首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Historical changes (1961–2002) in the distribution of herbaceous wetland plant associations were inferred from the hydrological regime of Lake Saint-Pierre, a 312 km2 broadening of the St. Lawrence River (Quebec, Canada), to assess the cumulative effects of human interventions and climatic variability. Relative abundance index (height × percent cover) of wetland plants in 630 field quadrats sampled at 13 sites (1999–2002) were used to derive a model predicting the occurrence of nine herbaceous plant classes with a 71% (24–84%) accuracy. Wetland types included seasonally dry (meadows), mudflats and wet (low marshes and submerged) assemblages. Over the 1961–2002 period, the total surface area of Lake Saint-Pierre herbaceous wetlands ranged between 11 (in 1972) and 128 (in 2001) km2 and was negatively correlated (Spearman r = –0.86, p < 0.0001) to average water level during the current growing season. Within-season variability and level conditions over the previous season defined 5 marsh assemblages characterized by different species composition, relative abundance and diversity. Significant hydrological variables included quadrat elevation, water depth, number of days flooded and depth variability experienced over the current and/or previous growth seasons. The hydrological model suggests that for a given level, wetland plant assemblages differed markedly whether the multi-year sequence of water levels was rising or falling. Lake Saint-Pierre alternated between three broad-scale wetland configurations, dominated by meadows and open marsh with floating-leaved vegetation (in the 1960s), scattered tall Scirpus marshes (in the 1970s and early 1980s) and closed marsh with aggressive emergents (since 1996). The strong response of Lake Saint-Pierre wetlands to hydrological conditions in the current and previous growth seasons underlines their vulnerability to future water level variations resulting from regulation and climate variability.  相似文献   

2.
Although wetland plant species usually aggregate into zones that correspond with their water depth/dryness tolerances, it is not known whether associated arbuscular mycorrhizal (AM) fungi show a similar zonation. We assessed the distribution of AM fungi in two similar depressional wetlands dominated by the semi-aquatic grass Panicum hemitomon by sampling soil in plots along dry-to-wet gradients that spanned 80 cm in relative elevation, and identifying/counting viable AM fungal spores. We found that eight of nine AM fungal species were common to both of the wetlands. Within each wetland, there were significant differences in species composition related to relative water depth. The zonation patterns were not identical between wetlands but revealed that certain species were relegated to the drier portions of the gradient in both. No species were relegated to only the wet portions of the wetlands; those that dominated there were also present in the drier areas. Our data show that water depth is an important factor determining the distribution of the AM fungi, even when, as in our study wetlands, the host plant remains constant along a dry-to-wet gradient. This suggests that the fungi are not physiologically equivalent in their tolerance to wetland conditions. Received: 9 October 1998 / Accepted: 24 February 1999  相似文献   

3.
Phalaris arundinacea L. is an aggressive species that can dominate wetlands by producing monotypic stands that suppress native vegetation. In this study invasion windows were created for native species in monotypic stands of P. arundinacea with either fire or herbicide. Three native species groups, herbaceous plants, herbaceous seeds, and woody shrubs, were planted into plots burned or treated with herbicide in the early spring. Fire did not create an effective invasion window for native species; there was no difference in P. arundinacea root and shoot biomass or cover between burned and control plots (p≥ 0.998). Herbicide treatment created an invasion window for native species by reducing P. arundinacea root and shoot biomass for two growing seasons, but that invasion window was fast closing by the end of the second growing season because P. arundinacea shoot biomass had nearly reached the shoot biomass levels in the control plots (p= 0.053). Transplant mortality, frost, and animal herbivory prevented the herbaceous species and woody seedlings from becoming fully established in the plots treated with herbicide during the first year of the experiment. Transplanted monocots had a greater survival than dicots. By the second growing season the herbaceous group had the greatest mean areal cover (5%), compared to the woody seedlings (3%) and seed group (0%). Long‐term monitoring of the plots will determine whether the herbaceous transplants will compete effectively with P. arundinacea and whether the woody species will survive, shade the P. arundinacea, and accelerate forest succession.  相似文献   

