首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Manning 《Planta》1986,168(1):61-66
The relationship between ethylene production and the CN--assimilating enzyme -cyanoalanine synthase (CAS; EC 4.4.1.9) was examined in the carnation (Dianthus caryophyllus L.) flower. In petals from cut flowers aged naturally or treated with ethylene to accelerate senescence the several hundred-fold increase in ethylene production which occurred during irreversible wilting was accompanied by a one- to twofold increase in CAS activity. The basal parts of the petal, which produced the most ethylene, had the highest CAS activity. Studies of flower parts (styles, ovaries, receptacles, petals) showed that the styles had a high level of CAS together with the ethylene-forming enzyme (EFE) system for converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The close association between CAS and EFE found in styles could also be observed in detached petals after induction by ACC or ethylene. Treatment of the cut flowers with cycloheximide reduced synthesis of CAS and EFE. The data indicate that CAS and ethylene production are associated, and are discussed in relation to the hypothesis that CN- is formed during the conversion of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglyoine - CAS -cyanoalanine synthase - CHI cycloheximide - EFE ethylene-forming enzyme  相似文献   

2.
3.
4.
Carnation petals, at a stage in which they are already producing ethylene, show a sigmoidal dependency of ethylene production on temperature within the range of 0 to 30°C. An Arrhenius plot of these data show a break atca. 22°C in the straight lines connecting the points. The activity of the ethylene-forming enzyme (EFE), measured bothin vitro, using isolated membranes, andin vivo, using petals pretreated with 1-aminocyclopropane-1-carboxylic acid (ACC), shows an exponential dependency on temperature within the same range. Arrhenius plots of EFE activity fail to show any discontinuity.In contrast, ACC synthase activity measuredin vitro shows the same sigmoidal dependency on temperature as that of the intact petals. We suggest, therefore, that ACC synthase activity is the rate-limiting step mediating the influence of temperature on ethylene biosynthesis by carnation petals over the range studied.  相似文献   

5.
An ethylene-forming enzyme from Citrus unshiu fruits was purified some 630-fold. The enzyme catalysed ethylene formation from 1-aminocyclopropane-1-carboxylic acid in the presence of pyridoxal phosphate, β-indoleacetic acid, Mn2+ and 2,4-dichlorophenol. It behaved as a protein of MW 40 000 on Sephacryl S-200 gel filtration, and gave one band corresponding to a MW of 25 000 on SDS-PAGE. It had a specific activity of 0.025 μmol/min·mg protein. It exhibited IAA oxidase activity and had no guaiacol peroxidase or NADH oxidase activity. Its Km for ACC was 2.8 mM, and its pH optimum was 5.7. It was inhibited by potassium cyanide n-propyl gallate and Tiron. d-Mannose, histidine, iodoacetate, PCMB, dimethylfuran and superoxide dismutase showed no inhibition. β-Indoleacrylic acid against IAA competitively inhibited ethylene formation. Other IAA analogues, such as β-indolepropionic acid, β-indolecarboxylic acid and β-indolebutylic acid, slightly stimulated ethylene formation. β-Indoleacrylic acid against 1-aminocyclopropane-1-carboxylic acid non-competitively inhibited ethylene formation. Ascorbate was a potent inhibitor. The inhibitory effects, however, were not always reproduced in vivo. It is difficult to identify this enzyme system as a natural in vivo system from the above observations. Nevertheless, the possible in vivo participation of this in vitro enzyme system is discussed.  相似文献   

6.
Coleoptile removal-induced ethylene production was investigated in light-grown winter rye seedlings. Removal of the coleoptile induced 1-aminocyclopropane-l-carboxylic acid (ACC) synthesis and ethylene production by primary leaves and caused an inhibition of elongation growth of the leaves. The activity of ethylene-forming enzyme (EFE) was associated with the increase in ethylene evolution. Both rise in ethylene and ACC production, as well as EFE activity were inhibited by cycloheximide. Wounding the tissue 40 min after the initial treatment resulted in the second increase in ethylene evolution. Derooting of the seedlings without coleoptile removal did not induce ethylene production. It is suggested that the coleoptile represents a barrier for wound-induced ethylene production from actively growing leaf tissue.  相似文献   

