首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic properties of placental glucose-6-phosphate dehydrogenase were studied, since this enzyme is expected to be an important component of the placental protection system. In this capacity it is also very important for the health of the fetus. The placental enzyme obeyed "Rapid Equilibrium Ordered Bi Bi" sequential kinetics with K(m) values of 40+/-8 microM for glucose-6-phosphate and 20+/-10 microM for NADP. Glucose-6-phosphate, 2-deoxyglucose-6-phosphate and galactose-6-phosphate were used with catalytic efficiencies (k(cat)/K(m)) of 7.4 x 10(6), 4.89 x 10(4) and 1.57 x 10(4) M(-1).s(-1), respectively. The K(m)app values for galactose-6-phosphate and for 2-deoxyglucose-6-phosphate were 10+/-2 and 0.87+/-0.06 mM. With galactose-6-phosphate as substrate, the same K(m) value for NADP as glucose-6-phosphate was obtained and it was independent of galactose-6-phosphate concentration. On the other hand, when 2-deoxyglucose-6-phosphate used as substrate, the K(m) for NADP decreased from 30+/-6 to 10+/-2 microM as the substrate concentration was increased from 0.3 to 1.5 mM. Deamino-NADP, but not NAD, was a coenzyme for placental glucose-6-phosphate dehydrogenase. The catalytic efficiencies of NADP and deamino-NADP (glucose-6-phosphate as substrate) were 1.48 x 10(7) and 4.80 x 10(6) M(-1)s(-1), respectively. With both coenzymes, a hyperbolic saturation and an inhibition above 300 microM coenzyme concentration, was observed. Human placental glucose-6-phosphate dehydrogenase was inhibited competitively by 2,3-diphosphoglycerate (K(i)=15+/-3 mM) and NADPH (K(i)=17.1+/-3.2 microM). The small dissociation constant for the G6PD:NADPH complex pointed to tight enzyme:NADPH binding and the important role of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

2.
The thionicotinamide analogues of NAD+ and NADP+ were shown to be good alternative coenzymes for bovine glutamate dehydrogenase, with similar affinity and approx. 40% of the maximum velocity obtained with the natural coenzymes. Both thionicotinamide analogues show non-linear Lineweaver-Burk plots, which with the natural coenzymes have been attributed to negative co-operativity. Since the reduced thionicotinamide analogues have an isosbestic point at 340nm and have an absorption maximum at 400nm, it is possible to monitor reduction of natural coenzyme and thionicotinamide analogue simultaneously by dual-wavelength spectroscopy. When glutamate dehydrogenase is presented with NADP+ and thio-NADP+ simultaneously, the enzyme oligomer senses saturation of its coenzyme-binding sites irrespective of the exact nature of the coenzyme and locks the oligomer into its highly saturated form even when low saturation of the monitored coenzyme is present. These experiments substantiate the suggestion that glutamate dehydrogenase shows negative co-operativity in its catalytically active form.  相似文献   