4.
Miller  Rebecca C.  Zedler  Joy B. 《Plant Ecology》2003,167(1):57-69
Monotypic stands of reed canary grass, Phalaris arundinacea, replace native wetland vegetation where stormwater runoff alters hydrologic conditions, nutrient inflows, and sedimentation rates. We asked if different hydrologic conditions could explain the dominance of Phalaris and/or loss of the native grass, Spartina pectinata, and we compared the growth of each species alone and together under four hydroperiods (varying inundation frequency and duration) each at two water depths (surface saturation and flooding to 15 cm). When grown alone, aboveground biomass was similar for the two species, but Phalaris produced twice the stem length of Spartina via its low tissue density. Per unit biomass, Phalaris distributed its leaves over a larger canopy volume. Flooding reduced belowground biomass and increased total shoot length and shoot:root biomass of each species. Phalaris produced the most biomass, shoots, and total shoot length when wetter and drier conditions alternated weekly, while Spartina grew best with prolonged (4-week) inundation. When grown with Spartina, Phalaris changed its morphology by increasing its total shoot length:biomass ratio by 50%. However, ratios of Spartina:Phalaris aboveground biomass, shoot number, and total shoot length in two-species pots were not significantly affected by water depth or hydroperiod. We conclude that two plant attributes facilitate Phalaris' dominance of wetlands: its high ratio of total shoot length:biomass and its adaptable morphology (characterized herein as increased total shoot length:biomass when grown with Spartina).  相似文献   

5.
6.
Abstract

The transformation of freshwater wetlands to pastures is a common practice in Mexico. This rapid loss of wetlands contrasts with the scarce information that exists about these ecosystems. To identify the environmental factors that control vegetation structure of a freshwater wetland invaded by the African grass Echinochloa pyramidalis, we characterized the vegetation (species composition, cover and aerial biomass), soil (moisture, redox potential, bulk density and topography) and water (water depth level, electric conductivity and pH) in two seasons of the year (dry and rainy). In addition, we analyzed the soil and water of three vegetation areas in the wetland, one dominated by E. pyramidalis, another by Sagittaria lancifolia and a third by Typha domingensis. The parameters associated with the hydrology of the wetland (water level, soil moisture, redox potential and bulk density) explained the plant species distribution. The invasive grass dominated in the relatively drier areas in the wetland while native species such as S. lancifolia, T. domingensis and Pontederia sagitatta dominated wetter sites. Introduction of E. pyramidalis has caused negative changes in the wetland, in particular a decrease of the diversity of plant species. In addition, we believe that the invader grass, as a C4 species, has more efficient use of water than the native plants, as well as a larger biomass, characteristics that can change the hydrological pattern of this wetland.  相似文献   

7.
The impacts of changing land use on hydrology and dominant plant species from 1850–1990 were investigated in a palustrine wetland in southern Wisconsin, USA. Aerial photographs, historic maps and water levels of the area were used to determine changes in land use, wetland vegetation, and groundwater and surface flows over time. Piezometers and water table wells were monitored weekly for two years. Vegetation was quantified in four one-square meter quadrats at each water level measurement site. Linear regression models and multivariate ordinations were used to relate wetland plant species to hydrologic, chemical and spatial variables. The current hydrologic budget of the wetland was dominated by precipitation and evapotranspiration, although overland flow into the wetland from the subwatershed has increased twenty-fold since 1850. Water level stabilization in the adjacent Yahara River, creek channelization, and groundwater pumping have decreased inputs of groundwater and spring-fed surface water, and increased retention of precipitation. Typha spp. and Phalaris arundinacea L. have increased in the wetland, while Carex spp. have decreased. Phalaris arundinacea was found most often in the driest sites, and the sites with the greatest range of water levels. Typha spp. dominated in several hydrologic settings, indicating that water depth was not the only factor controlling its distribution. The distributions of dominant plant species in the wetland were most closely correlated with site elevation and average water levels, with some weaker correlations with vertical groundwater inflows and specific conductance.  相似文献   

8.
Paleoecological analyses and historical information were used to characterize pre‐disturbance conditions in Swan Lake wetland of suburban Victoria, Vancouver Island, British Columbia, to provide a reference for restoration and management. Highly invasive reed canarygrass (Phalaris arundinacea) dominates Swan Lake wetlands and inhibits restoration. Grass pollen presumably produced by Phalaris predominates only in the top 5 cm (south site) to 35 cm (north site) of sediment cores. Below these levels assemblages are variously dominated by taxa including Salix, Alnus, Lysichiton, Cyperaceae, and Rosaceae. Pollen grains of agricultural disturbance indicators, such as plantain, liguliflorate Asteraceae, and cereals occur to depths of 35 cm. The results strongly suggest that Phalaris communities arose in historical times following agricultural disturbance and have no pre‐European equivalent. Pollen assemblages below the Phalaris zone, corroborated by historical documentary references, show diverse original wetland types. Disturbance and crop species pollen indicators may be useful indicators of intensity and depth of disturbance. Pre‐agricultural plant communities are a guide for restoration, provided that ecologically limiting factors are managed.  相似文献   