7.
Lieberman M  Wang SY 《Plant physiology》1982,69(5):1150-1155
The decline in ethylene production in apple (Pyrus malus L. cv. Golden Delicious) tissue slices during 24 hours incubation in 600 millimolar sorbitol and 10 millimolar 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0) is recognized as a senescent phenomenon. The inclusion of very high concentrations (100 millimolar) of Ca2+, Mg2+, or Ca2+ plus Mg2+ severely inhibited ethylene production during the first 6 hours of incubation. However, after 6 hours and up to 24 hours the ethylene-forming system was stablized. These high concentrations of Ca2+, Mg2+, or Ca2+ plus Mg2+ virtually eliminated lipid peroxidation and protein leakage from these slices. Also conversion of 1-aminocyclopropane-1-carboxylic-1-acid to ethylene and the influence of indoleacetic acid on ethylene production was stabilized after 24 hours of incubation by these high concentrations of Ca2+, Mg2+, and Ca2+ plus Mg2+. Addition of divalent ionophores severely inhibited ethylene production, but this inhibition was prevented by Ca2+ in concentrations greater than the ionophore. These data suggest that the loss of ethylene production by aging tissue slices results from degradation of membranes. They support previous work that indicates that the ethylene-forming system, perhaps the segment of the pathway from 1-aminocyclo-propane-1-carboxylic-1-acid to ethylene, resides in the plasma membrane.  相似文献   

8.
Avocado (Persea americana Mill. cv Hass) discs (3 mm thick) ripened in approximately 72 hours when maintained in a flow of moist air and resembled ripe fruit in texture and taste. Ethylene evolution by discs of early and midseason fruit was characterized by two distinct components, viz. wound ethylene, peaking at approximately 18 hours, and climacteric ethylene, rising to a peak at approximately 72 hours. A commensurate respiratory stimulation accompanied each ethylene peak. Aminoethoxyvinyl glycine (AVG) given consecutively, at once and at 24 hours following disc preparation, prevented wound and climacteric respiration peaks, virtually all ethylene production, and ripening. When AVG was administered for the first 24 hours only, respiratory stimulation and softening (ripening) were retarded by at least a day. When AVG was added solely after the first 24 hours, ripening proceeded as in untreated discs, although climacteric ethylene and respiration were diminished. Propylene given together with AVG led to ripening under all circumstances. 2,5-Norbornadiene given continuously stimulated wound ethylene production, and it inhibited climacteric ethylene evolution, the augmentation of ethylene-forming enzyme activity normally associated with climacteric ethylene, and ripening. 2,5-Norbornadiene given at 24 hours fully inhibited ripening. When intact fruit were pulsed with ethylene for 24 hours before discs were prepared therefrom, the respiration rate, ethylene-forming enzyme activity buildup, and rate of ethylene production were all subsequently enhanced. The evidence suggests that ethylene is involved in all phases of disc ripening. In this view, wound ethylene in discs accelerates events that normally take place over an extended period throughout the lag phase in intact fruit, and climacteric ethylene serves the same ripening function in discs and intact fruit alike.  相似文献   

9.
Brauer DK  Gurriel M  Tu SI 《Plant physiology》1992,100(4):2046-2051
The biochemical events utilized by transport proteins to convert the chemical energy from the hydrolysis of ATP into an electro-chemical gradient are poorly understood. The inhibition of the plasma membrane ATPase from corn (Zea mays L.) roots by N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) was compared to that of ATPase solubilized with N-tetradecyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate (3-14) to provide insight into the minimal functional unit. The chromatographic behavior of the 3-14-solubilized ATPase activity during size exclusion chromatography and glycerol gradient centrifugation indicated that the solubilized enzyme was in a monomeric form. Both plasma membrane-bound and solubilized ATPase were inhibited by EEDQ in a time- and concentration-dependent manner consistent with a first-order reaction. When the log of the reciprocal of the half-time for inhibition was plotted as a function of the log of the EEDQ concentration, straight lines were obtained with slopes of approximately 0.5 and 1.0 for membrane-bound and 3-14-solubilized ATPase, respectively, indicating a change in the number of polypeptides per functional ATPase complex induced by solubilization with 3-14.  相似文献   

