked in vivo with Pal, OmpA and Lpp, while Pal was associated with TolB and OmpA. The isolation of pal and tolB mutants disrupting some interactions between these proteins represents a first approach to characterizing the residues contributing to the interactions. We propose that TolB and Pal are part of a multiprotein complex that links the peptidoglycan to the outer membrane. The Tol–Pal proteins might form transenvelope complexes that bring the two membranes into close proximity and help some outer membrane components to reach their final destination. 相似文献
3.
Prehna G Zhang G Gong X Duszyk M Okon M McIntosh LP Weiner JH Strynadka NC 《Structure (London, England : 1993)》2012,20(7):1154-1166
Highlights? The porin OmpF is a required element for the secretion of YebF ? YebF interacts with OmpF and OmpC channels at their periplasmic face ? YebF exhibits a dynamic surface that is involved in the secretion process ? Proposed model of YebF secretion mediated by OmpF 相似文献
4.
Enterohaemorrhagic Escherichia coli (EHEC) belongs to a family of pathogens that cause attaching and effacing (A/E) lesion on target cells. The EspB protein of EHEC is translocated both to the host cell cytoplasm and to the membrane, and is essential for the signalling events leading to A/E lesion. To determine the actual role of EspB in this process, we tried to identify the EspB binding partner of the host cell protein, using a yeast two-hybrid assay, and obtained a cytoskeletal-associated protein, α -catenin. The α -catenin bound directly to the N-terminal region of EspB, both in solid (overlay assay) and solution (pull-down assay) phases, and it was recruited to the EHEC adherence site, dependent on EspB. Expression of the N-terminal region of EspB, as well as the whole EspB in host cells, inhibited F-actin accumulation on the adherence site. We conclude that EspB recruits α -catenin at the EHEC adherence site by direct interaction, and that the recruitment of α -catenin is essential for EHEC-induced A/E lesion formation. 相似文献
5.
C Abergel E Bouveret J M Claverie K Brown A Rigal C Lazdunski H Bénédetti 《Structure (London, England : 1993)》1999,7(10):1291-1300
BACKGROUND: The periplasmic protein TolB from Escherichia coli is part of the Tol-PAL (peptidoglycan-associated lipoprotein) multiprotein complex used by group A colicins to penetrate and kill cells. TolB homologues are found in many gram-negative bacteria and the Tol-PAL system is thought to play a role in bacterial envelope integrity. TolB is required for lethal infection by Salmonella typhimurium in mice. RESULTS: The crystal structure of the selenomethionine-substituted TolB protein from E. coli was solved using multiwavelength anomalous dispersion methods and refined to 1. 95 A. TolB has a two-domain structure. The N-terminal domain consists of two alpha helices, a five-stranded beta-sheet floor and a long loop at the back of this floor. The C-terminal domain is a six-bladed beta propeller. The small, possibly mobile, contact area (430 A(2)) between the two domains involves residues from the two helices and the first and sixth blades of the beta propeller. All available genomic sequences were used to identify new TolB homologues in gram-negative bacteria. The TolB structure was then interpreted using the observed conservation pattern. CONCLUSIONS: The TolB beta-propeller C-terminal domain exhibits sequence similarities to numerous members of the prolyl oligopeptidase family and, to a lesser extent, to class B metallo-beta-lactamases. The alpha/beta N-terminal domain shares a structural similarity with the C-terminal domain of transfer RNA ligases. We suggest that the TolB protein might be part of a multiprotein complex involved in the recycling of peptidoglycan or in its covalent linking with lipoproteins. 相似文献
6.
