首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Eph receptors and their ligands, the ephrins, are thought to act at points of close cell-cell contact to elicit bi-directional signaling in receptor and ligand expressing cells. However, when cultured in vitro, some A-type ephrins are released from the cell surface and it is unclear if these soluble ephrins participate in Eph receptor activation. We show that soluble ephrin A5 is subject to oligomerization. Ephrins A1 and A5 are substrates for a cross-linking enzyme, tissue transglutaminase, which mediates the formation of oligomeric ephrin. Transglutaminase-cross-linked ephrin binds to A-type Eph receptors, stimulates Eph kinase activity, and promotes invasion and migration of HeLa cells. Transglutaminase-mediated oligomerization of soluble ephrin potentially represents a novel mechanism of forward signaling through Eph receptors and may extend the influence of A-type ephrins beyond cell contact mediated signaling.  相似文献   

3.
4.
Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.  相似文献   

5.
Eph receptor tyrosine kinases (Ephs) and their membrane-anchored ligands (ephrins) form a vital cell communication system capable of bi-directional signaling. This Eph receptor/ephrin system has classically been demonstrated to play a role in development. However, emerging evidence has revealed differential expression of Ephs and ephrins in numerous cancers. Recent studies suggest that this system influences invasive behaviour, promoting a more aggressive and metastatic phenotype. Hence, this minireview summarizes the current understanding of the contribution of both Eph receptors and their ephrin ligands to invasiveness in cancer, as well as their use as potential therapeutic targets.  相似文献   

6.
Kao TJ  Kania A 《Neuron》2011,71(1):76-91
Axon guidance receptors guide neuronal growth cones by binding in trans to axon guidance ligands in the developing nervous system. Some ligands are coexpressed in cis with their receptors, raising the question of the relative contribution of cis and trans interactions to axon guidance. Spinal motor axons use Eph receptors to select a limb trajectory in response to trans ephrins, while expressing ephrins in cis. We show that changes in motor neuron ephrin expression result in trajectory selection defects mirrored by changes in growth cone sensitivity to ephrins in vitro, arguing for ephrin cis-attenuation of Eph function. Furthermore, the relative contribution of trans-signaling and cis-attenuation is influenced by the subcellular distribution of ephrins to membrane patches containing Eph receptors. Thus, growth cone ephrins are essential for axon guidance in vivo and the balance between cis and trans modes of axon guidance ligand-receptor interaction contributes to the diversity of axon guidance signaling responses.  相似文献   

7.
Pasquale EB 《Cell》2008,133(1):38-52
Receptor tyrosine kinases of the Eph family bind to cell surface-associated ephrin ligands on neighboring cells. The ensuing bidirectional signals have emerged as a major form of contact-dependent communication between cells. New findings reveal that Eph receptors and ephrins coordinate not only developmental processes but also the normal physiology and homeostasis of many adult organs. Imbalance of Eph/ephrin function may therefore contribute to a variety of diseases. The challenge now is to better understand the complex and seemingly paradoxical signaling mechanisms of Eph receptors and ephrins, which will enable effective strategies to target these proteins in the treatment of diseases such as diabetes and cancer.  相似文献   

8.
The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, have been implicated in regulating cell adhesion and migration during development by mediating cell-to-cell signaling events. Genetic evidence suggests that ephrins may transduce signals and become tyrosine phosphorylated during embryogenesis. However, the induction and functional significance of ephrin phosphorylation is not yet clear. Here, we report that when we used ectopically expressed proteins, we found that an activated fibroblast growth factor (FGF) receptor associated with and induced the phosphorylation of ephrin B1 on tyrosine. Moreover, this phosphorylation reduced the ability of overexpressed ephrin B1 to reduce cell adhesion. In addition, we identified a region in the cytoplasmic tail of ephrin B1 that is critical for interaction with the FGF receptor; we also report FGF-induced phosphorylation of ephrins in a neural tissue. This is the first demonstration of communication between the FGF receptor family and the Eph ligand family and implicates cross talk between these two cell surface molecules in regulating cell adhesion.  相似文献   

9.
Eph receptors, the largest subfamily of receptor tyrosine kinases (RTKs), and their ephrin ligands are important mediators of cell-cell communication that regulate axon guidance, long-term potentiation, and stem cell development, among others. By now, many Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Since both the receptor and the ligand are membrane-bound, their interaction leads to the multimerization of both molecules to distinct clusters within their respective plasma membranes, resulting in the formation of discrete signaling centers. In addition, and unique to Eph receptors and ephrins, their interaction initiates bi-directional signaling cascades where information is transduced in the direction of both the receptor- and the ligand-bearing cells. The Ephs and the ephrins are divided into two subclasses, A and B, based on their affinities for each other and on sequence conservation. Crystal structures and other biophysical studies have indicated that isolated extracellular Eph and ephrin domains initially form high-affinity heterodimers around a hydrophobic loop of the ligand that is buried in a hydrophobic pocket on the surface of the receptor. The dimers can then further arrange by weaker interactions into higher-order Eph/ephrin clusters observed in vivo at the sites of cell-cell contact. Although the hetero-dimerization is a universal way to initiate signaling, other extracellular domains of Ephs are involved in the formation of higher-order clusters. The structures also show important differences defining the unique partner preferences of the two ligand and receptor subclasses, namely, how subclass specificity is determined both by individual interacting residues and by the precise architectural arrangement of ligands and receptors within the complexes.  相似文献   

