首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Chara vulgaris L. growing in a brackish water lake was investigated in a field study during the main growth season (May to October 1985). Sucrose content and the ionic concentrations of the cations Na+, K+, Mg2+ and Ca2+ and the anions Cl? and SO42- of the vacuolar sap were estimated. Sucrose concentration in the vacuolar sap of vegetative growing plants was negligible, but with the beginning of the sexual reproduction period (fructification) the sucrose content increased from about 2 mol m?3 to 110 mol m?3. This level remained constant until the end of the fructification period. In spite of the increase of the sucrose concentration the osmotic potential of the vacuolar sap was constant. This was achieved by changing the ionic concentrations accordingly; in old or vegetative growing plants the ionic content accounted for about 80% of the vacuolar osmotic potential, but was about 63% during fructification. Sucrose is considered as a major photosynthate to supply the developing antheridia and oogonia and to serve as a precursor for the starch stored in the eggs.  相似文献   

2.
Concentrations of ions and sucrose in the vacuolar sap of Chara canescens growing in an oligohaline lake (1.5 ‰) were estimated over the main growth period of the plants. During fructification vacuolar sap contained a mean of 41 mol m?3 (range 10.2–61.8) sucrose. The mean turgor pressure was 239 mosmol kg?1 (range 219–264). In long- and short-term experiments these plants were subjected to increasing salinities up to 22 ‰. When salinity was increased from 1.5 to 4.4 ‰ turgor pressure was restored to only 80 % of the initial value. This reduced level of turgor pressure was maintained up to a salinity of 22 ‰. The increase in vacuolar osmotic potential was due to the monovalent ions Na+, K+ and Cl?. The relative amounts of Na+ and K+ participating in the regulation process were dependent on external salinity. The regulatory mechanisms observed in the brackish water species Ch. canescens are compared with those reported from freshwater and euryhaline species.  相似文献   

3.
Chara corallina is an obligate freshwater alga, while C. buckellii can be grown in salt and freshwater culture. When grown in fresh water, C. buckellii has electrophysiological properties similar to C. corallina, but when cultured in salt water, it has a less negative membrane potential and has a higher conductance. We show in internally perfused, tonoplast-free cells that the ATP-dependence of the two species cultured in fresh water is similar, although C. buckellii hyperpolarizes at lower ATP concentrations. We determined the pump parameters in perfused and intact cells. Using both techniques, C. corallina and C. buckellii cultured in fresh water show similar values of Ep, Gp and Ip. However, there is a significant difference between the two techniques: Ep is more negative (–400 to –700 mV) in perfused cells than in intact cells (–220 to –260mV); Gp is lower (0·1–0·2 versus 0·3–0·9 S m?2); and Ip is higher (40–60 versus 10–18 mA m?2). Salt-cultured C. buckellii was compared with freshwater C. buckellii using intact cells; Gp and Ep were similar, but Ip was much higher in salt-cultured cells (60 versus 15mA m?2). This higher pump rate is due to the depolarization of the membrane of salt-cultured algae, which is caused by a higher passive conductance. The significance of the less negative membrane potential and the higher rate of proton pumping is discussed with respect to the banding pattern and salt stress.  相似文献   

4.
    
Bafilomycin A1, known as an inhibitor of vacuolar type H+-ATPase, was used to study involvement of the vacuolar ATP-dependent H+-pump in the vacuolar pH regulation in a fresh water charophyte, Chara corallina. When bafilomycin A1 (100 nM) was externally given to intact cells, the vacuolar pH (about 5) was not affected. Internodal cells were then pretreated with 100 nM bafilomycin for 1 ? 2 h and the vacuolar sap was replaced with a weakly buffered solution of pH 7.4. The readjustment of the modified vacuolar pH in bafilomycin-treated cells was significantly retarded compared with that in untreated cells. Next, bafilomycin A1 was directly introduced into the vacuole by vacuolar perfusion with the artificial cell sap of pH 7.4. At 100 nM bafilomycin A1, the decrease in the vacuolar pH was significantly inhibited. When cell sap was replaced with the artificial cell sap containing no buffer (pH 5.2 ? 5.5), the vacuolar pH increased in the presence of vacuolar bafilomycin, suggesting that the PP1- dependent H+ pumping alone was not sufficient for the pH regulation of Chara vacuoles. Intracellular bafilomycin A1 had no effect on the plasma membrane potential of tonoplast-free cells, which is evidence that it does not affect the electrogenic H+-pump in the plasma membrane. Bafilomycin A1 inhibited the ATP-dependent H+ transport of tonoplast vesicles but not the PP1-dependent H+ transport. The ATPase activity of tonoplast vesicles was also inhibited by bafilomycin A1.  相似文献   

