首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented that hepatic triglyceride lipase (H-TGL) and lipoprotein lipase (LPL), purified from human postheparin plasma, can each hydrolyze both glyceryl trioleate and palmitoyl-CoA. The average ratio of glyceryl trioleate/palmitoyl-CoA hydrolase activities, obtained with enzyme preparations from 15 human postheparin plasma samples was 1.30 (1.18-1.52) for H-TGL and 8.75 (7.45-10.25) for LPL. Albumin was identified as the serum cofactor required for the hydrolysis of palmitoyl-CoA by H-TGL. It protected this enzyme from inactivation by this substrate. In contrast, palmitoyl-CoA activated and protected LPL from denaturation by dilution and incubation at 25 degrees C. The effects of other detergents were investigated on glyceryl trioleate hydrolase activities of both enzymes. Sodium dodecyl sulfate (0.4 mM) and Trisoleate (0.4 mM), which also effectively activated and protected LPL against inactivation, had only moderate protective effect on H-TGL. Sodium dodecyl sulfate at a higher concentration (1 mM) produced little or no inhibition of LPL, while completely inactivating H-TGL. Conversely, sodium taurodeoxycholate (0.4 mM) protected and activated H-TGL, but had only moderate protective effect on LPL. Triton X-100 (0.1-0.8 mM) and egg lysolecithin (0.05-2 mM) also protected H-TGL, but not LPL. The very dissimilar effects of detergents on preparations on H-TGL and LPL may form the basis for the direct assay of each enzyme in the presence of the other.  相似文献   

2.
Hepatic triglyceride lipase (H-TGL) was purified from human postheparin plasma. Specific monoclonal antibodies (MAbs) were produced that discriminate between active (native) and inactive (denatured) forms of the enzyme. Mice immunized with native H-TGL resulted in MAbs that recognized only the native protein. The antibodies did not react with H-TGL treated with 1% sodium dodecyl sulfate or heated at 60 degrees C. The loss of immunoreactivity with heating correlated directly with the loss of enzyme activity and there was a corresponding increase in immunoreactivity with the MAbs prepared against the denatured enzyme. Western blot analysis of postheparin plasma with the MAbs against denatured H-TGL gave a single protein band of 65 kD; preheparin plasma showed no detectable immunoreactivity with either MAb. These immunochemical studies suggest that there are no circulating active or inactive forms of H-TGL in man. Furthermore, the MAbs provide the necessary reagents for development of immunoassays for H-TGL.  相似文献   

3.
A triacylglycerol lipase was isolated from the culture medium of HepG2 human hepatoma cells and its properties were compared to hepatic triglyceride lipase (H-TGL) from human postheparin plasma. The HepG2 cell enzyme bound to heparin-Sepharose, was eluted with 1 M NaCl and was not inhibited by 1 M salt. Western-blotting of the fractions from the heparin-Sepharose column with a monoclonal antibody prepared against postheparin plasma H-TGL and which binds to an epitope in the carboxyl-terminus of H-TGL gave a single immunoreactive protein band of 65 kDa. This finding of immunochemical identity was confirmed with polyclonal antibodies prepared against synthetic peptides of H-TGL corresponding to amino acid residues 82-94 near the amino-terminus and residues 468-477, the carboxyl-terminus of the enzyme. We conclude that HepG2 cells secrete a single triacylglycerol lipase with molecular weight properties and immunological characteristics identical to post-heparin plasma H-TGL.  相似文献   

4.
Hepatic triglyceride lipase (H-TGL) was isolated from human postheparin plasma by column chromatography on heparin-Sepharose and phenyl-Sepharose and immunoaffinity chromatography with monoclonal antibodies. The purified enzyme had an apparent molecular weight of 65,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an amino-terminal sequence of Leu-Gly-Gln-Ser-Leu-Lys-Pro-Glu. Partial amino acid sequences of seven cyanogen bromide peptides were obtained. A human hepatoma cDNA library was screened with synthetic oligonucleotides derived from the partial protein sequence. The cloned H-TGL cDNA of 1569 nucleotides predicts a mature protein of 477 amino acids plus a leader sequence of 22 amino acids. Blot hybridization analysis of poly(A)+ mRNA with a putative H-TGL cDNA clone gave a single hybridizing band of 1.7 kilobases. The protein contains four consensus N-glycosylation sequences based on the cDNA sequence. Comparison of the enzyme sequence with that of other lipases reveals highly conserved sequences in regions of putative lipid and heparin binding. The carboxyl terminus of H-TGL contains a highly basic sequence which is not reported to be present in rat H-TGL or other members of the lipase gene family.  相似文献   