Enteropathogenic Escherichia coli (EPEC) is a major causative agent of infant diarrhoea in developing countries. The EspF effector protein is injected from EPEC into host cells via a type III secretion system and is involved in the disruption of host intestinal barrier function. In addition, EspF is sorted to mitochondria and has a role in initiating the mitochondrial death pathway. To clarify the manner in which EspF affects host cells, we sought to identify eukaryotic EspF-binding proteins using affinity purification. Abcf2, a protein of unknown function and member of the ABC-transporter family, bound EspF in this assay. An interaction between EspF and Abcf2 was confirmed in a yeast two-hybrid system, by colocalization and by co-immunoprecipitation from EPEC-infected cells. Levels of Abcf2 were decreased in cells infected with EPEC in an EspF dose-dependent manner. Knock-down of Abcf2 expression by RNA interference increased EspF-induced caspase 9 and caspase 3 cleavage. In addition, Abcf2-knocked down cells showed increased caspase 3 cleavage upon treatment with the apoptosis inducing agent staurosporine. These results indicate that EspF induces or facilitates host cell death by targeting and interfering with the putative protective function of Abcf2. 相似文献
7.
The gene 1.2 protein of bacteriophage T7 interacts with the Escherichia coli dGTP triphosphohydrolase to form a GTP-binding protein 总被引:2,自引:0,他引:2
Escherichia coli encodes a dGTP triphosphohydrolase (dGTPase) that cleaves dGTP to deoxyguanosine and tripolyphosphate. dGTP is hydrolyzed with a Michaelis constant (Km) of 5 microM and a maximal velocity (Vmax) of 1.8 mumols/min/mg. The ribonucleotide GTP is a poor substrate with a much lower affinity. It is hydrolyzed with a Km of 150 microM and Vmax of 0.07 mumols/min/mg. Bacteriophage T7 encodes a specific inhibitor of dGTPase, the gene 1.2 protein, that forms a tight complex with the enzyme. The enzyme-inhibitor complex binds dGTP with a dissociation constant (KD) of 1.5 microM, but the bound dGTP is not hydrolyzed. It remains stably bound to the complex with a half-life of approximately 5 min. In contrast, dGTP is unable to bind to gene 1.2 protein alone, and dGTP bound to dGTPase alone is quickly hydrolyzed and released. Surprisingly, the dGTPase-gene 1.2 protein complex has a higher affinity for GTP than for dGTP. GTP is stably bound to the dGTPase-gene 1.2 protein complex with a half-life greater than 30 min and KD of 0.8 microM; GTP is not stably bound to either dGTPase or gene 1.2 protein alone. Both GTP and dGTP bind to and stabilize the dGTPase-gene 1.2 protein complex, inhibiting its dissociation. Although the presence of dGTP induces conformation changes in dGTPase so that it is unable to associate with the gene 1.2 protein, saturating concentrations of GTP have no such effect. The enzyme efficiently associates with its inhibitor in the presence of GTP. These results indicate that E. coli dGTPase and gene 1.2 protein interact to form a high affinity GTP-binding site. dGTP is most effective in preventing the association of the enzyme with the inhibitor whereas GTP is most effective in preventing the dissociation of the enzyme-inhibitor complex. 相似文献
8.
The voltage-dependent activity of Escherichia coli porins in different planar bilayer reconstitutions 总被引:9,自引:0,他引:9
Because of conflicting results from differing techniques, the degree of voltage sensitivity of Escherichia coli porins in planar bilayers is still a matter of debate. In order to provide the first comparative study, OmpF porin was purified in three ways; firstly as native outer membrane vesicles, secondly as salt-extracted porin trimers in sodium dodecyl sulphate and thirdly as solubilised trimers extracted with octyl-polyoxyethylene (Octyl-POE). These methods represent the major approaches to porin isolation and purification. All three were reconstituted into Schindler-type bilayers. Detergent-solubilised OmpF was also reconstituted into Montal-Mueller- and Mueller-Rudin-type bilayers. In all cases voltage-dependent closing of OmpF was observed. Octyl-POE-extracted PhoE porin was similarly investigated in all three types of planar bilayer. Two membrane-formation techniques appeared genuinely to alter the voltage sensitivity of the porins they contained. Firstly, porins in membranes formed by the Montal-Mueller technique sometimes showed an increase in voltage sensitivity during the first 30 min after bilayer formation. Secondly, membranes formed by the Mueller-Rudin technique on thick polyethylene septa showed both poor solvent drainage and a significantly reduced porin voltage sensitivity. 相似文献
9.