3.
Glucose dehydrogenase from rat liver microsomes was found to react not only with glucose as a substrate but also with glucose 6-phosphate, 2-deoxyglucose 6-phosphate and galactose 6-phosphate. The relative maximum activity of this enzyme was 29% for glucose 6-phosphate, 99% for 2-deoxyglucose 6-phosphate, and 25% for galactose 6-phosphate, compared with 100% for glucose with NADP. The enzyme could utilize either NAD or NADP as a coenzyme. Using polyacrylamide gradient gel electrophoresis, we were able to detect several enzymatically active bands by incubation of the gels in a tetrazolium assay mixture. Each band had different Km values for the substrates (3.0 x 10(-5)M glucose 6-phosphate with NADP to 2.4M glucose with NAD) and for coenzymes (1.3 x 10(-6)M NAD with galactose 6-phosphate to 5.9 x 10(-5)M NAD with glucose). Though glucose 6-phosphate and galactose 6-phosphate reacted with glucose dehydrogenase, they inhibited the reaction of this enzyme only when either glucose or 2-deoxyglucose 6-phosphate was used as a substrate. The Ki values for glucose 6-phosphate with glucose as substrate were 4.0 x 10(-6)M with NAD, and 8.4 x 10(-6)M with NADP; for galactose 6-phosphate they were 6.7 x10(-6)M with NAD and 6.0 x 10(-6)M with NADP. The Ki values for glucose 6-phosphate with 2-deoxyglucose 6-phosphate as substrate were 6.3 x 10(-6)M with NAD and 8.9 x 10(-6)M with NADP; and for galactose 6-phosphate, 8.0 x 10(-6)M with NAD and 3.5 x 10(-6)M with NADP. Both NADH and NADPH inhibited glucose dehydrogenase when the corresponding oxidized coenzymes were used (Ki values: 8.0 x 10(-5)M by NADH and 9.1 x 10(-5)M by NADPH), while only NADPH inhibited cytoplasmic glucose 6-phosphate dehydrogenase (Ki: 2.4 x 10(-5)M). The results indicate that glucose dehydrogenase cannot directly oxidize glucose in vivo, but it might play a similar role to glucose 6-phosphate dehydrogenase. The differences in the kinetics of glucose dehydrogenase and glucose 6-phosphate dehydrogenase show that glucose 6-phosphate and galactose 6-phosphate could be metabolized in quite different ways in the microsomes and cytoplasm of rat liver.  相似文献   

4.
1. The binding of NAD(+) and NADP(+) to glutamate dehydrogenase has been studied in sodium phosphate buffer, pH7.0, by equilibrium dialysis. Approximate values for the dissociation constants are 0.47 and 2.5mm respectively. For NAD(+) the value agrees with that estimated from initial-rate results. 2. In the presence of the substrate analogue glutarate both coenzymes are bound more firmly, and there is one active centre per enzyme subunit. The binding results cannot be described in terms of independent and identical active centres, and binding is stronger at low coenzyme concentrations than at high concentrations. Either the six subunits of the oligomer are not identical or there are negative interactions between them in the binding of coenzymes in ternary complexes with glutarate. The latter explanation is favoured. 3. The binding studies support the conclusions drawn from earlier kinetic studies of the glutamate reaction. 4. ADP and GTP respectively decrease and increase the affinity of the enzyme for NAD(+) and NADP(+), in both the presence and absence of glutarate. The negative binding interactions in the presence of glutarate are abolished by ADP, which decreases the affinity for the coenzymes at low concentrations of the latter. 5. In the presence of glutarate, GTP and NAD(+) or NADP(+), the association of enzyme oligomers is prevented, and the solubility of the enzyme is decreased; the complex of enzyme and ligands readily crystallizes. 6. The results are discussed in relation to earlier kinetic studies.  相似文献   

5.
Sharkey MA  Gori A  Capone M  Engel PC 《The FEBS journal》2012,279(17):3003-3009
Active-site mutants of glutamate dehydrogenase from Clostridium?symbiosum have been designed and constructed and the effects on coenzyme preference evaluated by detailed kinetic measurements. The triple mutant F238S/P262S/D263K shows complete reversal in coenzyme selectivity from NAD(H) to NADP(H) with retention of high levels of catalytic activity for the new coenzyme. For oxidized coenzymes, k(cat) /K(m) ratios of the wild-type and triple mutant enzyme indicate a shift in preference of approximately 1.6?×?10(7) -fold, from ~?80?000-fold in favour of NAD(+) to ~?200-fold in favour of NADP(+) . For reduced coenzymes the corresponding figure is 1.7?×?10(4) -fold, from ~?1000-fold in favour of NADH to ~?17-fold in favour of NADPH. A fourth mutation (N290G), previously identified as having a potential bearing on coenzyme specificity, did not engender any further shift in preference when incorporated into the triple mutant, despite having a significant effect when expressed as a single mutant.  相似文献   