9.
10.
Aim To evaluate the importance (number of species, plant cover) of the exotic flora in seven well‐defined sectors of one of the most important transportation waterways in North America. To determine the impact of exotic species on wetland plant diversity and reconstruct the spread of some invasive species. Location St Lawrence River, southern Québec. Methods The exotic flora (vascular plants) of wetlands bordering the St Lawrence River was studied using 713 sampling stations (25 m2) along a 560‐km long corridor. Results Exotic species represent 13.7% of the vascular flora of the St Lawrence wetlands. The relative plant cover occupied by exotic species is high in some of the fluvial sectors (42–44%), but low (6–10%) in the estuarine sectors. Wetlands (marshes) surrounding islands were particularly susceptible to invasion by exotic plants. Historical, abiotic and landscape factors may explain the differences observed between sites. Purple loosestrife (Lythrum salicaria L.) is the most common exotic species of the St Lawrence wetlands, but other species, namely flowering‐rush (Butomus umbellatus L.) and reed canary grass (Phalaris arundinacea L.) are much more invasive. There is no linear relationship between the exotic species cover and the diversity of wetland plants; low diversity sites can be dominated by either exotic or native plant species. In the other sites, exotic species generally have little impact on plant communities and can contribute to increase diversity. Common reed (Phragmites australis (Cav.) Trin. ex Steudel) and reed canary grass, both considered as exotic species in this study, clearly have a stronger impact on plant diversity than flowering‐rush and purple loosestrife. Main conclusions This study shows that the global impact of an invader cannot be adequately evaluated with only a few highly invaded sites. While nationwide strategies have been developed to control exotic species, large surveys are essential to adapt them to regional particularities.  相似文献   

11.
Indicator species provide an easy and quick method of evaluating ecosystems. The species comprising the most useful indicators of wetlands should be distributed across a range of water depths and inundation durations, while each species is representative of a specific condition. Hydrophytic vegetation is commonly used to determine the existence and type of wetland; however, such indicator systems often depend on assigning species qualitatively to discrete categories based on assumptions about their distribution along a gradient of conditions. The current study proposes a wetland indicator system based on the quantitative responses of individual vegetation species to a gradient of water depths and periods of inundation. A long-term database was utilized to determine species responses to hydrological alterations in a series of wetlands. The hydrophytic plant species investigated (n = 29) displayed relatively narrow ranges of mean hydrologic values and were distributed linearly along multiple hydrologic gradients (hydroperiod, average water depth, and maximum water depth) ranging from Amphicarpum muhlenbergianum which was observed at the shallowest water depths and shortest hydroperiod to Pontederia cordata and Ludwigia repens which were characteristic of wetlands with the deepest water and longest hydroperiod. The species distribution and means along the hydrologic gradients tested indicates they are prime candidates for inclusion in a quantitative or continuum indicator system. The historical database utilized for this study provided valuable information for numerous species common to the Tampa Bay region for which little or no ecological information was previously available. The methodology utilized in this paper provides a cost and time effective method for obtaining the vast amounts of information required to refine plant indicator systems using a large number of species.  相似文献   