5.
The effects of Ca2+ and cell turgor on Na+ influx were examined in two charophytes, lamprothamnium papulo-SUM (salt-tolerant) and Chara corallina (salt-sensitive), to try to identify causes of salinity toxicity. Mortality was associated with Na+ influx, with the two species showing similar sensitivities to high Na+ influx. In Lamprothamnium, toxic influxes of Na+ occurred at much higher external Na+ concentrations than in Chara. The differences in Na+ influx at the same Na+ concentration were not due to different responses to external Ca2+. Lamprothamnium adjusts its turgor in response to increasing NaCl whereas Chara cannot. In solutions of KC1 up to at least 200 mol m-3, however, Chara regulated turgor, and when KC1 was subsequently replaced with NaCl, Na+ influx was low and similar to that in Lamprothamnium at the same Na* concentration. Chara cells which were not turgor-adjusted in KCI had Na+ influxes 2-5-fold higher than the turgid cells. Thus, it appears that turgor is a major determinant of Na+ influx, and therefore of cell survival. We found no evidence that the mechanism of Na+ influx in Chara is different from that in Lamprothamnium. Higher susceptibility of Chara to NaCl seems to result from inability to regulate turgor, in turn leading to toxic Na+ influx.  相似文献   

6.
An analysis of the accumulation of water and dry matter in tomato fruit   总被引:18,自引:6,他引:18  
Abstract Previously published data from tomato plants grown in nutrient solutions having one of three electrical conductivities (2, 12 and 17 mS cm?1) were analysed. The rate of water import into the fruit, and the proportion of this conducted by the xylem stream were calculated from the daily rates of transpiration and the net accumulation of water and calcium. The rate of water import decreased as the conductivity of the nutrient solution rose, the maximum daily import rates in the third week after pollination being 3.2, 3.0 and 1.8 g fruit?1 d?1 for fruit grown at 2, 12 and 17 mS cm?1, respectively. During fruit development, the proportion of water imported via the xylem fell from 8–15% to 1–2% at maturity. The principal source of water for tomato fruit growth was phloem sap. Based on the daily rates of net dry matter accumulation, respiration and phloem water import, the calculated dry matter concentration of the phloem sap declined from 7 to 3%, or from 12.5 to 7.8% during fruit development in low or high salinity, respectively. The similar dry matter accumulation of fruit grown at different salinities was due to changes in both volume and concentration of phloem sap. Potassium salts in tomato fruit were calculated lo have contributed –0.29, –0.48 and –0.58 MPa to total fruit osmotic potential in the 2, 12 and 17 mS cm?1 treatments, respectively, which accounted for 38% or 49% of the measured total osmotic potential of the 2 mS cm?1 or 17 mS cm?1 treatments. The contribution of hexoses to total fruit osmotic potential in the young fruit was from about –0.1 to –0.2 MPa at all salinities. The osmotic potential of tomato fruit is regulated more by potassium salts than by hexoses.  相似文献   

7.
差别筛选HgCl2胁迫处理的菜豆(Phaseolus vulgaris L.)幼苗叶片cDNA库,分离出1个重金属胁迫响应基因PvSR52克隆,其cDNA长度为281bp。cDNA和氨基酸序列同源性分析表明PvSR52编码一种多聚泛肽。Southern blot结果表明菜豆泛肽可能由少数基因编码。Northern blot分析表明多聚泛肽叶片中表达较少;重金属Hg、Cd和As等、过量的Zn和Cu及高温、病毒侵染和水杨酸等环境胁迫均能强烈地刺激其在叶片中的表达。推测泛肽水解系统在提高植物的抗塑性方面有重要作用。  相似文献   

8.
    