10.
The kinetic characteristics and the EDTA inhibition of microsomal 5′-nucleotidase from bovine brain cortex were studied and compared with the properties of the enzyme solubilized with Lubrol WX. The Km value after enzyme solubilization was not significantly different from that of the membrane-bound enzyme. Likewise, di- and trinucleotides performed a similar competitive inhibition of the two forms of the enzyme. In contrast, divalent cations inhibited the intact microsomal enzyme activity at the same concentrations in which they increased the soluble-enzyme activity. The solubilization of microsomal 5′-nucleotidase did not change the progressive and irreversible character of the EDTA inhibition, but the mechanism of the irreversible inhibition was different. The addition of divalent metal cations did not affect the irreversibility of either inhibition, even though the effect on the residual activities was different. The Arrhenius plot of the 5′-nucleotidase activity in intact microsomal fraction exhibited a well-defined break at 31 ± 0.1°C, whereas that of the solubilized enzyme was a straight line. It is concluded then that microsomal 5′-nucleotidase from bovine brain cortex does not require the membrane environment to express its activity, although the influence of this lipidic environment was evident in the differences observed in the enzyme activity modulation by EDTA, cations and temperature.  相似文献   

11.
The Mg-nucleoside triphosphatase activity associated with the inner envelope membrane of the pea chloroplast is comprised of at least two components, a major activity that is sensitive to vanadate and sodium fluoride and a minor insensitive activity. The vanadate/fluoride sensitive activity has been partially purified (about 35-fold) from Triton X-100 solubilized membranes by DEAE-Sephadex chromatography and sucrose density gradient centrifugation. The partially purified enzyme resembles the membrane-bound activity in requiring either Mg2+ or Mn2+, having a broad specificity for nucleoside triphosphates, having a Km for ATP of 0.18 millimolar, and being inhibited by N-ethylmaleimide, but insensitive to sodium azide and dicyclohexylcarbodiimide. The partially purified enzyme obtained after sucrose gradient centrifugation has a markedly increased sensitivity to inhibition by inorganic pyrophosphate compared with the less pure enzyme. Pyrophosphate is not a substrate of either the membrane-bound or partially purified enzyme.  相似文献   

12.
The effects of ethylene (C2H4), (2-chloroethyl)phosphonic acid (ethefon) and 1-aminocyclopropane-1-carboxylic acid (ACC) on senescence of isolated intact petals and of upper petal parts of carnation flowers ( Dianthus caryophyllus L. cv. White Sim) were investigated.
Isolated upper petal parts did not respond to treatment with ethefon or ACC. These tissues did, however, show severe wilting in intact petals that were treated with ethefon or ACC. When isolated upper petal parts were simultaneously treated with ACC and ethefon or ACC and ethylene, a marked synergistic effect on senescence was found. Treatment of isolated petals with radiolabeled ACC led to the accumulation of radiolabeled ACC and N-malonyl-ACC (MACC) in the upper parts. The formation of ethylene and the malonylation of ACC were inhibited by pretreatment of the flower with the inhibitor of ethylene action, silver thiosulphate (STS), which indicates that both were induced by endogenously produced ethylene. Treatment of isolated upper parts with ACC slightly increased their ethylene production. However, when these petal parts were simultaneously treated with ethylene and ACC, the conversion of ACC to ethylene was markedly stimulated.
The results indicate that, in intact petals, ethylene may be translocated from the basal to the upper part where it stimulates the activity of the ethylene-forming enzyme (EFE), thereby making the tissue receptive to ACC.
In addition, it was found that upon incubation of petal portions in radiolabeled ACC, both the petal tissue and the incubation solutions produced radiolabeled carbon dioxide. This was shown to be due to microorganisms that were able to metabolize the carbon atoms in the 2 and 3 position of ACC into carbon dioxide.  相似文献   

