首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate systematically if complementary knowledge could be obtained from the recordings of electromyography (EMG) and mechanomyography (MMG) signals. EMG and MMG activities were recorded from the first dorsal interosseous muscle during slow concentric, isometric, and eccentric contraction at 0, 25, 50, 75 and 100% of the maximal voluntary contraction (MVC). The combination of the EMG and MMG recordings during voluntary concentric-isometric-eccentric contraction showed significant different non-linear EMG/force and MMG/force relationships (P<0.001). The EMG root mean square (rms) values increased significantly from 0 to 50% MVC during concentric and isometric contraction and up to 75% MVC during eccentric contraction (P<0.05). The MMG rms values increased significantly from 0 to 50% MVC during concentric contraction (P<0.05). The non-linear relationships depended mainly on the type and the level of contraction together with the angular velocity. Furthermore, the type of contraction, the contraction level, and the angular velocity influenced the electromechanical efficiency evaluated as the MMG to EMG ratio (P<0.05). These results highlight that EMG and MMG provide complementary information about the electrical and mechanical activity of the muscle. Different activation strategies seem to be used during graded isometric and anisometric contraction.  相似文献   

2.
The aims of this study were to validate a computerised method to detect muscle activity from surface electromyography (SEMG) signals in gait in patients with cervical spondylotic myelopathy (CSM), and to evaluate the test–retest reliability of the activation times designated by this method. SEMG signals were recorded from rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG), during gait in 12 participants with CSM on two separate test days. Four computerised activity detection methods, based on the Teager–Kaiser Energy Operator (TKEO), were applied to a subset of signals and compared to visual interpretation of muscle activation. The most accurate method was then applied to all signals for evaluation of test–retest reliability. A detection method based on a combined slope and amplitude threshold showed the highest agreement (87.5%) with visual interpretation. With respect to reliability, the standard error of measurement (SEM) of the timing of RF, TA and MG between test days was 5.5% stride duration or less, while the SEM of BF was 9.4%. The timing parameters of RF, TA and MG designated by this method were considered sufficiently reliable for use in clinical practice, however the reliability of BF was questionable.  相似文献   

3.
    
Calculation of the EMG mean power frequency (MPF) is a common procedure applied in evaluation of the frequency shift associated with local muscle fatigue. Variations of the MPF that are unrelated to muscle fatigue may jeopardize the estimation of the frequency shift. Different kinds of variation include random variation and systematic variation due to changes in posture or load. In a previous article we have evaluated the systematic linear variation of the MPF. The aim of the present study was to examine the random variation. Data sequences of 10 s, each obtained from nonfatigued trapezius muscle of 19 healthy subjects, were examined over a functional range of load and joint angles with multiple regression analysis. The random variation was evaluated with residual analysis. The residual standard deviation within the whole group was 10% for surface recordings and 13% for intramuscular recordings. If only within-subject variation was considered, the corresponding values were 5 and 8%. Based on this, confidence and prediction intervals for the regression models were calculated. Ninety-five percent confidence intervals were ±1–3% around the regression surfaces, whereas 95% prediction intervals for single measurements were as large as ±20–26% for the whole group, and ±11–20% if only within-subject variations were considered. Assessment of localized muscle fatigue using single MPF estimates should therefore be avoided. Multiple measurements and regression analysis are discussed as methods to minimize the effects of random variations.  相似文献   

4.
5.
In contraction of skeletal muscle a delay exists between the onset of electrical activity and measurable tension. This delay in electromechanical coupling has been stated to be between 30 and 100 ms. Thus, in rapid movements it may be possible for electromyographic (EMG) activity to have terminated before force can be detected. This study was designed to determine the dependence of the EMG-tension delay upon selected initial conditions at the time of muscle activation. The right forearms of 14 subjects were passively oscillated by a motor-driven dynamometer through flexion-extension cycles of 135 deg at an angular velocity of approximately equal to 0.5 rad/s. Upon presentation of a visual stimulus the subjects maximally contracted the relaxed elbow flexors during flexion, extension, and under isometric conditions. The muscle length at the time of the stimulus was the same in all three conditions. An on-line computer monitoring surface EMG (Biceps and Brachioradialis) and force calculated the electromechanical delay. The mean value for the delay under eccentric condition, 49.5 ms, was significantly different (p less than 0.05) from the delays during isometric (53.9 ms) and concentric activity (55.5 ms). It is suggested that the time required to stretch the series elastic component (SEC) represents the major portion of the measured delay and that during eccentric muscle activity the SEC is in a more favorable condition for rapid force development.  相似文献   