Scott DC Cao Z Qi Z Bauler M Igo JD Newton SM Klebba PE 《The Journal of biological chemistry》2001,276(16):13025-13033
The ferric siderophore transporters of the Gram-negative bacterial outer membrane manifest a unique architecture: Their N termini fold into a globular domain that lodges within, and physically obstructs, a transmembrane porin beta-barrel formed by their C termini. We exchanged and deleted the N termini of two such siderophore receptors, FepA and FhuA, which recognize and transport ferric enterobactin and ferrichrome, respectively. The resultant chimeric proteins and empty beta-barrels avidly bound appropriate ligands, including iron complexes, protein toxins, and viruses. Thus, the ability to recognize and discriminate these molecules fully originates in the transmembrane beta-barrel domain. Both the hybrid and the deletion proteins also transported the ferric siderophore that they bound. The FepA constructs showed less transport activity than wild type receptor protein, but the FhuA constructs functioned with turnover numbers that were equivalent to wild type. The mutant proteins displayed the full range of transport functionalities, despite their aberrant or missing N termini, confirming (Braun, M., Killmann, H., and Braun, V. (1999) Mol. Microbiol. 33, 1037-1049) that the globular domain within the pore is dispensable to the siderophore internalization reaction, and when present, acts without specificity during solute uptake. These and other data suggest a transport process in which siderophore receptors undergo multiple conformational states that ultimately expel the N terminus from the channel concomitant with solute internalization. 相似文献
10.
Escherichia coli HU protein is a dimer encoded by two closely related genes whose expression is growth phase-dependent. As a major component of the bacterial nucleoid, HU binds to DNA non-specifically, but acts at the chromosomal origin (oriC) during initiation by stimulating strand opening in vitro. We show that the alpha dimer of HU is more active than other forms of HU in initiation of an oriC-containing plasmid because it more effectively promotes strand opening of oriC. Other results demonstrate that HU stabilizes the DnaA oligomer bound to oriC, and that the alpha subunit of HU interacts with the N-terminal region of DnaA. These observations support a model whereby DnaA interacts with the alpha dimer or the alphabeta heterodimer, depending on their cellular abundance, to recruit the respective form of HU to oriC. The greater activity of the alpha dimer of HU at oriC may stimulate initiation during early log phase compared with the lesser activity of the alphabeta heterodimer or the beta dimer. 相似文献
11.
12.
Colicin N kills sensitive Escherichia coli cells by first binding to its trimeric receptor (OmpF) via its receptor binding domain. It then uses OmpF to translocate across the outer membrane and in the process it also needs domains II and III of the protein TolA. Recent studies have demonstrated sodium dodecyl sulfate- (SDS) dependent complex formation between trimeric porins and TolA-II. Here we demonstrate that colicin N forms similar complexes with the same trimeric porins and that this association is unexpectedly solely dependent upon the pore-forming domain (P-domain). No binding was seen with the monomeric porin OmpA. In mixtures of P-domain and TolA with OmpF porin, only binary and no ternary complexes were observed, suggesting that binding of these proteins to the porin is mutually exclusive. Pull-down assays in solution show that porin-P-domain complexes also form in the presence of outer membrane lipopolysaccharide. This indicates that an additional colicin-porin interaction may occur within the outer membrane, one that involves the colicin pore domain rather than the receptor-binding domain. This may help to explain the role of porins and TolA-II in the later stages of colicin translocation. 相似文献
13.
