首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evidence is presented that hepatic triglyceride lipase (H-TGL) and lipoprotein lipase (LPL), purified from human postheparin plasma, can each hydrolyze both glyceryl trioleate and palmitoyl-CoA. The average ratio of glyceryl trioleate/palmitoyl-CoA hydrolase activities, obtained with enzyme preparations from 15 human postheparin plasma samples was 1.30 (1.18-1.52) for H-TGL and 8.75 (7.45-10.25) for LPL. Albumin was identified as the serum cofactor required for the hydrolysis of palmitoyl-CoA by H-TGL. It protected this enzyme from inactivation by this substrate. In contrast, palmitoyl-CoA activated and protected LPL from denaturation by dilution and incubation at 25 degrees C. The effects of other detergents were investigated on glyceryl trioleate hydrolase activities of both enzymes. Sodium dodecyl sulfate (0.4 mM) and Trisoleate (0.4 mM), which also effectively activated and protected LPL against inactivation, had only moderate protective effect on H-TGL. Sodium dodecyl sulfate at a higher concentration (1 mM) produced little or no inhibition of LPL, while completely inactivating H-TGL. Conversely, sodium taurodeoxycholate (0.4 mM) protected and activated H-TGL, but had only moderate protective effect on LPL. Triton X-100 (0.1-0.8 mM) and egg lysolecithin (0.05-2 mM) also protected H-TGL, but not LPL. The very dissimilar effects of detergents on preparations on H-TGL and LPL may form the basis for the direct assay of each enzyme in the presence of the other.  相似文献   

2.
The objective of this study was to establish a new lipoprotein lipase (LPL) and hepatic lipase (HL) activity assay method. Seventy normal volunteers were recruited. Lipase activities were assayed by measuring the increase in absorbance at 546 nm due to the quinoneine dye. Reaction mixture-1 (R-1) contained dioleoylglycerol solubilized with lauryldimethylaminobetaine, monoacylglycerol-specific lipase, glycerolkinase, glycerol-3-phosphate oxidase, peroxidase, ascorbic acid oxidase, and apolipoprotein C-II (apoC-II). R-2 contained Tris-HCl (pH 8.7) and 4-aminoantipyrine. Automated assay of lipase activities was performed with an automatic clinical analyzer. In the assay for HL + LPL activity, 160 microl R-1 was incubated at 37 degrees C with 2 microl of sample for 5 min, and 80 microl R-2 was added. HL activities were measured under the same conditions without apoC-II. HL and LPL activities were also measured by the conventional isotope method and for HL mass by ELISA. Lipase activity detected in a 1.6 M NaCl-eluted fraction from a heparin-Sepharose column was enhanced by adding purified apoC-II in a dose-dependent manner, whereas that eluted by 0.8 M NaCl was not. Postheparin plasma-LPL and HL activities measured in the present automated method had high correlations with those measured by conventional activity and mass methods. This automated assay method for LPL and HL activities is simple and reliable and can be applied to an automatic clinical analyzer.  相似文献   

3.
We have developed a sandwich-enzyme immunoassay (EIA) for the quantification of lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) in human postheparin plasma (PHP) using monoclonal antibodies (MAbs) directed against the corresponding enzymes purified from human PHP. The sandwich-EIA for LPL was performed by using the combination of two distinct types of anti-LPL MAbs that recognize different epitopes on the LPL molecule. The immunoreactive mass of LPL was specifically measured using a beta-galactosidase-labeled anti-LPL MAb as an enzyme-linked MAb, an anti-LPL MAb linked with the bacterial cell wall as an insolubilized MAb, and purified human PHP-LPL as a standard. The sandwich-EIA for HTGL was carried out by using two distinct anti-HTGL MAbs that recognize different epitopes on HTGL. The limit of detection was 20 ng/ml for LPL and 60 ng/ml for HTGL. Each method yielded a coefficient of variation of less than 6% in intra- and inter-assays, and a high concentration of triglyceride did not interfere with the assays. The average recovery of purified human PHP-LPL and -HTGL added to human PHP samples was 98.8% and 97.5%, respectively. The immunoreactive masses of LPL and HTGL in PHP samples, obtained at a heparin dose of 30 IU/kg, from 34 normolipidemic and 20 hypertriglyceridemic subjects were quantified by the sandwich-EIA. To assess the reliability of the measured mass values, they were compared with the corresponding enzyme activities measured by selective immunoinactivation assay using rabbit anti-human PHP-LPL and -HTGL polyclonal antisera. Both assay methods yielded a highly significant correlation in either normolipidemic (r = 0.945 for LPL; r = 0.932 for HTGL) or hypertriglyceridemic subjects (r = 0.989 for LPL; r = 0.954 for HTGL). The normal mean (+/- SD) level of lipoprotein lipase mass and activity in postheparin plasma was 223 +/- 66 ng/ml and 10.1 +/- 2.9 mumol/h per ml, and that of hepatic triglyceride lipase mass and activity was 1456 +/- 469 ng/ml and 26.4 +/- 8.7 mumol/h per ml, respectively. The present sandwich-enzyme immunoassay methods make it possible to study the molecular nature of LPL and HTGL in PHP from patients with either primary or secondary hyperlipoproteinemia.  相似文献   

