首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The replication fork blocks are common in both prokaryotes and eukaryotes. In most cases, these blocks are associated with increased levels of mitotic recombination. One of the best-characterized replication fork blocks in eukaryotes is found in ribosomal DNA (rDNA) repeats of Saccharomyces cerevisiae. It has been shown that the replication fork blocking protein Fob1p regulates the recombination rate and the number of rDNA copies in S. cerevisiae, but the mechanistic aspects of these events are still poorly understood. Sequence profile searches revealed that Fob1p is related to retroviral integrases. Subsequently, the catalytic domain of HIV-1 integrase was used as a template to build a reliable three-dimensional model of Fob1p. Structural insights from this study may be useful in explaining Fob1p-mediated formation of extrachromosomal rDNA circles that accelerate aging in yeast and recombination events that lead to expansion or contraction of rDNA.  相似文献   

6.
7.
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats.  相似文献   

8.
9.
10.
An average of 200 copies of the rRNA gene (rDNA) is clustered in a long tandem array in Saccharomyces cerevisiae. FOB1 is known to be required for expansion/contraction of the repeats by stimulating recombination, thereby contributing to the maintenance of the average copy number. In Deltafob1 cells, the repeats are still maintained without any fluctuation in the copy number, suggesting that another, unknown system acts to prevent repeat contraction. Here, we show that condensin acts together with FOB1 in a functionally complemented fashion to maintain the long tandem repeats. Six condensin mutants possessing severely contracted rDNA repeats were isolated in Deltafob1 cells but not in FOB1+ cells. We also found that the condensin complex associated with the nontranscribed spacer region of rDNA with a major peak coincided with the replication fork barrier (RFB) site in a FOB1-dependent fashion. Surprisingly, condensin association with the RFB site was established during S phase and was maintained until anaphase. These results indicate that FOB1 plays a novel role in preventing repeat contraction by regulating condensin association and suggest a link between replication termination and chromosome condensation and segregation.  相似文献   

11.
12.
13.
The ribosomal DNA (rDNA) genes of Saccharomyces cerevisiae are located in a tandem array of about 150 repeats. Using a diploid with markers flanking and within the rDNA array, we showed that low levels of DNA polymerase alpha elevate recombination between both homologues and sister chromatids, about five-fold in mitotic cells and 30-fold in meiotic cells. This stimulation is independent of Fob1p, a protein required for the programmed replication fork block (RFB) in the rDNA. We observed that the fob1 mutation alone significantly increased meiotic, but not mitotic, rDNA recombination, suggesting a meiosis-specific role for this protein. We found that meiotic cells with low polymerase alpha had decreased Sir2p binding and increased Spo11p-catalyzed double-strand DNA breaks in the rDNA. Furthermore, meiotic crossover interference in the rDNA is absent. These results suggest that the hyper-Rec phenotypes resulting from low levels of DNA polymerase alpha in mitosis and meiosis reflect two fundamentally different mechanisms: the increased mitotic recombination is likely due to increased double-strand DNA breaks (DSBs) resulting from Fob1p-independent stalled replication forks, whereas the hyper-Rec meiotic phenotype results from increased levels of Spo11-catalyzed DSBs in the rDNA.  相似文献   

14.
15.
16.
17.
18.
19.
S Gangloff  H Zou    R Rothstein 《The EMBO journal》1996,15(7):1715-1725
The genomic stability of the rDNA tandem array in yeast is tightly controlled to allow sequence homogenization and at the same time prevent deleterious rearrangements. In our study, we show that gene conversion, and not unequal sister chromatid exchange, is the predominant recombination mechanism regulating the expansion and contraction of the rDNA array. Furthermore, we found that RAD52, which is essential for gene conversion, is required for marker duplication stimulated in the absence of the two yeast type I topoisomerases. Our results have implications for the mechanisms regulating genomic stability of repetitive sequence families found in all eukaryotes.  相似文献   

20.
Saccharomyces cerevisiae carries approximately 150 ribosomal DNA (rDNA) copies in tandem repeats. Each repeat consists of the 35S rRNA gene, the NTS1 spacer, the 5S rRNA gene, and the NTS2 spacer. The FOB1 gene was previously shown to be required for replication fork block (RFB) activity at the RFB site in NTS1, for recombination hot spot (HOT1) activity, and for rDNA repeat expansion and contraction. We have constructed a strain in which the majority of rDNA repeats are deleted, leaving two copies of rDNA covering the 5S-NTS2-35S region and a single intact NTS1, and whose growth is supported by a helper plasmid carrying, in addition to the 5S rRNA gene, the 35S rRNA coding region fused to the GAL7 promoter. This strain carries a fob1 mutation, and an extensive expansion of chromosomal rDNA repeats was demonstrated by introducing the missing FOB1 gene by transformation. Mutational analysis using this system showed that not only the RFB site but also the adjacent approximately 400-bp region in NTS1 (together called the EXP region) are required for the FOB1-dependent repeat expansion. This approximately 400-bp DNA element is not required for the RFB activity or the HOT1 activity and therefore defines a function unique to rDNA repeat expansion (and presumably contraction) separate from HOT1 and RFB activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号