6.
Sandercock, Thomas G., and C. J. Heckman. Doubletpotentiation during eccentric and concentric contractions of cat soleusmuscle. J. Appl. Physiol. 82(4):1219-1228, 1997.The addition of an extra stimulus pulse, ordoublet, at the beginning of a low-frequency train has been shown tosubstantially increase isometric force. This study examined the effectsof muscle movement on this doublet potentiation. The soleus muscles ofanesthetized cats were stimulated at 10 Hz for 1 s, with and without anadded doublet (0.01-s interval). Isovelocity releases reduced but didnot eliminate peak and early doublet potentiation (average 0.0-0.5s after the doublet). Large releases, >0.4 s after the doublet,completely abolished sustained doublet potentiation (average0.5-1.0 s after the doublet). In contrast, early isovelocitystretches boosted peak doublet potentiation. Yet, large stretches laterin the stimulus almost completely eliminated sustained doubletpotentiation. This suggests that a different mechanism is responsiblefor early and sustained doublet potentiations. Because peak and averageinitial doublet potentiation were not strongly affected by movement,doublets still offer a viable control strategy to increase force during movement while minimizing the number of stimulus pulses.

  相似文献   

7.
Electromyography (EMG) is the standard modality for measuring muscle activity. However, the convenience and availability of low-cost accelerometer-based wearables makes mechanomyography (MMG) an increasingly attractive alternative modality for clinical applications. Literature to date has demonstrated a strong association between EMG and MMG temporal alignment in isometric and isokinetic contractions. However, the EMG-MMG relationship has not been studied in gait. In this study, the concurrence of EMG- and MMG-detected contractions in the tibialis anterior, lateral gastrocnemius, vastus lateralis, and biceps femoris muscles were investigated in children during self-paced gait. Furthermore, the distribution of signal power over the gait cycle was statistically compared between EMG-MMG modalities. With EMG as the reference, muscular contractions were detected based on MMG with balanced accuracies between 88 and 94% for all muscles except the gastrocnemius. MMG signal power differed from that of EMG during certain phases of the gait cycle in all muscles except the biceps femoris. These timing and power distribution differences between the two modalities may in part be related to muscle fascicle length changes that are unique to muscle motion during gait. Our findings suggest that the relationship between EMG and MMG appears to be more complex during gait than in isometric and isokinetic contractions.  相似文献   

8.
The purpose of this investigation was to examine the intra-subject reliability of electromechanical delay (EMD) and torque of the dominant and non-dominant elbow flexors during isometric and isokinetic muscle contractions repeated over five consecutive days. Eleven volunteers that were unfamiliar with isokinetic dynamometry participated in this study and were asked to attend the laboratory on five consecutive days. An isokinetic dynamometer was used to exercise the elbow flexors under isometric, slow (60° s−1) and fast (210° s−1) isokinetic conditions; surface electromyography was recorded from the belly of biceps brachii and the signal was synchronised with the dynamometer to determine EMD. Intra-subject reliability for all measures was good (CV range, 3.1–6.5%) with no discernable difference between the dominant and non-dominant arms during isometric and isokinetic conditions. In addition, there was little difference in EMD and torque variability between the dominant and non-dominant arms which may have applications for clinicians and future research design when monitoring and investigating human muscle function. These data provide researchers and clinicians with an indication of the magnitude of change that is required to elucidate the presence of a meaningful change to muscle function in the elbow flexors.  相似文献   