S100B is a small, dimeric EF-hand calcium-binding protein abundant in vertebrates. Upon calcium binding, S100B undergoes a conformational change allowing it to interact with a variety of target proteins, including the cytoskeletal proteins tubulin and glial fibrillary acidic protein. In both cases, S100B promotes the in vitro disassembly of these proteins in a calcium-sensitive manner. Despite this, there is little in vivo evidence for the interaction of proteins such as tubulin with S100B. To probe these interactions, we studied the expression of human S100B in Escherichia coli and its interaction with the prokaryotic ancestor of tubulin, FtsZ, the major protein involved in bacterial division. Expression of S100B protein in E. coli results in little change in FtsZ protein levels, causes a filamenting bacterial phenotype characteristic of FtsZ inhibition, and leads to missed rounds of cell division. Further, S100B localizes to positions similar to those of FtsZ in bacterial filaments: the small foci at the poles, the mid-cell positions, and between the nucleoids at regular intervals. Calcium-dependent physical interaction between S100B and FtsZ was demonstrated in vitro by affinity chromatography, and this interaction was severely inhibited by the competitor peptide TRTK-12. Together these results indicate that S100B interacts with the tubulin homologue FtsZ in vivo, modulating its activity in bacterial cell division. This approach will present an important step for the study of S100 protein interactions in vivo. 相似文献
14.
Sensor histidine kinases of two-component signal transduction systems (TCSs) respond to various environmental signals and transduce the external stimuli across the cell membrane to their cognate response regulators. Recently, membrane proteins that modulate sensory systems have been discovered. Among such proteins is SafA, which activates the PhoQ/PhoP TCS by direct interaction with the sensor PhoQ. SafA is directly induced by the EvgS/EvgA TCS, thus connecting the two TCSs, EvgS/EvgA and PhoQ/PhoP. We investigated how SafA interacted with PhoQ. Bacterial two-hybrid and reporter assays revealed that the C-terminal region (41-65 aa) of SafA activated PhoQ at the periplasm. Adding synthetic SafA(41-65) peptide to the cell culture also activated PhoQ/PhoP. Furthermore, direct interaction between SafA(41-65) and the sensor domain of PhoQ was observed by means of surface plasmon resonance. NMR spectroscopy of (15) N-labelled PhoQ sensor domain confirmed that SafA and Mg(2+) provoked a different conformational change of PhoQ. Site-directed mutagenesis studies revealed that R53, within SafA(41-65), was important for the activation of PhoQ, and D179 of the PhoQ sensor domain was required for its activation by SafA. SafA activated PhoQ by a different mechanism from cationic antimicrobial peptides and acidic pH, and independent of divalent cations and MgrB. 相似文献
15.
Evidence that TraT interacts with OmpA of Escherichia coli 总被引:10,自引:0,他引:10
The OmpA protein is one of the major outer membrane proteins of Escherichia coli. Among other functions the protein serves as a receptor for several phages and increases the efficiency of F-mediated conjugation when present in recipient cells. TraT is an F-factor-coded outer membrane lipoprotein involved in surface exclusion, the mechanism by which E. coli strains carrying F-factors become poor recipients in conjugation. To determine a possible interaction of TraT with OmpA, the influence of TraT on phage binding to cells was measured. Because TraT inhibits inactivation of OmpA-specific phages it is suggested that TraT interacts directly with OmpA. Sequence homology of TraT with proteins 38, the phage proteins recognizing outer membrane proteins, supports this finding. A model of protein interactions is discussed. 相似文献
16.
Lipopolysaccharide-free Escherichia coli OmpF and Pseudomonas aeruginosa protein P porins are functionally active in lipid bilayer membranes. 总被引:3,自引:4,他引:3 下载免费PDF全文
Escherichia coli porin OmpF and Pseudomonas aeruginosa porin protein P were eluted from sodium dodecyl sulfate-polyacrylamide gels. The resultant porin preparations were found to be devoid of detectable lipopolysaccharide (LPS) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining for LPS, direct enzyme-linked immunosorbent assays with LPS-specific monoclonal antibodies, and 2-keto-3-deoxyoctulosonic acid assays. The average conductances, ionic selectivities and incorporation rates of the electroeluted porins were identical to those of their conventionally purified counterparts. These data suggest that LPS is not required per se for porin function. 相似文献
17.