6.
1. Glutathione reductase and lipoamide dehydrogenase are structurally and mechanistically related flavoenzymes catalyzing various one and two electron transfer reactions between NAD(P)H and substrates with different structures. 2. The two enzymes differ in their coenzyme and functional specificities. Lipoamide dehydrogenase shows higher coenzyme preference while glutathione reductase displays greater functional specificity. 3. Binding preference of the two flavoenzymes for nicotinamide coenzymes is demonstrated by 31P-NMR spectroscopy. 4. The presence of arginines in glutathione reductase which is inactivated by phenyl glyoxal, is likely to be responsible for the NADPH-activity of glutathione reductase. 5. The substrate binding sites of the two enzymes are similar, though their functional details differ. 6. The active-site histidine of glutathione reductase functions primarily as the proton donor during catalysis. While the active-site histidine of lipoamide dehydrogenase stabilizes the thiolate anion intermediate and relays a proton in the catalytic process.  相似文献   

7.
Initial-rate studies were made of the oxidation of L-glutamate by NAD+ and NADP+ catalysed by highly purified preparations of dogfish liver glutamate dehydrogenase. With NAD+ as coenzyme the kinetics show the same features of coenzyme activation as seen with the bovine liver enzyme [Engel & Dalziel (1969) Biochem. J. 115, 621--631]. With NADP+ as coenzyme, initial rates are much slower than with NAD+, and Lineweaver--Burk plots are linear over extended ranges of substrate and coenzyme concentration. Stopped-flow studies with NADP+ as coenzyme give no evidence for the accumulation of significant concentrations of NADPH-containing complexes with the enzyme in the steady state. Protection studies against inactivation by pyridoxal 5'-phosphate indicate that NAD+ and NADP+ give the same degree of protection in the presence of sodium glutarate. The results are used to deduce information about the mechanism of glutamate oxidation by the enzyme. Initial-rate studies of the reductive amination of 2-oxoglutarate by NADH and NADPH catalysed by dogfish liver glutamate dehydrogenase showed that the kinetic features of the reaction are very similar with both coenzymes, but reactions with NADH are much faster. The data show that a number of possible mechanisms for the reaction may be discarded, including the compulsory mechanism (previously proposed for the enzyme) in which the sequence of binding is NAD(P)H, NH4+ and 2-oxoglutarate. The kinetic data suggest either a rapid-equilibrium random mechanism or the compulsory mechanism with the binding sequence NH4+, NAD(P)H, 2-oxoglutarate. However, binding studies and protection studies indicate that coenzyme and 2-oxoglutarate do bind to the free enzyme.  相似文献   

8.
K(m) and V(max) values for 10 coenzyme analogs never previously studied with any aldehyde dehydrogenase and NADP(+) were compared with those for NAD(+) for three human aldehyde dehydrogenases (EC 1.2.1.3); the cytoplasmic E1 (the product of the aldh1 gene), the mitochondrial E2 (the product of the aldh2 gene) and the cytoplasmic E3 (the product of the aldh9 gene) isozymes. Structural information on changes in coenzyme-protein interactions were obtained via molecular dynamics (MD) studies with the E2 isozyme and quantum mechanical (QM) calculations were used to study changes in charge distribution of the pyridine ring and relative free energies of solvation of the purine ring in the analogs. E1 showed the broadest substrate specificity and was the only isozyme subject to substrate inhibition, both of which are suggested to be due to the two coenzyme conformations observed previously in the sheep crystal structure. NADP(+) selectivity is indicated to be influenced by Glu195 in E1 and E2. Substitutions in the purine ring affected K(m) but not V(max), with the changes in K(m) being dominated by the hydrophobicity of the purine ring as indicted by the QM calculations. Substitutions in the pyridine ring sometimes rendered the coenzymes inactive, with no consistent pattern observed for the three coenzymes. Structural analysis of the coenzyme analog-E2 MD simulations revealed different structural perturbations of the surrounding active site, though interactions with Asn169 and Glu399 were preserved in all cases.  相似文献   