4.
Hepatic triglyceride lipase (H-TGL) was isolated from human postheparin plasma by column chromatography on heparin-Sepharose and phenyl-Sepharose and immunoaffinity chromatography with monoclonal antibodies. The purified enzyme had an apparent molecular weight of 65,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an amino-terminal sequence of Leu-Gly-Gln-Ser-Leu-Lys-Pro-Glu. Partial amino acid sequences of seven cyanogen bromide peptides were obtained. A human hepatoma cDNA library was screened with synthetic oligonucleotides derived from the partial protein sequence. The cloned H-TGL cDNA of 1569 nucleotides predicts a mature protein of 477 amino acids plus a leader sequence of 22 amino acids. Blot hybridization analysis of poly(A)+ mRNA with a putative H-TGL cDNA clone gave a single hybridizing band of 1.7 kilobases. The protein contains four consensus N-glycosylation sequences based on the cDNA sequence. Comparison of the enzyme sequence with that of other lipases reveals highly conserved sequences in regions of putative lipid and heparin binding. The carboxyl terminus of H-TGL contains a highly basic sequence which is not reported to be present in rat H-TGL or other members of the lipase gene family.  相似文献   

5.
The objective of this study was to establish a hepatic lipase (HL) assay method that can be applied to automatic clinical analyzers. Seventy-four hyperlipidemic subjects (men/women 45/29) were recruited. Lipase activity was assayed measuring the increase in absorbance at 546 nm due to quinonediimine dye production. Reaction mixture R-1 contained 50 mM Tris-HCl (pH 9.5), 0.5 mM glycerol-1,2-dioleate, 0.4% (unless otherwise noted) polyoxyethylene-nonylphenylether, 3 mM ATP, 3 mM MgCl(2), 1.5 mM CaCl(2), monoacylglycerol-specific lipase, glycerol kinase, glycerol-3-phosphate oxidase, 0.075% N,N-bis-(4-sulfobutyl)-3-methylaniline-2 Na, peroxidase, ascorbic acid oxidase. Reaction mixture R-2 contained 50 mM Tris-HCl (pH9.5), 0.15% 4-aminoantypirine. Automated assay for activity was performed with a Model 7080 Hitachi analyzer. In the lipase assay, 160 microl of R-1 was incubated at 37 degrees C with 3 microl of samples for 5 min, and 80 microl of R-2 was added. Within-run coefficient of variations was 0.9-1.0%. Calibration curve of lipase activity was linear (r = 0.999) between 0 and 320 U/l. Analytical recoveries of purified HL added to plasma were 96.6-99.8%. HL activity in postheparin plasma measured in this method had a closer correlation with HL mass by a sandwich ELISA (r = 0.888, P < 0.0001) than those in the conventional method using [(14)C-]triolein (r = 0.730, P < 0.0001). This assay method for HL activity can be applied to an automatic clinical analyzer.  相似文献   