Pressure-probe measurements showed that the pressure relaxation of internodal cells of the freshwater alga Chara connivens slowed considerably when 1–5 mol m?3 Zn2+, or more especially Zn2+ and 75 mol m?3 NaCl, were present in the medium for periods of 1 h or longer. These results indicate that the water permeability of the Chara membrane is decreased by Zn2+, and that this effect is enhanced by 75 mol m?3 NaCl. Specific values taken after 375 min exposure were: 5 mol m?3 Zn2+ and 75 mol m?3 NaCl caused the half-time for bulk water movement to increase from 7·8±2·3 to 79·5±5·4s, corresponding to a decrease in the hydraulic conductivity (Lp) from (13·0±3·3) × 10?7 m s?1 mPa?1 to (1·25±0·23) × 10?7 m s?1 MPa?1 (mean±S.D., n= 10). These changes are not seen in the presence of NaCl alone, and to a reduced extent in the presence of 5 mol m?3Zn2+ alone (after 375 min, Lp was (2·4±0·1) × 10?7 m s?1 MPa?1, mean±S.D., n = 6). Ca2+ cannot substitute for Zn2+, but seems to competitively inhibit Zn2+. There was another, kinetically distinct effect of Zn2+: the ingress of Na+ within 15 min of exposure to 75 mol m?3 NaCl is halved by the presence of 1–5 mol m?3 Zn2+, although internal osmolality is little changed by Zn2+. In spite of this, Zn2+ does not exert the long-term protection against NaCl that has been reported for Ca2+. Depending on the concentration of Zn2+ and the duration of the exposure, the effects on water permeability were fully or partly reversible within 24–48 h. The mechanism of these changes is difficult to identify. One possibility is a zinc-induced restriction of trans-membrane channels to give single-file channels which can be blocked by salt.  相似文献   

9.
Concanamycin 4-B, a macrolide antibiotic with an 18-membered lactone ring, is known as a specific inhibitor of the vacuolar type of H+-ATPase, as is bafilomycin A1. The drug was tested for its effect on regulation of the vacuolar pH (pHv) of internodal cells of a fresh water characean alga, Chara corallina, under normal conditions and under salt stress. The pHv was measured either on isolated vacuolar sap with a conventional pH electrode or directly by inserting a pH-sensitive glass microelectrode into the vacuole. Proton-pumping into tonoplast vesicles was almost completely inhibited by concanamycin 4-B at 1 nM. Concanamycin 4-B at 1 μM significantly increased pHv while bafilomycin A1 was ineffective when applied at 1 μM. Concanamycin 4-B did not affect pHv when applied at 0.1 μM and increasing the concentration to 10 μM did not amplify the degree of alkalization. Concanamycin 4-B also inhibited pHv regulation under NaCl stress. When Chara cells were treated with 100 mM NaCl, pHv promptly increased and then recovered to the original level. The reacidification was completely inhibited by concanamycin 4-B (1 μM), suggesting that the reacidification was achieved by the H+-ATPase of the tonoplast.  相似文献   

10.
Isolated characean internodal cells of Nitellopsis obtusa can be stored in artificial pond water for many days, but they cannot survive in 100mol m?3 NaCl solution unless more than several mol m?3 Ca2+ is added. Short-term effects of NaCl stress on the cytosolic concentration of Ca2+ ([Ca2+]c), cytosolic pH (pHc) and vacuolar pH (pHv) were studied in relation to the external concentration of Ca2+ ([Ca2+]e). Changes in [Ca2+]c were measured with light emission from a Ca2+-sensitive photoprotein, semisynthetic fch-aequorin which had been injected into the cytosol. Both pHc and pHv were measured with double-barrelled pH-sensitive microelectrodes. When internodal cells were treated with 100 mol m?3 NaCl (0–1 mol m?3 NaCl (0.1 mol m?3 [Ca2+]e), [Ca2+]c increased and then recovered to the original level within 60 min. The time course of the transient change in [Ca2+]c was not influenced by the level of [Ca2+]c (0.1 and 10 mol m?3). In some cases, the transient increase in [Ca2+]c was induced only by increasing external osmotic pressure with sorbitol. In response to treatment with 100 mol m?3 NaCl (0.1 mol m?3 [Ca2+]c), pHc decreased by 0.1–0.2 units after 10min but recovered after 30–60 min, while pHv increased by 0.4–0.5 units after 2–50 min and tended to recover after 60 min. The initial changes in both pHc and pHv were suppressed when [Ca2+]e was raised from 0.1 to 10mol m?3. These results show that the charophyte alga Nitellopsis can regulate [Ca2+]c, pHc and pHv under NaCl stress in the short term and that the protective effect of Ca2+ on salinity stress is apparently unrelated to perturbation of Ca2+ and pH homeostasis.  相似文献   

