首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Eph receptor tyrosine kinases family and their membrane bound ligands, the ephrins, represents a complex signaling network of cell communication for cell sorting during tissue patterning in development and in the normal physiology and homeostasis of adult tissues. This molecular family has adapted to evolving tissue complexity in multicellular organisms through the emergence of more members and complex mechanisms of expression and signaling that result in the fine-tuning of cell positioning. Since their initial identification from an erythropoietin producing hepatocellular (Eph) carcinoma cell line in 1987, Eph/ephrin signaling has been a matter of intensive investigation for their plausible role in cancer. Similarly to their context dependent modus operandi in normal tissues, Eph/ephrin signaling in cancer is an intricate and puzzling network of events that tumors “manage” to their benefit in multiple aspects like cell adhesion to substrate, migration, invasion or growth.  相似文献   

2.
The Eph receptors and their ephrin ligands play crucial roles in a large number of cell–cell interaction events, including those associated with axon pathfinding, neuronal cell migration and vasculogenesis. They are also involved in the patterning of most tissues and overall cell positioning in the development of the vertebrate body plan. The Eph/ephrin signaling system manifests several unique features that differentiate it from other receptor tyrosine kinases, including initiation of bi-directional signaling cascades and the existence of ligand and receptor subclasses displaying promiscuous intra-subclass interactions, but very rare inter-subclass interactions. In this review we briefly discuss these features and focus on recent studies of the unique and expansive high-affinity Eph/ephrin assemblies that form at the sites of cell–cell contact and are required for Eph signaling initiation. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

3.
Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.  相似文献   

4.
Eph receptors and ephrin ligands are widely expressed during embryonic development with well-defined functions in directing neuronal and vascular network formation. Over the last decade, evidence has mounted that Ephs and ephrins are also actively involved in prenatal and postnatal development of epithelial tissues. Their functions beyond developmental settings are starting to be recognized as well. The diverse functions of Eph/ephrin are largely related to the complementary expression pattern of the Eph receptors and corresponding ephrin ligands that are expressed in adjacent compartments, although overlapping expression pattern also exists in epithelial tissue. The interconnection between Ephs or ephrins and classical cell junctional molecules suggests they may function coordinately in maintaining epithelial structural integrity and homeostasis. This review will highlight cellular and molecular evidence in current literature that support a role of Eph/ephrin systems in regulating epithelial cell development and physiology.  相似文献   

5.
Proteases regulate a myriad of cell functions, both in normal and disease states. In addition to protein turnover, they regulate a range of signaling processes, including those mediated by Eph receptors and their ephrin ligands. A variety of proteases is reported to directly cleave Ephs and/or ephrins under different conditions, to promote receptor and/or ligand shedding, and regulate receptor/ligand internalisation and signaling. They also cleave other adhesion proteins in response to Eph-ephrin interactions, to indirectly facilitate Eph-mediated functions. Proteases thus contribute to Eph/ephrin mediated changes in cell-cell and cell-matrix interactions, in cell morphology and in cell migration and invasion, in a manner which appears to be tightly regulated by, and co-ordinated with, Eph signaling. This review summarizes the current literature describing the function and regulation of protease activities during Eph/ephrin-mediated cell signaling.  相似文献   

6.
Proteases regulate a myriad of cell functions, both in normal and disease states. In addition to protein turnover, they regulate a range of signaling processes, including those mediated by Eph receptors and their ephrin ligands. A variety of proteases is reported to directly cleave Ephs and/or ephrins under different conditions, to promote receptor and/or ligand shedding, and regulate receptor/ligand internalisation and signaling. They also cleave other adhesion proteins in response to Eph-ephrin interactions, to indirectly facilitate Eph-mediated functions. Proteases thus contribute to Eph/ephrin mediated changes in cell-cell and cell-matrix interactions, in cell morphology and in cell migration and invasion, in a manner which appears to be tightly regulated by, and co-ordinated with, Eph signaling. This review summarizes the current literature describing the function and regulation of protease activities during Eph/ephrin-mediated cell signaling.  相似文献   

7.
Eph/ephrin signaling in morphogenesis, neural development and plasticity   总被引:13,自引:0,他引:13  
Ephrins are cell-surface-tethered ligands for Eph receptors, the largest family of receptor tyrosine kinases. During development, the Eph/ephrin cell communication system appears to influence cell behavior such as attraction/repulsion, adhesion/de-adhesion and migration, thereby influencing cell fate, morphogenesis and organogenesis. During adulthood, the Eph/ephrin system continues to play roles in tissue plasticity, for example in shaping dendritic spines during neuronal plasticity. Mechanistically, Eph-ephrin repulsive behavior appears to require ligand-receptor internalization and signaling to Rho GTPases.  相似文献   

8.
Cheng C  Gong X 《PloS one》2011,6(11):e28147
Recent genetic studies show that the Eph/ephrin bidirectional signaling pathway is associated with both congenital and age-related cataracts in mice and humans. We have investigated the molecular mechanisms of cataractogenesis and the roles of ephrin-A5 and EphA2 in the lens. Ephrin-A5 knockout (-/-) mice often display anterior polar cataracts while EphA2(-/-) lenses show very mild cortical or nuclear cataracts at weaning age. The anterior polar cataract of ephrin-A5(-/-) lenses is correlated with multilayers of aberrant cells that express alpha smooth muscle actin, a marker for mesenchymal cells. Only select fiber cells are altered in ephrin-A5(-/-) lenses. Moreover, the disruption of membrane-associated β-catenin and E-cadherin junctions is observed in ephrin-A5(-/-) lens central epithelial cells. In contrast, EphA2(-/-) lenses display normal monolayer epithelium while disorganization is apparent in all lens fiber cells. Immunostaining of ephrin-A5 proteins, highly expressed in lens epithelial cells, were not colocalized with EphA2 proteins, mainly expressed in lens fiber cells. Besides the previously reported function of ephrin-A5 in lens fiber cells, this work suggests that ephrin-A5 regulates β-catenin signaling and E-cadherin to prevent lens anterior epithelial cells from undergoing the epithelial-to-mesenchymal transition while EphA2 is essential for controlling the organization of lens fiber cells through an unknown mechanism. Ephrin-A5 and EphA2 likely interacting with other members of Eph/ephrin family to play diverse functions in lens epithelial cells and/or fiber cells.  相似文献   