13.
A pear (Pyrus communis L. cv Passe Crassane) cell suspension was used as a model system to study the influence of gibberellin on processes related to fruit ripening. Growth of the cell cultures was inhibited and their loss of viability was accelerated when 0.5 millimolar gibberllic acid (GA3) was added to suspensions at two stages of cell development, namely, growth and quiescence. Cell respiration rate was unaffected up to 2 millimolar GA3 but ethylene production, both basal and 1-aminocyclopropane-1-carboxylic acid-induced, was inhibited at all stages of cell development. However, the degree of inhibition decreased as the cell cultures aged. The site of ethylene inhibition by GA3 appeared to be related to the ethylene-forming enzyme. The coincident acceleration of cell senescence and inhibition of ethylene production indicate that the pear cell suspension cannot serve as an analogous model for studying the mode of action of gibberellin in delaying ripening and senescence of fruits in its entirety, although certain specific effects might be relevant.  相似文献   

14.
(p-Chlorophenoxy)isobutyric acid (PCIB) inhibited indole-3-acetic acid (IAA)-induced ethylene production in etiolated mung bean hypocotyl sections. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC) was not significantly affected by PCIB, indicating that PCIB exerted its effect primarily by inhibiting the activity of the ethylene-forming enzyme (EFE). This conclusion was supported by the observations that PCIB inhibited the conversion of exogenously applied ACC to ethylene. The inhibitory effect of PCIB was already evident with 0.05 mM PCIB, and it increased with time after application of the inhibitor. PCIB also significantly inhibited ethylene production in apple fruit tissues, but it only slightly reduced the level of endogenous ACC. Similar to mung bean, EFE activity in apple tissue was significantly inhibited by PCIB. The possibility that PCIB also inhibits auxin-induced ACC synthase activity is discussed.  相似文献   

15.
The polyamines putrescine, cadaverine, spermidine and spermine reduced the amount of ethylene produced by senescing petals of Tradescantia but they did not prevent anthocyanin leakage from these same petals. These polyamines also inhibited auxin-mediated ethylene production by etiolated soybean hypocotyls to less than 7 % of the control. The basic amino acids lysine and histidine reduced the amount of auxin-induced ethylene produced by soybean hypocotyls by ca 50 %. In the hypocotyls, methionine was unable to overcome the inhibition caused by the polyamines. The polyamines spermidine and spermine inhibited ethylene production induced by the application of 1-aminocyclopropane-1-carboxylic acid and they also reduced the endogenous content of this amino acid in the treated tissues.  相似文献   

16.
Enzymatic synthesis of ethylene in the vacuole is assumed to require membrane integrity. The possibility that this reflects dependence on the vacuolar membrane potential was investigated. Vacuoles were released from protoplasts isolated from leaves of Vicia faba L. cv. Cyprus. The dependence of the ethylene-forming activity on tonoplast integrity was re-examined by immobilization of the vacuoles in a cross-linked polymeric matrix and subsequent permeabilization of the tonoplast with toluene, a pore-forming reagent. The relationship between the vacuolar ethylene formation and the membrane potential of free vacuoles was investigated by following the uptake of thiocyanate using permeabilized, depolarized and hyperpolarized vacuoles. Toluene and the proton conductor carbonyl cyanide m -chlorophenylhydrazone (CCCP) caused loss of ethylene-forming activity and depolarized the vacuolar membrane potential. However, depolarization of the membrane potential with choline chloride and hyperpolarization by ATP did not affect ethylene biosynthesis. These conflicting results lead to the conclusion that vacuolar ethylene biosynthesis is not dependent on the vacuolar membrane potential. The possibility that the inhibition of ethylene biosynthesis by toluene and CCCP may result from direct hydrophobic interactions between these compounds and hydrophobic components of the ethylene-forming enzyme is discussed.  相似文献   