11.
Sandy clay loam soil contaminated with 5000, 10,000 or 20,000 mg/kg of diesel fuel no. 2 was amended with 0 (ambient nitrogen only), 250, 500, or 1000 mg/kg nitrogen (NH4Cl) to evaluate the role of C:N ratios and soil water potential on diesel biodegradation efficacy. The soil was incubated at 25°C for 41 days and microbial O2 consumption measured respirometrically. Highest microbial respiration was observed in the 250 mg N/kg soil treatments regardless of diesel concentration. Higher levels of nitrogen fertilization decreased soil water potential and resulted in an extended lag phase and reduced respiration. Application of 1000 mg/kg nitrogen reduced maximum respiration by 20% to 52% depending on contaminant levels. Optimal C:N ratios among those tested were 17:1, 34:1, and 68:1 for the three diesel concentrations, respectively, and were dependent on contaminant concentration. Nitrogen fertilization on the basis of soil pore water nitrogen (mg N/kg soil H2O) is independent of hydrocarbon concentration but takes into account soil moisture content. This method accounts for both the nutritional and osmotic aspects of nitrogen fertilization. In the soil studied the best nitrogen augmentation corresponded to a soil pore water nitrogen level of 1950 mg N/kg H2O at all diesel concentrations.  相似文献   

12.
Sandy clay loam soil contaminated with 5000, 10,000 or 20,000 mg/kg of diesel fuel no. 2 was amended with 0 (ambient nitrogen only), 250, 500, or 1000 mg/kg nitrogen (NH4Cl) to evaluate the role of C:N ratios and soil water potential on diesel biodegradation efficacy. The soil was incubated at 25°C for 41 days and microbial O2 consumption measured respirometrically. Highest microbial respiration was observed in the 250 mg N/kg soil treatments regardless of diesel concentration. Higher levels of nitrogen fertilization decreased soil water potential and resulted in an extended lag phase and reduced respiration. Application of 1000 mg/kg nitrogen reduced maximum respiration by 20% to 52% depending on contaminant levels. Optimal C:N ratios among those tested were 17:1, 34:1, and 68:1 for the three diesel concentrations, respectively, and were dependent on contaminant concentration. Nitrogen fertilization on the basis of soil pore water nitrogen (mg N/kg soil H2O) is independent of hydrocarbon concentration but takes into account soil moisture content. This method accounts for both the nutritional and osmotic aspects of nitrogen fertilization. In the soil studied the best nitrogen augmentation corresponded to a soil pore water nitrogen level of 1950 mg N/kg H2O at all diesel concentrations.  相似文献   