9.
Objectives: Muscle stiffness increases during muscle contraction. The purpose of this study was to determine the strength of the correlation between myotonometric measurements of muscle stiffness and surface electromyography (sEMG) measurements during various levels of voluntary isometric contractions of the biceps brachii muscle. Subjects: Eight subjects (four female; four male), with mean age of 30.6±8.23 years, volunteered to participate in this study. Methods: Myotonometer and sEMG measurements were taken simultaneously from the right biceps brachii muscle. Data were obtained: (1) at rest, (2) while the subject held a 15 lb (6.8 kg) weight isometrically and, (3) during a maximal voluntary isometric contraction. Myotonometer force–displacement curves (amount of tissue displacement to a given unit of force applied perpendicular to the muscle) were compared with sEMG measurements using Pearson’s product–moment correlation coefficients. Results: Myotonometer and sEMG measurement correlations ranged from −0.70 to −0.90. The strongest correlations to sEMG were from Myotonometer force measurements between 1.00 and 2.00 kg. Conclusions: Myotonometer and sEMG measurements were highly correlated. Tissue stiffness, as measured by the Myotonometer, appears capable of assessing changes in muscle activation levels.  相似文献   

10.
An EMG-driven muscle model for determining muscle force-time histories during gait is presented. The model, based on Hill's equation (1938), incorporates morphological data and accounts for changes in musculotendon length, velocity, and the level of muscle excitation for both concentric and eccentric contractions. Musculotendon kinematics were calculated using three-dimensional cinematography with a model of the musculoskeletal system. Muscle force-length-EMG relations were established from slow isokinetic calibrations. Walking muscle force-time histories were determined for two subjects. Joint moments calculated from the predicted muscle forces were compared with moments calculated using a linked segment, inverse dynamics approach. Moment curve correlations ranged from r = 0.72 to R = 0.97 and the root mean square (RMS) differences were from 10 to 20 Nm. Expressed as a relative RMS, the moment differences ranged from a low of 23% at the ankle to a high of 72% at the hip. No single reason for the differences between the two moment curves could be identified. Possible explanations discussed include the linear EMG-to-force assumption and how well the EMG-to-force calibration represented excitation for the whole muscle during gait, assumptions incorporated in the muscle modeling procedure, and errors inherent in validating joint moments predicted from the model to moments calculated using linked segment, inverse dynamics. The closeness with which the joint moment curves matched in the present study supports using the modeling approach proposed to determine muscle forces in gait.  相似文献   

11.
The present study compared three procedures for normalization of upper trapezius surface electromyographic (EMG) amplitudes: (a) a ramp procedure (providing data in per cent of maximal voluntary contraction, MVC); (b) a constant force procedure based on two reference contractions (two-force procedure) (%MVC) and (c) a procedure expressing muscle activation in per cent of a reference voluntary electrical activity (%RVE). The study also evaluated the repeatability of the ramp and the RVE procedures and estimated the force exertion (%MVC) corresponding to the RVE. To illustrate the ergonomic effect of different normalization procedures, trapezius EMG during two work tasks was compared after normalization by the two-force and the RVE procedures. Fifteen subjects participated in the whole study. We found that force estimates obtained by the ramp procedure equation could be translated to force estimates obtained by the two-force procedure by the equation: %MVC2force = − 0.6 + 0.9*%MVCramp, although with a considerable imprecision due to large inter-individual differences. In the ramp procedure, the intra-individual test-retest coefficient of variation (CV) depended on the force level; it was 45% at 5% MVC and 10% at 30% MVC. The CV of the RVE was 15%. The reference contraction used in the RVE procedure corresponded from 13–79% MVC (median 33%MVC). The load reducing effect of an ergonomic intervention was less obvious with the RVE procedure than with the two-force procedure due to a larger inter-individual variation. The advantages and disadvantages of the different procedures are discussed.  相似文献   

12.
Duchenne myopathy is a lethal disease due to the absence of dystrophin, a cytoskeletal protein. Muscles from dystrophin-deficient mice (mdx) typically present an exaggerated susceptibility to eccentric work characterized by an important force drop and an increased membrane permeability consecutive to repeated lengthening contractions. The present study shows that mdx muscles are largely protected from eccentric work-induced damage by overexpressing a dominant negative mutant of TRPV2 ion channel. This observation points out the role of TRPV2 channel in the physiopathology of Duchenne muscular dystrophy.  相似文献   