12.
1. Invertebrates were collected semi‐quantitatively from four relatively undisturbed wetlands in the west coast of New Zealand’s South Island: two acidic fens and two swamps. Samples were collected from up to four discrete habitats within each wetland: large open‐water channels, small leads (small, ill‐defined channels with emergent vegetation in them) and large (>10 m diameter) or small (<10 m diameter) ponds. Samples were also collected from different plant species within each wetland, each with different morphology, and from areas without vegetation. This was done to determine whether invertebrate communities varied more between‐wetlands than within‐wetlands, as the results had implications for future wetland monitoring programmes. 2. Principal components analysis of water chemistry data revealed striking differences in pH, conductivity and nutrients between the four wetlands. Not surprisingly, pH was lowest in one of the acidic fens, and highest in one of the swamps, where conductivity was also high. Midges (Tanytarsus, Tanypodinae, Orthocladiinae and Ceratopogonidae), nematodes, harpactacoid copepods and the damselfly Xanthocnemis dominated the invertebrate fauna. Orthoclad midges and mites were the most widespread taxa, found in 91 of 94 samples. Diptera were the most diverse invertebrate group, followed by Trichoptera and Crustacea. 3. Ordination analysis of the invertebrate data showed that the four wetlands supported different invertebrate communities. However, species composition did not change completely along the ordination axes, suggesting that a relatively species‐poor invertebrate fauna was found in the wetlands. Taxa such as molluscs were restricted to wetlands with high pH. Multi‐response permutation procedures (MRPP) was used to analyse resultant ordination scores to see how they differed according to five terms: ‘Wetland’, ‘Habitat’, ‘Growth Form’, ‘Morphology’ and ‘Plant’. Most of the sample separation along ordination axes reflected differences between wetland, although the ‘Habitat’ and ‘Plant’ terms also explained some of the variation. The ‘Growth Form’ and ‘Morphology’ terms had only minor effects on community composition. 4. A multivariate regression tree modelled invertebrate assemblages according to the five predictor terms. The resultant model explained 54.8% of the species variance. The ‘Wetland’ term contributed most to the explanatory power, followed by ‘Habitat’. ‘Growth type’ and ‘Morphology’ explained only a small amount of variance to the regression tree, while the different plant species explained none of the variation. 5. Variation in these New Zealand wetland invertebrate communities appears to be controlled most by large‐scale factors operating at the level of individual wetlands, although different habitats within individual wetlands contributed slightly to this variation. Based on these results, sampling programmes to describe wetland invertebrate communities do not need to sample specific habitats or plant types within a wetland. Instead, samples can be collected from a wide range of habitats within individual wetlands, and pooled. Within each habitat, it is unnecessary to collect individual samples from different macrophytes or un‐vegetated areas. Our results suggest that collecting replicate pooled samples from different habitats within each wetland will be sufficient to characterize the invertebrate assemblage of each wetland.  相似文献   

13.
Question: Does the seed density of invasive species affect establishment by native species in a bare ground context (following invasive species control efforts), and is it possible to promote transition to a native species dominated state by manipulating sowing density of the native community? Location: Experimental wetland basin in Chanhassen, Minnesota, USA. Methods: A mesocosm experiment investigated the influence of Phalaris arundinacea (invasive species) propagule pressure on establishment of native wet meadow species in the context of a newly restored wetland. Mesocosms were sown with P. arundinacea (0, 10, 50, 100, or 500 seeds/m2) and a mix of native species (3000 or 15000 seeds/m2). Results: When planted at densities > 100 seeds/m2, P. arundinacea increased suppression of native species. Also, high native seed density suppressed P. arundinacea biomass production. This effect was more pronounced when P. arundinacea seed density was high (> 100 seeds/m2), but high native seed density (15000 seeds/m2) did not suppress recruitment of P. arundinacea from seed. Conclusions: The transition from post‐control bare ground (a common result of efforts to control invasive species) to native species establishment depends on both native species and invader seed density. These results suggest that a threshold of P. arundinacea propagule pressure exists, beyond which transition to a native community is less likely without management intervention. P. arundinacea can establish in the presence of a newly developing native plant community, even at very low densities of P. arundinacea seed. Invader control (following initial site clearing efforts) is essential to native species establishment.  相似文献   

14.

Wet meadows are a common focus of wetland restoration efforts, and the species within them often exist within a restricted range of water levels. Unfortunately, many restored wetlands have higher water levels and more open water than naturally occurring reference wetlands, and many are invaded and dominated by species of Typha. Most studies evaluating the optimal water level for plant species use observational methods, yet experimental methods are required to understand the breadth of a species’ niche. We used experimental transplants of Carex pellita, a common wet meadow sedge used in restoration in the interior of the USA, and Typha latifolia, a species of cattail which invades many restored wetlands, to test whether higher water levels in a restored wetland were prohibitive to the target sedge species. Physiological and growth measurements were collected on both species. We found that C. pellita grew as well or better when transplanted into the ponded water levels, while T. latifolia had reduced growth when transplanted into the relatively drier meadow conditions. Interestingly, C. pellita was able to adjust its Turgor Loss Point in response to changing water levels. Only recently the assumption of a constant Turgor Loss Point for each species has been questioned. Our results provide evidence that wet meadow species have a broader hydrologic niche than previously thought, and their ability to make physiological adjustments in response to changing water levels may allow them to thrive in areas with widely varying water levels.