10.
Eph receptors interact with ephrin ligands on adjacent cells to facilitate tissue patterning during normal and oncogenic development, in which unscheduled expression and somatic mutations contribute to tumor progression. EphA and B subtypes preferentially bind A- and B-type ephrins, respectively, resulting in receptor complexes that propagate via homotypic Eph-Eph interactions. We now show that EphA and B receptors cocluster, such that specific ligation of one receptor promotes recruitment and cross-activation of the other. Remarkably, coexpression of a kinase-inactive mutant EphA3 with wild-type EphB2 can cause either cross-activation or cross-inhibition, depending on relative expression. Our findings indicate that cellular responses to ephrin contact are determined by the EphA/EphB receptor profile on a given cell rather than the individual Eph subclass. Importantly, they imply that in tumor cells coexpressing different Ephs, functional mutations in one subtype may cause phenotypes that are a result of altered signaling from heterotypic rather from homotypic Eph clusters.  相似文献   

11.
Eph receptors and ephrin ligands are widely expressed during embryonic development with well-defined functions in directing neuronal and vascular network formation. Over the last decade, evidence has mounted that Ephs and ephrins are also actively involved in prenatal and postnatal development of epithelial tissues. Their functions beyond developmental settings are starting to be recognized as well. The diverse functions of Eph/ephrin are largely related to the complementary expression pattern of the Eph receptors and corresponding ephrin ligands that are expressed in adjacent compartments, although overlapping expression pattern also exists in epithelial tissue. The interconnection between Ephs or ephrins and classical cell junctional molecules suggests they may function coordinately in maintaining epithelial structural integrity and homeostasis. This review will highlight cellular and molecular evidence in current literature that support a role of Eph/ephrin systems in regulating epithelial cell development and physiology.  相似文献   

12.
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.  相似文献   

13.
The Eph receptor tyrosine kinases family and their membrane bound ligands, the ephrins, represents a complex signaling network of cell communication for cell sorting during tissue patterning in development and in the normal physiology and homeostasis of adult tissues. This molecular family has adapted to evolving tissue complexity in multicellular organisms through the emergence of more members and complex mechanisms of expression and signaling that result in the fine-tuning of cell positioning. Since their initial identification from an erythropoietin producing hepatocellular (Eph) carcinoma cell line in 1987, Eph/ephrin signaling has been a matter of intensive investigation for their plausible role in cancer. Similarly to their context dependent modus operandi in normal tissues, Eph/ephrin signaling in cancer is an intricate and puzzling network of events that tumors “manage” to their benefit in multiple aspects like cell adhesion to substrate, migration, invasion or growth.  相似文献   

14.
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.  相似文献   

15.
The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.  相似文献   

16.
Eph receptor tyrosine kinases and their membrane-associated ligands, the ephrins, are essential regulators of axon guidance, cell migration, segmentation, and angiogenesis. There are two classes of vertebrate ephrin ligands which have distinct binding specificities for their cognate receptors. Multimerization of the ligands is required for receptor activation, and ephrin ligands themselves signal intracellularly upon binding Eph receptors. We have determined the structure of the extracellular domain of mouse ephrin-B2. The ephrin ectodomain is an eight-stranded beta barrel with topological similarity to plant nodulins and phytocyanins. Based on the structure, we have identified potential surface determinants of Eph/ephrin binding specificity and a ligand dimerization region. The high sequence similarity among ephrin ectodomains indicates that all ephrins may be modeled upon the ephrin-B2 structure presented here.  相似文献   

17.
Eph receptor tyrosine kinases (Ephs) and their membrane anchored ephrin ligands (ephrins) form an essential cell-cell communication system that directs the positioning, adhesion and migration of cells and cell layers during development. While less prominent in normal adult tissues, there is evidence that up-regulated expression and de-regulated function of Ephs and ephrins in a large variety of human cancers may promote a more aggressive and metastatic tumour phenotype. However, in contrast to other RTKs, Ephs do not act as classical proto-oncogenes and do not effect cell proliferation or differentiation. Mounting evidence suggests that Eph receptors, through de-regulated re-emergence of their mode of action in the embryo may direct cell movements and positioning during metastasis, invasion and tumour angiogenesis. This review discusses these and other emerging roles of Eph receptors during oncogenesis.  相似文献   

18.
The Eph receptor tyrosine kinase family includes many members, which are often expressed together in various combinations and can promiscuously interact with multiple ephrin ligands, generating intricate networks of intracellular signals that control physiological and pathological processes. Knowing the entire repertoire of Eph receptors and ephrins expressed in a biological sample is important when studying their biological roles. Moreover, given the correlation between Eph receptor/ephrin expression and cancer pathogenesis, their expression patterns could serve important diagnostic and prognostic purposes. However, profiling Eph receptor and ephrin expression has been challenging. Here we describe a novel and straightforward approach to catalog the Eph receptors present in cultured cells and tissues. By measuring the binding of ephrin Fc fusion proteins to Eph receptors in ELISA and pull-down assays, we determined that a mixture of four ephrins is suitable for isolating both EphA and EphB receptors in a single pull-down. We then used mass spectrometry to identify the Eph receptors present in the pull-downs and estimate their relative levels. This approach was validated in cultured human cancer cell lines, human tumor xenograft tissue grown in mice, and mouse brain tissue. The new mass spectrometry approach we have developed represents a useful tool for the identification of the spectrum of Eph receptors present in a biological sample and could also be extended to profiling ephrin expression.  相似文献   

19.
20.
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane‐associated molecules, particularly the Eph‐ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane‐associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell‐to‐cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph‐ and ephrin‐related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane‐associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane‐bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph‐ and ephrin‐related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies. Birth Defects Research (Part C) 108:65–84, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号