13.
14.
Maximal and submaximal activation level of the right knee-extensor muscle group were studied during isometric and slow isokinetic muscular contractions in eight male subjects. The activation level was quantified by means of the twitch interpolation technique. A single electrical impulse was delivered, whatever the contraction mode, on the femoral nerve at a constant 50 degrees knee flexion (0 degrees = full extension). Concentric, eccentric (both at 20 degrees /s velocity), and isometric voluntary activation levels were then calculated. The mean activation levels during maximal eccentric and maximal concentric contractions were 88.3 and 89.7%, respectively, and were significantly lower (P < 0.05) with respect to maximal isometric contractions (95.2%). The relationship between voluntary activation levels and submaximal torques was linearly fitted (P < 0.01): comparison of slopes indicated lower activation levels during submaximal eccentric compared with isometric or concentric contractions. It is concluded that reduced neural drive is present during 20 degrees /s maximal concentric and both maximal and submaximal eccentric contractions. These results indicate a voluntary activation dependency on both tension levels and type of muscular actions in the human knee-extensor muscle group.  相似文献   

15.
A long-lasting fatigue was measured in human biceps muscle, following 40 maximal isokinetic concentric or eccentric contractions of the forearm, as the response to single-shock stimuli every minute for 4 h. This protocol allowed new observations on the early time course of long-lasting fatigue. Concentric contractions induced a novel progressive decline to 30.2% (SE 7.8, n = 7) of control at 23 min with complete recovery by 120 min. Eccentric contractions lead initially to a smaller force reduction of similar time course followed by a slower decline to 40.0% (SE 5.1, n = 7) control at 120 min with recovery less than half complete at 4 h. A 50-Hz test stimuli overcame both fatigues, identifying low-frequency fatigue. EMG recordings from the biceps muscle showed moderate (<20%) changes during the fatigue. A visual-tracking task showed no decrement in performance at the time of maximal fatigue of the single-shock response. Because the eccentric contractions have a similar activation, a larger force, but much smaller metabolic usage than concentric contractions, it is concluded that the initial decline is related to the effects of metabolites, whereas the slower phase after eccentric contractions is associated with higher mechanical stress.  相似文献   

16.
The electromyographic (EMG) activity pattern across the upper trapezius of 22 healthy subjects was investigated during maximal isometric contractions. Eight bipolar surface electrodes with 10 mm distance between adjacent electrode pairs were placed on a line from the clavicle to the scapula. At the region near the clavicle the highest EMG amplitudes were recorded during 90 ° arm abduction. At the more posterior parts the highest amplitudes were found both during arm abduction and shoulder elevation. A double differential recording technique which reduced the EMG cross-talk contribution supported the finding that the upper trapezius was differently activated when the arm posture was changed. The normalized EMG amplitude-force relationship during the shoulder elevation showed a curvilinear relationship on the anterior part of the upper trapezius with a slower increase in EMG amplitude than force at low force. The slope of the curve, at low force, increased gradually in the posterior direction on the upper trapezius. The EMG activity patterns across the upper trapezius indicate a flexibility in motor activation which maybe reflects a functional optimization of the contractions performed by this muscle.  相似文献   

17.
This study has localised oxytocin receptor (OTR) mRNA expression within the cervix of non-pregnant ewes and related this to changes in the sensitivity of the cervical musculature to administered oxytocin (OT) during the oestrous cycle by recording electromyographic (EMG) activity. Cervices were collected from 34 ewes at specified time points throughout the cycle. OTR mRNA expression was localised by in situ hybridisation and results were expressed as optical density measurements from autoradiographs in each of four different cervical regions. EMG recordings were made for up to 8 h per day from four non-pregnant ewes undergoing seasonal oestrous cycles between Days −3 and +3 relative to oestrus (Day 0). The highest concentrations of OTR mRNA were detectable within the luminal epithelium (LE) of the cervix, with values increasing from Day 15 of the cycle, peaking during the follicular phase (P<0.001, compared to the mid-luteal phase) and returning to basal by Day 2. There was a small but significant increase in OTR mRNA hybridisation (above basal/luteal phase values) within the stromal cells (STR) adjacent to the lumen (P<0.05) during the same time period, but no differences from basal values were detectable in the dense collagenous annular ring or in tissue superficial to this. Analysis of pooled EMG activity recorded daily from the cervix indicated that endogenous contractile activity was higher on Day 0 than on the Days +1 (P<0.05), −2, +2 and +3 (P<0.001). The response to bolus intravenous (i.v.) injections of 25 mU OT (25 mU) varied with day of the cycle. This dose produced a measurable and significant response on Days 0 (P<0.001) and +1 (P<0.001), but not on any of the other days, indicating that the sensitivity of the cervical musculature to OT peaked on these days. These data show that the cervix is highly responsive to OT at oestrus. This coincides with an increase in OTR mRNA expression in the luminal epithelial cells, suggesting the likely production of an intermediary messenger between the epithelial and smooth muscle cells.  相似文献   