17.
The effect of supraoptimal temperatures (30°C, 35°C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25°C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect of high temperature on germination was due to its negative effect on ethylene production. This inhibitory effect of high temperature was due to increased conjugation of 1-aminocyclopropane-1-carboxylic acid to 1-(malonylamino)cyclopropane-1-carboxylic acid and to an inhibition of ethylene-forming enzyme activity.  相似文献   

18.
R. Nichols 《Planta》1976,133(1):47-52
Summary Histological examination of the ovary walls from ethylene-treated cut flowering stems of the carnation showed that the cells had enlarged and this appeared to account for the increased growth of the ovary which follows ethylene treatment of this flower. Sugar analyses of the flower parts indicated that growth of the ovary was accompanied by an increase in the ratio of sucrose to reducing sugars in the petals and ovary, and a net increase in sugars in the ovary. A sugar, tentatively identified as xylose, increased in the petals after ethylene treatment. Nitrogen, phosphorus and potassium contents of the ovary also increased after the ethylene treatment. The results, consistent with the hypothesis that sucrose is translocated in response to ethylene, are discussed in relation to previous work relating to the involvement of ethylene in flower senescence.  相似文献   

19.
Role of ethylene in the senescence of isolated hibiscus petals   总被引:2,自引:1,他引:1       下载免费PDF全文
Senescence of petals isolated from flowers of Hibiscus rosa-sinensis L. (cv Pink Versicolor) was associated with increased ethylene production. Exposure to ethylene (10 microliters per liter) accelerated the onset of senescence, as indicated by petal in-rolling, and stimulated ethylene production. Senescence was also hastened by basal application of 1-aminocyclopropane-1-carboxylic acid (ACC). Aminooxyacetic acid, an inhibitor of ethylene biosynthesis, effectively inhibited ethylene production by petals and delayed petal in-rolling. In marked contrast to these results with mature petals, immature petals isolated from flowers the day before flower opening did not respond to ethylene in terms of an increase in ethylene production or petal in-rolling. Furthermore, treatment with silver thiosulfate the day before flower opening effectively prevented petal senescence, while silver thiosulfate treatment on the morning of flower opening was ineffective. Application of ACC to both immature and mature petals greatly stimulated ethylene production indicating the presence of an active ethylene-forming enzyme in both tissues. Immature petals contained less free ACC than mature, presenescent petals and appeared to possess a more active system for converting ACC into its conjugated form. Thus, while the nature of the lack of responsiveness of immature petals to ethylene is unknown, ethylene production in hibiscus petals appears to be regulated by the control over ACC availability.  相似文献   

20.
The GlcNAc-1-P-transferase was solubilized from microsomal preparations of soybean cultured cells by treatment with 1% Triton X-100. The solubilized enzyme catalyzed the formation of dolichyl pyrophosphoryl-GlcNAc when incubated with UDP-GlcNAc and dolichyl phosphate. The GlcNAc-1-P-transferase activity was stimulated by the addition of phosphatidylglycerol and phosphatidylinositol, but was inhibited by phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The Km value for dolichyl-phosphate was 6.2 micromolar and that determined for UDP-GlcNAc was 0.42 micromolar. The pH optimum for the GlcNAc-1-P reaction was between 7.2 and 7.6; maximum activity occurred at about 10 millimolar Mg2+. The addition of unlabeled GDP-mannose or UDP-glucose considerably inhibited enzyme activity which could be restored to nearly the original value by addition of more dolichyl phosphate to the incubation mixture. On the other hand, the addition of unlabeled ADP-glucose and GDP-glucose enhanced the enzyme activity. This stimulation by these sugar nucleotides was found to be due to the protection of the substrate UDP-[3H]-GlcNAc from pyrophosphatase degradation. The GlcNAc-1-P-transferase reaction was very sensitive to tunicamycin and 50% inhibition required less than 1 microgram of antibiotic per milliliter. Amphomycin, showdomycin, and diumycin also inhibited this reaction but at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号