13.
干旱条件下臭柏的生理生态对策   总被引:5,自引:0,他引:5       下载免费PDF全文
温国胜  张明如  张国盛  王林和 《生态学报》2006,26(12):4059-4065
为了探讨臭柏(Sabina vulgaris)的耐旱生理生态适应对策,进行了长期的野外调查和室内模拟实验。野外调查是在毛乌素沙地的天然臭柏分布区内,设置固定样方,调查分析;室内实验是将臭柏插穗带往日本冈山大学,移植于砾耕栽培装置中,设置对照区,弱干旱胁迫区,强干旱胁迫区(培养液渗透势分别为0 MPa,-0.1MPa和-0.3MPa)3种处理进行长期的干旱胁迫室内模拟实验,研究各处理区臭柏的生理生态学特性,结果表明,在干旱胁迫条件下,臭柏表现出积极的生理生态适应对策:(1)在生长方面,通过降低密度、自然稀疏及下部枝叶干枯的方式,以牺牲局部,确保个体生存的生态策略,有效地利用资源,维持种群的生存。(2)在气体交换方面,气孔关闭,气体交换速率减缓,光合速率和蒸腾速率都下降,但是,与光合速率相比,由于蒸腾速率受到更强烈的抑制,水分利用率提高。(3)在吸水保水方面,通过渗透调节能力的增强,细胞壁弹性的降低,增强忍耐脱水能力和吸水能力;通过增加气孔密度,提高气孔调节的敏感性,增加角质层厚度,减少水分的散失;增强耐旱性。  相似文献   

14.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species,ROS)和主要抗氧化酶——超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase,APX)和谷胱甘肽还原酶(glutathione reductase,GR)活性的影响。结果表明,与对照相比,PEG处理明显提高了叶子和根中丙二醛(malondialdehyde,MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似,但抗氧化酶活性在2种器官中表现不完全相同,叶子中CAT的活性在对照和处理中无显著差异,但在根中差异明显,表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用,而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶,表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

15.
We present the first experimental results on salinity tolerance and regulation mechanisms in the genus Tolypella. The two species investigated, T. nidifica and T. glomerata, regulate turgor pressure with almost complete effectiveness by adjustment of K+ and CT concentrations. Sucrose is also involved. The mechanism is basically identical to the mechanism of turgor pressure regulation previously identified in representatives of the genera Chara and Lamprothamnium. Since Chara and Lamprothamnium on the one hand and Tolypella on the other belong to different phylogenetic branches that separated early in the geological history of the Characeae, the K+ regulation mechanism can be assumed to represent an ancient pattern derived from a salt-tolerant common ancestor. Furthermore, our experiments provide evidence that salinity is a limiting factor for fertility in both T. nidifica and T. glomerata. Although the onset of gametangia covers the whole range of salinities tested here (0–29 psu), 12psu was the inhibitory level for the formation of mature oospores. Fertilization is probably disturbed by an increase in salinity. An inability to reproduce sexually under euryhaline conditions could explain why the distribution of the two species is restricted to oligo- and mesohaline environments, despite the wide range of salinity tolerance of their vegetative apparatus.  相似文献   

16.
17.
The apex of growing stems in twining plants describes a rhythmic movement in space called circumnutation. By the method of orthogonal projections, the position in space of the apex can be determined constantly. The mathematical analysis of data allowed us to determine that far Phaseolus vulgaris L. (cv. Mangetout Blanc de Juillet) grown under constant illumination and temperature (25°C) the period is about 100 min. This movement has been related to rhythmic changes in the osmotic potential of the cells located in the bending zone of the stem for a constant period. These variations are longitudinally and laterally coordinated. Treatment with a solution of LiCI at 7 × 10 'M supplied to the root system induces a lengthening of the period. The effect of the treatment is reversed by K+ ions. From these results we deduce that rhythmic changes of the membranes are implicated in the circumnutation movements of twining plants.  相似文献   

18.
采用盆栽试验,研究了不同浓度(0、50、100、200和400 mmol·L-1)NaCl处理对1年生大果白刺生长状况及叶片过氧化氢(H2O2)、丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、抗坏血酸过氧化物酶(APX)活性、水势、可溶性糖和脯氨酸含量的影响.结果表明: 与对照相比,低浓度NaCl处理(≤50 mmol·L-1)对大果白刺生长没有显著的抑制作用,叶片的SOD、POD、CAT和APX活性均有所提高;高浓度(>50 mmol·L-1)NaCl处理抑制了大果白刺的冠幅面积、分枝数和叶、枝、侧根干质量,叶片的SOD、CAT、POD活性和可溶性糖、脯氨酸含量显著下降. 随NaCl处理浓度升高,H2O2和MDA含量增加,叶片水势降低.
  相似文献   

19.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号