9.
1. The pH-dependencies of the binding of NADH and reduced nicotinamide--benzimidazole dinucleotide to pig heart cytoplasmic malate dehydrogenase and lactate dehydrogenase are reported. 2. Two ionizing groups were observed in the binding of both reduced coenzymes to lactate dehydrogenase. One group, with pKa in the range 6.3--6.7, is the active-site histidine residue and its deprotonation weakens binding of reduced coenzyme 3-fold. Binding of both coenzymes is decreased to zero when a second group, of pKa 8.9, deprotonates. This group is not cysteine-165.3. Only one ionization is required to characterize the binding of the two reduced coenzymes to malate dehydrogenase. The group involved appears to be the active-site histidine residue, since its ethoxycarbonylation inhibits the enzyme and abolishes binding of reduced coenzyme. Binding of either reduced coenzyme increases the pKa of the group from 6.4 to 7.4, and deprotonation of the group is accompanied by a 10-fold weakening of coenzyme binding. 4. Two reactive histidine residues were detected per malate dehydrogenase dimer. 5. A mechanism which emphasizes the homology between the two enzymes is presented.  相似文献   

10.
The interactions of CL4, a biomimetic analogue of NAD+ comprising a nicotinamide functionality coupled via a triazine ring to a dibenzenesulphonic acid unit, and of a series of analogues, with HLADH and other dehydrogenases have been compared to those of the natural coenzymes NAD(P)+. CL4, together with one analogue with one of the sulphonic acid groups shifted by one position and another analogue with a single benzenedisulphonic acid unit, have been shown to be functional mimics of NAD+ in the oxidation of butan-1-ol by horse liver alcohol dehydrogenase (HLADH). A combination of discontinuous HPLC-based assays and continuous fluorescence based assays were used to deduce approximate kinetic constants for this reaction, using the artificial coenzymes, at pH 7.5 and 37°C. HLADH demonstrated a Vmax with the most active analogue which was 4% of that with NAD+. The substrate specificity of HLADH using these coenzymes was found to change relative to that using the natural coenzyme. Activity was sought from a range of other dehydrogenases: Bacillus megaterium glucose dehydrogenase, Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase and sheep liver sorbitol dehydrogenase; all displayed activity using a range of the biomimetic coenzymes.  相似文献   

11.
NADP+-specific glutamate dehydrogenase from Salmonella typhimurium, cloned and expressed in Escherichia coli, has been purified to homogeneity. The nucleotide sequence of S. typhimurium gdhA was determined and the amino acid sequence derived. The nucleotide analogue 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) reacts irreversibly with the enzyme to yield a partially inactive enzyme. After about 60% loss of activity, no further inactivation is observed. The rate of inactivation exhibits a nonlinear dependence on 2-BDB-T epsilon A-2',5'-DP concentration with kmax = 0.160 min-1 and KI = 300 microM. Reaction of 200 microM 2-BDB-T epsilon A-2',5'-DP with glutamate dehydrogenase for 120 min results in the incorporation of 0.94 mol of reagent/mol of enzyme subunit. The coenzymes, NADPH and NADP+, completely protect the enzyme against inactivation by the reagent and decrease the reagent incorporation from 0.94 to 0.5 mol of reagent/mol enzyme subunit, while the substrate alpha-ketoglutarate offers only partial protection. These results indicate that 2-BDB-T epsilon A-2',5'-DP functions as an affinity label of the coenzyme binding site and that specific reaction occurs at only about 0.5 sites/enzyme subunit or 3 sites/hexamer. Glutamate dehydrogenase modified with 200 microM 2-BDB-T epsilon A-2',5'-DP in the absence and presence of coenzyme was reduced with NaB3H4, carboxymethylated, and digested with trypsin. Labeled peptides were purified by high performance liquid chromatography and characterized by gas phase sequencing. Two peptides modified by the reagent were isolated and identified as follows: Phe-Cys(CM)-Gln-Ala-Leu-Met-Thr-Glu-Leu-Tyr-Arg and Leu-Cys(CM)-Glu-Ile-Lys. These two peptides were located within the derived amino acid sequence as residues 146-156 and 282-286. In the presence of NADPH, which completely prevents inactivation, only peptide 146-156 was labeled. This result indicates that modification of the pentapeptide causes loss of activity. Glutamate 284 in this peptide is the probable reaction target and is located within the coenzyme binding site.  相似文献   