9.
Eph receptors and their membrane-bound ligands are intimately involved in the control of morphogenic processes during embryonic development and adult tissue homeostasis. By their ability to orchestrate cell migration, pattern formation and tissue integrity they are also prone to be involved in carcinogenic growth. In this review we concentrate on their involvement in the normal and carcinogenic development of the breast. In this context we summarize their multi-faceted functions as tumor suppressors, tumor promoters, angiogenic inducers and regulators of stem cell homeostasis.  相似文献   

10.
Eph receptors and their membrane-bound ligands are intimately involved in the control of morphogenic processes during embryonic development and adult tissue homeostasis. By their ability to orchestrate cell migration, pattern formation and tissue integrity they are also prone to be involved in carcinogenic growth. In this review we concentrate on their involvement in the normal and carcinogenic development of the breast. In this context we summarize their multi-faceted functions as tumor suppressors, tumor promoters, angiogenic inducers and regulators of stem cell homeostasis.  相似文献   

11.
12.
13.
Oda-Ishii I  Ishii Y  Mikawa T 《PloS one》2010,5(10):e13689

Background

The notochord is a signaling center required for the patterning of the vertebrate embryic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood.

Methodology/Principal Findings

Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete.

Conclusions/Significance

Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.  相似文献   

14.
Eph and ephrin signaling in the formation of topographic maps   总被引:1,自引:0,他引:1  
The axonal connections between the retina and its midbrain target, the superior colliculus (SC), is mapped topographically, such that the spatial relationships of cell bodies in the retina are maintained when terminating in the SC. Topographic map development uses a Cartesian mapping system such that each axis of the retina is mapped independently. Along the nasal-temporal mapping axis, EphAs and ephrin-As, are graded molecular cues required for topographic mapping while the dorsal-ventral axis is mapped in part via EphB and ephrin-Bs. Because both Ephs and ephrins are cell surface molecules they can signal in the forward and reverse directions. Eph/ephrin signaling leads to changes in cytoskeletal dynamics that lead to actin depolymerization and endocytosis guiding axons via attraction and repulsion.  相似文献   

15.
There is increasing evidence that in addition to having major roles in morphogenesis, in some tissues Eph receptor and ephrin signaling regulates the differentiation of cells. In one mode of deployment, cell contact dependent Eph-ephrin activation induces a distinct fate of cells at the interface of their expression domains, for example in early ascidian embryos and in the vertebrate hindbrain. In another mode, overlapping Eph receptor and ephrin expression underlies activation within a cell population, which promotes or inhibits cell differentiation in bone remodelling, neural progenitors and keratinocytes. Eph-ephrin activation also contributes to formation of the appropriate number of progenitor cells by increasing or decreasing cell proliferation. These multiple roles of Eph receptor and ephrin signaling may enable a coupling between morphogenesis and the differentiation and proliferation of cells.  相似文献   

16.
There is increasing evidence that in addition to having major roles in morphogenesis, in some tissues Eph receptor and ephrin signaling regulates the differentiation of cells. In one mode of deployment, cell contact dependent Eph-ephrin activation induces a distinct fate of cells at the interface of their expression domains, for example in early ascidian embryos and in the vertebrate hindbrain. In another mode, overlapping Eph receptor and ephrin expression underlies activation within a cell population, which promotes or inhibits cell differentiation in bone remodelling, neural progenitors and keratinocytes. Eph-ephrin activation also contributes to formation of the appropriate number of progenitor cells by increasing or decreasing cell proliferation. These multiple roles of Eph receptor and ephrin signaling may enable a coupling between morphogenesis and the differentiation and proliferation of cells.  相似文献   

17.
18.
19.
Bones cannot properly form or be maintained without cell-cell interactions through ephrin ligands and Eph receptors. Cell culture analysis and evaluation of genetic mouse models and human diseases reveal various ephrins and Eph functions in the skeletal system. Migration, attachment and spreading of mesenchymal stem cells are regulated by ephrinB ligands and EphB receptors. ephrinB1 loss-of-function is associated with craniofrontonasal syndrome (CFNS) in humans and mice. In bone remodeling, ephrinB2 is postulated to act as a “coupling stimulator.” In that case, bidirectional signaling between osteoclastic ephrinB2 and osteoblastic EphB4 suppresses osteoclastic bone resorption and enhances osteoblastic bone formation, facilitating the transition between these two states. Parathyroid hormone (PTH) induces ephrinB2 in osteoblasts and enhances osteoblastic bone formation. In contrast to ephrinB2, ephrinA2 acts as a “coupling inhibitor,” since ephrinA2 reverse signaling into osteoclasts enhances osteoclastogenesis and EphA2 forward signaling into osteoblasts suppresses osteoblastic bone formation and mineralization. Furthermore, ephrins and Ephs likely modulate pathological conditions such as osteoarthritis, rheumatoid arthritis, multiple myeloma and osteosarcoma. This review focuses on ephrin/Eph-mediated cell-cell interactions in bone biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号