18.
Surface electromyographic (EMG) amplitude from the upper trapezius muscle is widely used as a measure of shoulder-neck load in ergonomic studies. A variety of methods for normalizing EMG amplitude from the upper trapezius (EMGamput) have been presented in the literature. This impedes meta-analyses of, for instance, upper trapezius load in relation to development of shoulder-neck disorders. The review offers a thorough discussion of different normalization procedures for EMGamput. The following main issues are focused: output variable, location of electrodes, posture and attempted movement during normalization, load and duration of reference contractions, signal processing and test-retest repeatability. It is concluded that translations of EMGamput into biomechanical variables, for example relative force development in the shoulder or in the upper trapezius itself, suffer from low validity, especially if used in work tasks involving large and/ or fast arm movements. The review proposes a standard terminology relating to normalization of EMGamput and concludes in a concrete suggestion for a normalization procedure generating bioelectrical variables which reflect upper trapezius activation.  相似文献   

19.
    
Different procedures have been used for normalization of upper trapezius electromyographic (EMG) amplitudes. This complicates comparisons between studies. The present study aimed at investigating the influence of some commonly used trapezius EMG normalization procedures on the results of ergonomic analyses, as well as the test-retest repeatability of these procedures. EMG activity from the upper trapezius was recorded during an occupational task. The EMG activity was then normalized by seven different normalization procedures. It was shown that at the group level, a unilateral shoulder elevation maximal voluntary electrical (MVE) activation procedure gave 1.2 times higher occupational load estimates than a corresponding bilateral MVE. At the group level, the median load during the occupational task was 1.6 times higher when expressed as %MVC (maximal voluntary contraction) obtained from a power regression of relative force on EMG amplitude than when expressed as %MVE determined from a single maximal shoulder elevation. Normalizations in terms of a submaximal reference voluntary electrical (RVE) activation had similar test-retest repeatability in terms of the coefficient of variation (CV: 11–13%) as normalizations in terms of an MVE (CV: 11–15%), but the power regression procedures had considerably larger CVs (21–36%). The paper provides a basis for comparing previous studies using different normalization methods, as well as a qualitative evaluation of normalization methods for future use.  相似文献   

20.
To study joint contributions in manual wheelchair propulsion, we developed a three-dimensional model of the upper extremity. The model was applied to data collected in an experiment on a wheelchair ergometer in which mechanical advantage (MA) was manipulated. Five male able-bodied subjects performed two wheelchair exercise tests (external power output Pext = 0.25–0.50 W · kg−1) against increasing speeds (1.11–1.39–1.67 m.s−1), which simulated MA of 0.58–0.87. Results indicated a decrease in mechanical efficiency (ME) with increasing MA that could not be related to applied forces or joint torques. Increase in Pext was related to increases in joint torques. On the average, the highest torques were noted in shoulder flexion and adduction (35.6 and 24.6 N · m at MA = 0.58 and Pext= 0.50 W · kg−1). Peak elbow extension and flexion torques were −10.6 and 8.5 N · m. Based on the combination of torques and electromyographic (EMG) records of upper extremity muscles, anterior deltoid and pectoralis muscles are considered the prime movers in manual wheelchair propulsion. Coordinative aspects of manual wheelchair propulsion concerning the function of (biarticular) muscles in directing the propulsive forces and the redistribution of joint torques in a closed chain are discussed. We found no conclusive evidence for the role of elbow extensors in direction of propulsive forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号