12.
The binding of folinic acid (5-formyl-5,6,7,8-tetrahydrofolate) to Lactobacillus casei dihydrofolate reductase has been measured. The natural 6S, alpha S diastereoisomer has a binding constant of 1.3 (+/- 0.6) X 10(8) M-1 at pH 6.0, 25 degrees C; the 6R, alpha S diastereoisomer binds approximately 10(4)-fold more weakly. The natural diastereoisomer of folinic acid binds negatively cooperatively with the coenzymes NADP+ and NADPH, binding 3 times more weakly in the presence of NADP+ and 600 times more weakly in the presence of NADPH than to the enzyme alone. Negative cooperativity has been unequivocally distinguished from competition by measurements of coenzyme binding as a function of folinic acid concentration, of the effects of folinic acid on the 1H and 31P chemical shifts of the bound coenzyme, and of the effects of folinic acid on the coenzyme dissociation rate constant. The latter experiments also give evidence for the coexistence of two slowly interconverting conformational forms of the ternary enzyme-coenzyme-folinic acid complex. Small changes in structure of the oxidized coenzymes have substantial effects on the cooperativity with folinic acid, with the thionicotinamide analogue showing positive rather than negative cooperativity. The changes in environment of the bound coenzyme produced by folinic acid, as revealed by 1H and 31P NMR, demonstrate clearly that the negative cooperativity shown by NADP+ and NADPH, respectively, arises by two structurally distinct mechanisms.  相似文献   

13.
1. Dihydrodiol dehydrogenase activities were investigated in rabbit liver. Using a five-step purification scheme, eight isoenzymes of dihydrodiol dehydrogenase with isoelectric points of 5.55-9.3 and promoter molecular masses of 34-35 kDa were purified to apparent homogeneity and designated CF-1 to CF-6, CM-1 and CM-2. 2. CF-1 and CF-2 had near-neutral isoelectric points of 7.4 and 6.8 and molecular masses of about 125 kDa in the native state. Both enzymes readily accepted NAD+ as well as NADP+ as coenzymes, had relatively low Km values of 0.33 mM and 0.47 mM for benzene dihydrodiol and resembled previously described carbonyl reductases in their substrate specificity towards ketones and quinones. 3. CF-5 and CF-6 had acidic isoelectric points of 5.9 and 5.55 and native molecular masses of approximately 60 kDa. They displayed a strong preference for NADP(H) as coenzyme and had high Km and Vmax with benzene dihydrodiol. Since these enzymes reduced p-nitrobenzaldehyde and glucuronic acid efficiently, they appeared to be closely related to aldehyde reductase. 4. CF-4 had a high 3 alpha-hydroxysteroid dehydrogenase activity for the diagnostic substrate androsterone, a moderate activity for other 3 alpha-hydroxysteroids as well as 17 alpha-hydroxysteroids, and relatively low activities for 3 beta-hydroxysteroids and 17 beta-hydroxysteroids. CF-5 and CM-1 had high 17 beta-hydroxysteroid dehydrogenase activity for the diagnostic substrate 5 alpha-dihydrotestosterone, and low to moderate activities for other 17 beta-hydroxysteroids as well as 3 alpha-hydroxysteroids. 5. The isoenzyme CM-2 had an isoelectric point of 9.3 and was a very active quinone reductase with phenanthrene-9,10-quinone as substrate. It was potently inhibited by phenobarbital. 6. We conclude that the dihydrodiol dehydrogenase activities of rabbit liver are associated with aldehyde and carbonyl reductase and with 3 alpha-hydroxysteroid and 17 beta-hydroxysteroid dehydrogenases.  相似文献   