Li F Liu Q Chen YY Yu ZN Zhang ZP Zhou YF Deng JY Bi LJ Zhang XE 《Mutation research》2008,637(1-2):101-110
It has been hypothesized that DNA mismatch repair (MMR) is coupled with DNA replication; however, the involvement of DNA polymerase III subunits in bacterial DNA MMR has not been clearly elucidated. In an effort to better understand the relationship between these 2 systems, the potential interactions between the Escherichia coli MMR protein and the clamp loader subunits of E. coli DNA polymerase III were analyzed by far western blotting and then confirmed and characterized by surface plasmon resonance (SPR) imaging. The results showed that the MMR key protein MutL could directly interact with both the individual subunits delta, delta', and gamma and the complex of these subunits (clamp loader). Kinetic parameters revealed that the interactions are strong and stable, suggesting that MutL might be involved in the recruitment of the clamp loader during the resynthesis step in MMR. The interactions between MutL, the delta and gamma subunits, and the clamp loader were observed to be modulated by ATP. Deletion analysis demonstrated that both the N-terminal residues (1-293) and C-terminal residues (556-613) of MutL are required for interacting with the subunits delta and delta'. Based on these findings and the available information, the network of interactions between the MMR components and the DNA polymerase III subunits was established; this network provides strong evidence to support the notion that DNA replication and MMR are highly associated with each other. 相似文献
18.
19.
Genes encoding the C- and N-terminal regions of SecE were constructed and placed under the control of the tac promoter on plasmids. The C-terminal region of SecE (SecE-C) was sufficient for suppression of the secEcs phenotype, confirming the results of Schatz et al. (Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J., and Beckwith, J. (1991) EMBO J. 10, 1749-1757). SecE-C allowed the overproduction of SecY, and its overproduction was achieved when the tac-secY gene, on a plasmid, was induced, indicating that the C-terminal region is the site of interaction of SecE with SecY and that the interaction makes the two Sec proteins stable. SecE-C was purified and used with SecY for the reconstitution of protein translocation activity. SecE-C was active in the functional reconstitution. The SecE-C/SecY-dependent protein translocation absolutely required SecA and ATP as the native translocation reaction did. Quantitative analysis revealed that SecE-C was 50% as active as intact SecE. The N-terminal region of SecE (SecE-N) also suppressed in vivo the defect caused by the secEcs mutation. SecE-N was, however, inactive in the overproduction of SecY. A possible oligomeric structure of SecE is discussed. 相似文献
20.
The Tol-Pal system of Escherichia coli is involved in maintaining outer membrane stability. Mutations in tolQ, tolR, tolA, tolB, or pal genes result in sensitivity to bile salts and the leakage of periplasmic proteins. Moreover, some of the tol genes are necessary for the entry of group A colicins and the DNA of filamentous bacteriophages. TolQ, TolR, and TolA are located in the cytoplasmic membrane where they interact with each other via their transmembrane domains. TolB and Pal form a periplasmic complex near the outer membrane. We used suppressor genetics to identify the regions important for the interaction between TolB and Pal. Intragenic suppressor mutations were characterized in a domain of Pal that was shown to be involved in interactions with TolB and peptidoglycan. Extragenic suppressor mutations were located in tolB gene. The C-terminal region of TolB predicted to adopt a beta-propeller structure was shown to be responsible for the interaction of the protein with Pal. Unexpectedly, none of the suppressor mutations was able to restore a correct association between Pal and peptidoglycan, suggesting that interactions between Pal and other components such as TolB may also be important for outer membrane stability. 相似文献