6.
Lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were purified to homogeneity from human postheparin plasma. Molecular, catalytic and immunological properties of the purified enzymes were investigated. The native molecular weights of LPL and HTGL were 67,200 and 65,500, respectively, by gel chromatography. The subunit molecular weights of LPL and HTGL were 60,600 and 64,600, respectively, suggesting that these enzymes are catalytically active in a monomeric form. In addition, the purified LPL and HTGL each gave a single protein band when they were detected as glycoproteins with a probe of concanavalin A. The purified enzyme preparations were free of detectable antithrombin III by Western blot analysis. Catalytic properties of the purified enzymes were examined using triolein-gum arabic emulsion and triolein particles stabilized with phospholipid monolayer as substrates. LPL catalyzed the complete hydrolysis of triolein to free oleate and monooleate in the presence of apolipoprotein C-II. Apparent Km values for triolein and apolipoprotein C-II were 1.0 mM and 0.6 microM, and Vmax was 40.7 mmol/h per mg. HTGL hydrolyzed triolein substrate at a rate much slower than LPL, and produced mainly free oleate with little monooleate. Apparent Km and Vmax values were 2.5 mM and 16.1 mmol/h per mg, respectively. Polyclonal antibodies were developed against the purified LPL and HTGL. The purity and specificity of these antisera were ascertained by immunotitration, Ouchterlony double diffusion and Western blot analyses. The anti-human LPL and anti-human HTGL antiserum specifically reacted with the corresponding either native or denaturated enzyme, indicating that two enzymes were immunologically distinct. We developed an assay system for LPL and HTGL in human PHP by selective immunoprecipitation of each enzyme with the corresponding antiserum.  相似文献   

7.
Purified postheparin plasma lipoprotein lipase (LPL) of normolipidemic and primary hyperlipoproteinemic subjects was characterized by lipoprotein C polypeptide activation and specificity for triglycerides in chylomicrons and VLDL. Chromatography of normal LPL on Sephadex G-100 resulted in two protein peaks, LPLC-1 (activated by C-I but not C-II) and LPLC-II (activated by C-II but not C-I). LPL from type I hyperlipoproteinemic subjects was not activated by C-I and C-II activation was reduced to 40% of control. Hydrolysis of chylomicron and VLDL triglycerides was severely impaired. Although chromatography of type I LPL resulted in two protein peaks, the protein peak corresponding to LPLC-I did not exhibit lipolytic activity and LPLC-II was reduced to 50% of control in protein and enzyme specific activity. Type III LPL was normal in respect to LPLC-I while LPLC-II averaged 40% of control. Hydrolysis of chylomicron and VLDL was reduced to 50% and 10% of control, respectively. An etiological implication for LPLC-I and/or LPLC-II in type I and III hyperlipoproteinemias is suggested.  相似文献   

8.
Hepatic triglyceride lipase was isolated from human post-heparin plasma by the method of Ehnholm et al. using modifications which increased the specific activity 12-fold to approximately 3,000 mumol of free fatty acid/h/mg of protein. Lipoprotein lipase with similar specific activity was prepared from the same plasma samples using heparin and concanavalin A affinity chromatography. The molecular weight of hepatic triglyceride lipase (69,000) was slightly greater than that of lipoprotein lipase (67,000) as determined by polyacrylamide electrophoresis in sodium dodecyl sulfate-containing buffers. These proteins had identical amino acid compositions, terminal amino acid residues, and tryptic peptide maps. However, the differences previously described regarding optima of pH and ionic strength and the requirement for apolipoprotein CII (only for lipoprotein lipase) were maintained in the highly purified state. It was found that both proteins contain approximately 8% carbohydrate. Antisera prepared in goats selectively precipitated each activity. Other antisera prepared in chickens reacted with both enzymes, suggesting a common antigenic determinant.  相似文献   

9.
Intravenous injections of anti-lipoprotein lipase serunis quantitatively block the catabolism of very low density lipoprotein (VLDL) and portomicron triglyceride and specifically inhibit triglyceride transport into ovarian follicles. The immunological studies presented provide information on the site of action of lipoprotein lipase (LPL). In the anti-LPL serum-treated animals initial plasma triglyceride accumulation occurs at the time of antiserum injection. This instantaneous inhibition of triglyceride removal provides direct evidence that the functional LPL responsible for VLDL and portomicron triglyceride hydrolysis is located in sites within the plasma compartment readily accessible to immunoglobulins. In vitro immunological studies show that the adipose, heart, ovarian, and liver LPL share common immunological determinants. Biochemical studies on highly purified heart and adipose LPL suggest that these enzymes have identical protein moieties.  相似文献   