  相似文献   

15.
We compared wintering bird communities and their habitats among three shoals at Jiuduansha, a newly-formed wetland in the Yangtze River estuary. The highest species richness and diversity were recorded in Shangsha, which is the highest shoal, and the highest abundance and lowest species diversity were recorded in Xiasha, which is the lowest shoal. Shangsha had the largest abundance of perching birds whereas Xiasha was the most abundant in waterbirds. Bird assemblages showed different associations with the different habitat types—perching birds were favored by reed (Phragmites australis) communities, shallow water foragers and dabbling ducks preferred sea-bulrush (Scirpus mariqueter) communities, and moist-soil foragers and gulls showed a preference for bare intertidal zones. All bird assemblages, however, avoided the smooth cordgrass (Spartina alterniflora) communities, which are dominated by an alien invasive plant. The composition of avian communities was related to habitat types at the three shoals. Our results suggest that the newly-formed tidelands can provide suitable habitats for waterbirds and that the lower tidelands can attract more waterfowl than the higher tidelands. Because the shoal with low species diversity could have exclusive bird species, conservation efforts should not concentrate only on the area with high species diversity. The estuarine wetlands should be considered as a whole when conservation strategies are designed. The alien invasive plant should, moreover, be effectively controlled, to provide suitable habitats for birds.  相似文献   

16.
Two facets of plant competition, competitive effect (CE) and competitive response (CR), can be used to explain plant community composition but our understanding of abiotic factors that may differentially affect species’ competitive ability is incomplete. We tested whether water-depth affected CE (ability to suppress neighbour) and CR (avoid suppression from neighbour), and if so whether there was consistence in the rank order of both measures of competition under different water depth treatments. CE and CR were measured and compared for eight wetland plant species (Carex lurida, Carex tribuloides, Elymus virginicus, Juncus tenuis, Lythrum salicaria, Phalaris arundinacea, Rumex orbiculatus and Verbesina alternifolia) at five different water-depth treatments (+2, 0, −2, −4 and −6 cm relative to the substrate). Overall, we found that mean CE was at its lowest value at +2 cm water depth, while mean CR was highest at +2 and −6 cm compared to the other water treatments. There was a significant variation of CE between species, with a defined hierarchical order. Pairwise CE rank order correlations between water depth treatments were significant but CR correlations were generally not. There was no significant correlation between CE and CR. CE was significantly correlated with biomass of species grown alone but CR was not. These findings indicate that CE may be used as a general measure to predict wetland species performance, and thus community assemblage, across a range of water depths. CR does not seem to demonstrate predicable patterns between species and water depth treatments. Our results suggest that competition intensity may be reduced in a non-resource-stressed flooded environment by a reduction in CE, but the corresponding increase in CR could dampen this effect on overall competitive ability.  相似文献   

17.
三江平原典型沼泽湿地螺类组成生态指示   总被引:4,自引:2,他引:2  
螺类作为湿地的重要生物类群,对环境变化响应敏感,这使得螺类成为潜在的环境指示物种。为了研究中国东北沼泽湿地不同类型湿地螺类群落结构的差异以及螺类作为不同类型湿地指示物种的可能,在2014年9月和2015年5月对小叶章沼泽化草甸湿地、臌囊苔草湿地、毛苔草湿地、漂筏苔草湿地共17个采样点进行螺类样品采集。共采集到了螺类8科13属17种4452个。研究表明,螺类以扁卷螺科Planorbidae、椎实螺科Lymnaeidae、膀胱螺科Physidae为主;4种不同类型湿地螺的种类组成不同,这些螺类的种类组成与不同类型湿地的水深、植物类型组成等湿地特征是相对应。螺类的生物多样性指数(ShannonWiener指数和Marglef指数)在不同类型湿地之间也存在一定差异,筛选了指示螺类6种,无褶螺是小叶章沼泽化草甸的指示物种,小土蜗、半球多脉扁螺和虹蛹螺是臌囊苔草湿地的指示物种,琥珀螺是毛苔草湿地的指示物种,平盘螺是漂筏苔草湿地的指示物种,这表明了螺类是沼泽湿地类型的重要指示生物。也为螺类生物多样性资源的保护、恢复和生态评价提供科学依据和资料积累。  相似文献   