14.
1. Kinetic studies of glutamate dehydrogenase were made with wide concentration ranges of the coenzymes NAD(+) and NADP(+) and the substrates glutamate and norvaline. Initial-rate parameters were evaluated. 2. Deviations from Michaelis-Menten behaviour towards higher activity were observed with increasing concentrations of either coenzyme with glutamate as substrate, but not with norvaline as substrate. 3. In phosphate buffer, pH7.0, Lineweaver-Burk plots with either coenzyme as variable and a constant, large glutamate concentration showed three or four linear regions of different slope with relatively sharp discontinuities. Maximum rates obtained by extrapolation and Michaelis constants for the coenzymes increased in steps with increase of coenzyme concentration. 4. In the absence of evidence of heterogeneity of the enzyme and coenzyme preparations, the results are interpreted in terms of negative homotropic interactions between the enzyme subunits. It is suggested that sharp discontinuities in Lineweaver-Burk plots or reciprocal binding plots may be characteristic of this new type of interaction, which can be explained in terms of an Adair-Koshland model, but not by the model of Monod, Wyman & Changeux.  相似文献   

15.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

16.
The NADP analog and NAD diphosphate were tested for the coenzyme or inhibiting activity toward various dehydrogenases. These NAD derivatives showed little or no activity of as coenzymes for most of dehydrogenases tested. Only glyceraldehyde 3-phosphate dehydrogenase reduced the NADP analog under the high concentration of enzyme system. These NAD derivatives showed no inhibiting effect toward the reduction or oxidation of pyridine coenzymes.  相似文献   

17.
The effects of coenzymes NAD(P) and NAD(P)H on the kinetics of the ox liver glutamate dehydrogenase reaction have been studied. The oxidized coenzymes were shown to activate alpha-ketoglutarate amination at inhibiting concentrations of NADH and NADPH. The reduced coenzymes, NADH and NADPH, inhibit glutamate deamination with both NAD and NADP as coenzymes. The data obtained are discussed in terms of literature data on the mechanisms of the coenzyme effects on the glutamate dehydrogenase activity and are inconsistent with the theory of direct ligand--ligand interactions. It was shown that the peculiarities of the glutamate dehydrogenase kinetics can easily be interpreted in the light of the two state models.  相似文献   

18.
Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (SceADH) binds NAD+ and NADH less tightly and turns over substrates more rapidly than does horse (Equus caballus) liver alcohol dehydrogenase E isoenzyme (EcaADH), and neither enzyme uses NADP efficiently. Amino acid residues in the proposed adenylate binding pocket of SceADH were substituted in attempts to improve affinity for coenzymes or reactivity with NADP. Substitutions in SceADH (Gly202Ile or Ser246Ile) with the corresponding residues in the adenine binding site of the homologous EcaADH have modest effects on coenzyme binding and other kinetic constants, but the Ser246Ile substitution decreases turnover numbers by 350-fold. The Ser176Phe substitution (also near adenine site) significantly decreases affinity for coenzymes and turnover numbers. In the consensus nucleotide-binding betaalphabeta fold sequence, SceADH has two alanine residues (177-GAAGGLG-183) instead of the Leu200 in EcaADH (199-GLGGVG-204); the Ala178-Ala179 to Leu substitution significantly decreases affinity for coenzymes and turnover numbers. Some NADP-dependent enzymes have an Ala corresponding to Gly183 in SceADH; the Gly183Ala substitution significantly decreases affinity for coenzymes and turnover numbers. NADP-dependent enzymes usually have a neutral residue instead of the Asp (Asp201 in SceADH) that interacts with the hydroxyl groups of the adenosine ribose, along with a basic residue (at position 202 or 203) to stabilize the 2'-phosphate of NADP. The Gly203Arg change in SceADH does not significantly affect the kinetics. The Gly183Ala or Gly203Arg substitutions do not enable SceADH to use NADP+ as coenzyme. SceADH with the single Asp201Gly or double Asp201Gly:Gly203Arg substitutions have similar, low activity with NADP+. The results suggest that several of the amino acid residues participate in coenzyme binding and that conversion of specificity for coenzyme requires multiple substitutions.  相似文献   