10.
Function of hepatic triglyceride lipase in lipoprotein metabolism   总被引:10,自引:0,他引:10  
Rat hepatic triglyceride lipase (H-TGL) was purified from liver tissue extracts by affinity chromatography on Sepharose 4B with covalently linked heparin. The purified rat H-TGL exhibited the properties previously described for this enzyme. Enzyme protein was injected into rabbits for anti-H-TGL antibody production. Antirat-H-TGL did not react against rat lipoprotein lipase (LPL) but inhibited H-TGL-activity both in vitro and in vivo greater than 90%. These antibodies were injected into rats and lipoprotein analyses were performed over a 36-hr period. It could be shown that inactivation of H-TGL by anti-H-TGL gamma-globulins in vivo led to an increase in total triglyceride concentration from 70 mg/dl to 230 mg/dl due to an increase in very low density lipoprotein (VLDL) and low density lipoprotein (LDL) triglycerides 4 hr after antibody injection; a marked increase in high density lipoprotein (HDL) phospholipid concentration was observed with almost no change in HDL-cholesterol and HDL-triglycerides. This study documents the ability of antirat-H-TGL-gamma-globulins to inhibit H-TGL in vitro and in vivo. Furthermore, the inhibition of triglyceride removal in vivo demonstrated that this enzyme together with LPL is responsible for the catabolism of VLDL-triglyceride.  相似文献   

11.
Human lipoprotein lipase and hepatic triglyceride lipase were purified to homogeneity from post-heparin plasma. These enzymes were purified 250,000- and 100,000-fold with yields of 27 +/- 15 and 19 +/- 6%, respectively. Molecular weight determination by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and reducing agents yielded Mr of 60,500 +/- 1,800 and 65,200 +/- 400, respectively, for lipoprotein lipase and hepatic triglyceride lipase. These lipase preparations were shown to be free of detectable antithrombin by measuring its activity and by probing of Western blots of lipases with a monospecific antibody against antithrombin. In additions, probing of Western blots with concanavalin A revealed no glycoproteins corresponding to the molecular weight of antithrombin. Four stable hybridoma-producing distinct monoclonal antibodies (mAb) to hepatic triglyceride lipase were isolated. The specificity of one mAb, HL3-5, was established by its ability to immunoprecipitate hepatic triglyceride lipase catalytic activity. Interaction of HL3-5 with this lipase did not inhibit catalytic activity. The three other mAb interacted with hepatic triglyceride lipase only after denaturation of the enzyme with detergents. The relatedness of these two enzymes was examined by comparing under the same conditions the thermal inactivation, the sensitivity to sulfhydryl and reducing agents, amino acid composition, and the mobility of peptide fragments generated by cyanogen bromide cleavage. The results of these studies strongly support the view that the two enzymes are different proteins. Immunological studies confirm this conclusion. Four mAb to hepatic triglyceride lipase did not interact with lipoprotein lipase in Western blots, enzyme-linked immunosorbent assay, and immunoprecipitation experiments. These immunological studies demonstrate that several epitopes of the hepatic triglyceride lipase protein moiety are not present in the lipoprotein lipase molecule.  相似文献   

12.
The present data describe the mechanism of the inhibitory effects of human plasma apolipoproteins A-I and A-II on hydrolysis of triglyceride catalyzed by hepatic triglyceride lipase using a substrate of triolein particles stabilized with gum arabic in vitro. The experimental data could well be described by a model in which apolipoproteins bound to the surface of lipid substrate particles inhibited the enzyme reaction. The values of Km obtained were similar with or without inhibitors and the calculated saturation levels of apolipoprotein binding to the lipid were in good agreement with those obtained in independent binding experiments.  相似文献   

13.
This study aimed to examine the possibility that ethanol-induced rise of serum triglyceride concentration in man is partly due to an impaired removal of triglycerides from the circulation. Acute ethanol loads given to normal human subjects after an overnight fast reduced the postheparin plasma lipoprotein lipase activity by an average of 25% but did not influence the postheparin plasma hepatic lipase activity or fractional removal of Intralipid triglyceride. When alcolhol was administered to fed subjects in the evening the postheparin plasma hepatic lipase was significantly decreased in the next morning as compared to corresponding control value but the lipoprotein lipase and Intralipid clearance were not changed. It is concluded that the slight decrease of lipoprotein lipase during alcohol intoxication may contribute to the hyperlipemic effect of ethanol.  相似文献   