18.
Understanding ecosystem processes is vital for effective restoration of degraded ecosystems, especially wetlands. Restoration has become a necessity for management and conservation of the federally endangered Amargosa vole (Microtus californicus scirpensis) endemic to small, bulrush (Schoenoplectus americanus) dominated wetlands in the Mojave Desert. Recent data indicate catastrophic decrease of the vole population and its habitat from local alterations to hydrology, combined with diminished decomposition rates of bulrush, persistence of plant litter, and minimal plant growth except along narrow margins along stream edges. We conducted a series of three field and one greenhouse experiment(s) testing the effect of (1) moisture level on plant decay rate, (2) litter removal on plant regeneration, (3) the interactive effect of litter removal and moisture level increase on plant regeneration, and (4) potential germination rate of bulrush seeds under multiple hydrologic regimes to understand how hydrologic alteration and litter decay ultimately influences marsh regeneration. Results revealed decrease in water level caused a 20‐fold reduction in decomposition rates of a degraded marsh. Litter removal alone and in combination with water table restoration significantly and positively affected bulrush resprouting (p < 0.0001 for both). Seed bank experiments showed high rates of germination in saturated and flooded soil conditions, emphasizing the potential role of seedlings in ecosystem recovery. This study shows how the interaction of hydrologic change and decreased decomposition can shift an ecosystem toward limits of resilience. These results inform restoration strategies in arid‐region wetlands dominated by plants with slow litter decay where strategic litter removal may beneficially increase plant growth.  相似文献   

19.
Macrophyte biomass production and species richness were monitored from 1988 through 1991 in four freshwater wetlands constructed on the floodpain of the Des Plaines River, Lake County, Illinois, USA. The wetlands were constructed in 1988 and pumping of river water began in 1989 under two differentd hydrologic regimes: two wetlands received high water inflow (equivalent to 40 cm wk−1 of water depth) and two received low flow (11 cm wk−1). Biomass production showed no relationship to the hydrologic inflows after two years of experimentation, with both the highest and lowest production occuring in low flow wetlands. Rates of primary production increased between 1990 and 1991 under low flow conditions and decreased under high flow conditions, primarily as a result of the initial composition of the plant community. The change from dry conditions in 1988 to flooded conditions in 1989 altered the species composition in each wetland to include almost 100% wetland-adapted species. Similarity in species composition among the four wetlands diverged from 1988 to 1989 as the plant community adjusted to flooded conditions and then converged in both 1990 and 1991 as the wetlands developed.  相似文献   

20.
Oil sands mining is a major disturbance to boreal landscapes in north-eastern Alberta, Canada. Freshwater peatlands dominate the landscape prior to mining, but the post-mining reclamation landscape will have wetlands that span a salinity gradient. Little is known about the native vegetation communities in subsaline and saline marshes in the boreal region, yet these communities offer the best potential for reclamation of wetlands after oil sands mining. The overall intent of this study is to provide information on natural wetland communities along a gradient of salinities that can be used to enhance oil sands wetland reclamation. Our specific study objectives were to: (1) characterize environmental conditions of industrial and natural wetlands, (2) characterize vegetation communities (composition and diversity) in these wetlands, (3) and explore how vegetation communities (composition and diversity) may be influenced by environmental conditions. We surveyed vegetation communities and environmental variables in 25 natural boreal wetlands along a salinity gradient and in 10 industrial marshes in the oil sands mining region. We observed an electrical conductivity (EC) range of 0.5-28 mS cm−1 in the wetlands, indicating that salinity similar to or higher than anticipated for oil sands reclamation is naturally present in some boreal wetlands. We observed low species richness in both industrial and natural wetlands. There were 101 plant species observed in all the wetlands, with 82 species recorded in the natural wetlands and 44 species in industrial wetlands. At the plot level, richness decreased with increasing EC and pH, but increased with soil organic matter. Using Cluster Analysis and indicator species analysis we defined 16 distinct vegetation community types, each dominated by one or two species of graminoid vegetation. In general these communities resembled those of boreal or prairie marshes. Electrical conductivity, pH, and water depth were important factors correlating with community composition of the wetlands, however peat depth and soil organic content did not differ among community types. Not all community types were present in industrial wetlands, indicating that these communities may need to be planted to enhance overall diversity in future reclaimed oil sands wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号