19.
ADP-L-glycero-D-mannoheptose 6-epimerase is required for lipopolysaccharide inner core biosynthesis in several genera of Gram-negative bacteria. The enzyme contains both fingerprint sequences Gly-X-Gly-X-X-Gly and Gly-X-X-Gly-X-X-Gly near its N terminus, which is indicative of an ADP binding fold. Previous studies of this ADP-l-glycero-D-mannoheptose 6-epimerase (ADP-hep 6-epimerase) were consistent with an NAD(+) cofactor. However, the crystal structure of this ADP-hep 6-epimerase showed bound NADP (Deacon, A. M., Ni, Y. S., Coleman, W. G., Jr., and Ealick, S. E. (2000) Structure 5, 453-462). In present studies, apo-ADP-hep 6-epimerase was reconstituted with NAD(+), NADP(+), and FAD. In this report we provide data that shows NAD(+) and NADP(+) both restored enzymatic activity, but FAD could not. Furthermore, ADP-hep 6-epimerase exhibited a preference for binding of NADP(+) over NAD(+). The K(d) value for NADP(+) was 26 microm whereas that for NAD(+) was 45 microm. Ultraviolet circular dichroism spectra showed that apo-ADP-hep 6-epimerase reconstituted with NADP(+) had more secondary structure than apo-ADP-hep 6-epimerase reconstituted with NAD(+). Perchloric acid extracts of the purified enzyme were assayed with NAD(+)-specific alcohol dehydrogenase and NADP(+)-specific isocitric dehydrogenase. A sample of the same perchloric acid extract was analyzed in chromatographic studies, which demonstrated that ADP-hep 6-epimerase binds NADP(+) in vivo. A structural comparison of ADP-hep 6-epimerase with UDP-galactose 4-epimerase, which utilizes an NAD(+) cofactor, has identified the regions of ADP-hep 6-epimerase, which defines its specificity for NADP(+).  相似文献   

20.
Neurospora glutamate dehydrogenase (NADP-specific) is rapidly inactivated upon reaction with tetranitromethane. This inactivation is completely prevented by the presence of coenzyme (NADP) or nicotinamide mononucleotide (NMN) but not by substrate. NADH, or 2'-monophosphoadenosine-5'-diphosphoribose. Amino acid analysis indicates that the primary effect of modification is nitration of a single residue of tyrosine per polypeptide chain. We have identified the reactive tyrosine by isolation of a single, uniquely labeled peptide after hydrolysis with trypsin followed by cleavage with cyanogen bromide. The modified residue proved to be tyrosine-168 in the linear sequence. This residue is not present in the part of the sequence that had been previously implicated as involved in the binding of the adenylate portion of the coenzyme. Both NMN and 2-monophosphoadenosine-5'-diphosphoribose act as competitive inhibitors of NADP in the oxidation of glutamate with Ki values of 4.65 x 10(-4) M and 4.30 x 10(-4) M, respectively. Thus, the specific protection afforded by NADP and NMN, but not by 2'-monophosphoadenosine-5'-diphosphoribose, indicates that tyrosine-168 is involved in binding the nicotinamide portion of the coenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号