14.
Hepatic triglyceride lipase (H-TGL) was purified from human postheparin plasma. Specific monoclonal antibodies (MAbs) were produced that discriminate between active (native) and inactive (denatured) forms of the enzyme. Mice immunized with native H-TGL resulted in MAbs that recognized only the native protein. The antibodies did not react with H-TGL treated with 1% sodium dodecyl sulfate or heated at 60 degrees C. The loss of immunoreactivity with heating correlated directly with the loss of enzyme activity and there was a corresponding increase in immunoreactivity with the MAbs prepared against the denatured enzyme. Western blot analysis of postheparin plasma with the MAbs against denatured H-TGL gave a single protein band of 65 kD; preheparin plasma showed no detectable immunoreactivity with either MAb. These immunochemical studies suggest that there are no circulating active or inactive forms of H-TGL in man. Furthermore, the MAbs provide the necessary reagents for development of immunoassays for H-TGL.  相似文献   

15.
A simple and specific method for assaying lipoprotein lipase activity is described. Postheparin plasma, heart homogenates, or extracts of acetone powder of adipose tissue were incubated with a triolein-coated Celite substrate, and enzyme activity was determined from the rate of free fatty acid (FFA) release in the incubation system. FFA release was linear for 30 min, and was proportional to protein concentration in the incubation system. FFA release was decreased by addition of deoxycholate or Triton X-100. Increasing the concentration of heparin in the incubation system caused a gradual decrease in FFA release by postheparin plasma and increases in activity of heart homogenates and adipose tissue lipoprotein lipase. The Celite substrate was found to be satisfactory for assaying pancreatic lipase activity as well.  相似文献   

16.
17.
Heparin-released triglyceride lipase from three sources, adipose tissue, liver, and postheparin plasma, was compared. Heparin-released triglyceride lipase from liver differed in several major respects from that in adipose tissue. These differences included response to inhibitors and to high density lipoprotein in the incubation media. Heparin-released triglyceride lipase from liver, when compared with that from adipose tissue, was relatively inactive against lipoprotein substrates. The triglyceride lipase from postheparin plasma exhibited properties more like those of liver. These studies raise the possibility that triglyceride lipase in postheparin plasma may be heterogeneous and that levels of the enzyme in postheparin plasma may not accurately reflect the capacity for clearance of triglyceride from the plasma.  相似文献   

18.
Sodium dodecyl sulfate (SDS) is used to denature and solubilize proteins, especially membrane and other hydrophobic proteins. A quantitative method to determine the concentration of SDS using the dye Stains-All is known. However, this method lacks the accuracy and reproducibility necessary for use with protein solutions where SDS concentration is a critical factor, so we modified this method after examining multiple parameters (solvent, pH, buffers, and light exposure). The improved method is simple to implement, robust, accurate, and (most important) precise.  相似文献   

19.
介绍一种检测SDS聚丙烯酰胺凝胶电泳中家蝇幼虫蛋白的新方法-海波银染法。该方法对传统银染方法中的试剂与步骤加以改进,省略了乙醇固定与洗涤步骤,只需20 min即可完成全部染色过程,且仅在国产分析纯试剂及普通操作条件下,灵敏度可达毫微克级水平。  相似文献   

20.
The structure of human serum low density lipoprotein (LDL) was investigated by perturbing the LDL structure with sodium dodecyl sulfate (SDS). The change in LDL structure induced by the addition of SDS was monitored by sedimentation velocity measurements, ultraviolet difference spectroscopy, fluorescence spectroscopy and proteolytic digestion of apo-LDL with subtilisin BPN' [EC 3.4.21.14]. As the concentration of SDS was increased from 0.1 mg/ml to 3 mg/ml with LDL concentrations between 2.0 mg/ml and 4.4 mg/ml, the sedimentation coefficient of LDL changed in three distinct steps. It was found by chemical analyses that not more than 30% of the total lipid was lost from LDL in the second step, whereas the final step in the change of sedimentation coefficient corresponded to the complete removal of apo-LDL from the constituent lipids of LDL. The ultraviolet difference spectrum between the native and SDS-treated LDL and the quenching of LDL fluorescence underwent about 80% of the total change while the SDS concentration was only sufficient to cause the second of the three step changes in sedimentation coefficient. SDS-polyacrylamide gel electrophoresis of apo-LDL treated with subtilisin BPN' also showed that more than 70% of apo-LDL became susceptible to proteolysis under the same conditions. These results were interpreted as indicating that the solubilization of 20 to 30% of the lipids on the surface of LDL exposed nearly 80% or more of apo-LDL to the solvent. A small portion of apo-LDL was, however, still firmly anchored to the remaining lipid micelle as long as the concentration of SDS was less than that required to cause the final step of the change in sedimentation coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号