5.
The possibility that impaired removal of lipoprotein triglyceride from the circulation may be a participating factor in the hypertriglyceridemia of the obese Zucker rat was examined. We found no significant differences in the heparin-released lipoprotein lipase (LPL) activities of the adipose tissue, skeletal muscle, and heart (expressed per gram of tissue) from the lean and obese Zucker rats. Furthermore, the kinetic properties of adipose tissue and heart LPL from the lean and obese rats were similar, indicating that the catalytic efficiency of the enzyme was unaltered in the obese animals. The postheparin plasma LPL activities of lean and obese rats were also similar. However, the postheparin plasma hepatic triglyceride lipase (H-TGL) activity in the obese rats was elevated. The higher activity of H-TGL could not alleviate the hypertriglyceridemia in these animals. Since hypertriglyceridemia in the obese rats could also be due to the hepatic production of triglyceride-rich lipoproteins which are resistant to lipolysis, we therefore isolated very low density lipoproteins (VLDL) from lean and obese rat liver perfusates and examined their degradation by highly purified human milk LPL. Although certain differences were observed in hepatic VLDL triglyceride fatty acid composition, the kinetic patterns of LPL-catalyzed triglyceride disappearance from lean and obese rat liver perfusate VLDL were similar. The isolated liver perfusate VLDL contained sufficient apolipoprotein C-II for maximum lipolysis. These results indicate that impaired lipolysis is not a contributing factor in the genesis of hypertriglyceridemia in the genetically obese Zucker rat. The hyperlipemic state may be attributed to hypersecretion of hepatic VLDL and consequent saturation of the lipolytic removal of triglyceride-rich lipoproteins from the circulation.  相似文献   

6.
Studies were conducted to investigate the effect of E. coli endotoxin administration on hepatic triglyceride lipase (H-TGL) activity in rats, since H-TGL activity is known to behave differently from lipoprotein lipase (LPL) activity in various situations. Plasma triglyceride and free fatty acid concentrations were markedly elevated in animals after injection of endotoxin. Cholesterol and phospholipids were also increased significantly. Lipoprotein analysis by ultracentrifugation showed that the most pronounced increase of lipoproteins was in the VLDL and IDL fractions. Triglyceride lipase activities in post-heparin plasma were markedly decreased. A selective assay for H-TGL activity using a specific antibody revealed that this enzyme as well as LPL is significantly decreased (26% of control) in endotoxic animals. Thus, the increase of VLDL and IDL appears to result from the decrease of both of LPL and H-TGL.  相似文献   

7.
An in vitro heparin release of lipoprotein lipase (LPL) from whole blood, mainly from monocytes, was demonstrated by (1) the time-course of lipolytic activity with the presence of 10 U/ml heparin at 37 degrees C, (2) the distribution of LPL activity in monocyte and lymphocyte fractions, (3) an immuno-inactivation with anti-LPL immunoglobulin (IgG) and (4) responses to various compounds such as NaCl, protamine sulfate, heparin, and serum activator. The in vitro heparin-releasable LPL activity from blood correlated well with the LPL activity of postheparin plasma obtained from both normolipidemic and hyperlipidemic rabbits. Studies in humans revealed sex- and age-related variations in the in vitro heparin-releasable LPL from monocytes in the blood of 134 normal subjects and 24 hypertriglyceridemic subjects: The mean LPL activity was significantly higher in normal females over the age of 30, than in the corresponding males. In the hypertriglyceridemic group, the LPL activity was also higher in females than in males, but it was not significant. The in vitro heparin-releasable LPL activity from monocytes in blood was comparable to the LPL activity derived from adipose tissue and postheparin plasma, and thus it reflects lipoprotein metabolism.  相似文献   

8.
Function of hepatic triglyceride lipase in lipoprotein metabolism   总被引:10,自引:0,他引:10  
Rat hepatic triglyceride lipase (H-TGL) was purified from liver tissue extracts by affinity chromatography on Sepharose 4B with covalently linked heparin. The purified rat H-TGL exhibited the properties previously described for this enzyme. Enzyme protein was injected into rabbits for anti-H-TGL antibody production. Antirat-H-TGL did not react against rat lipoprotein lipase (LPL) but inhibited H-TGL-activity both in vitro and in vivo greater than 90%. These antibodies were injected into rats and lipoprotein analyses were performed over a 36-hr period. It could be shown that inactivation of H-TGL by anti-H-TGL gamma-globulins in vivo led to an increase in total triglyceride concentration from 70 mg/dl to 230 mg/dl due to an increase in very low density lipoprotein (VLDL) and low density lipoprotein (LDL) triglycerides 4 hr after antibody injection; a marked increase in high density lipoprotein (HDL) phospholipid concentration was observed with almost no change in HDL-cholesterol and HDL-triglycerides. This study documents the ability of antirat-H-TGL-gamma-globulins to inhibit H-TGL in vitro and in vivo. Furthermore, the inhibition of triglyceride removal in vivo demonstrated that this enzyme together with LPL is responsible for the catabolism of VLDL-triglyceride.  相似文献   

9.
Appraisal of hepatic lipase and lipoprotein lipase activities in mice   总被引:1,自引:0,他引:1  
A variety of methods are currently used to analyze HL and LPL activities in mice. In search of a simple methodology, we analyzed mouse preheparin and postheparin plasma LPL and HL activities using specific polyclonal antibodies raised in rabbit against rat HL (anti-HL) and in goat against rat LPL (anti-LPL). As an alternative, we analyzed HL activity in the presence of 1 M NaCl, a condition known to inhibit LPL activity in humans. The assays were validated using plasma samples from wild-type and HL-deficient C57BL/6 mice. We now show that the use of 1 M NaCl for the inhibition of plasma LPL activity in mice may generate incorrect measurements of both LPL and HL activities. Our data indicate that HL can be measured directly, without heparin injection, in preheparin plasma, because virtually all HL is present in an unbound form circulating in plasma. In contrast, measurable LPL activity is present only in postheparin plasma. Both HL and LPL can be measured using the same assay conditions (low salt and the presence of apolipoprotein C-II as an LPL activator). Total lipase activity in postheparin plasma minus preheparin HL activity reflects LPL activity. Specific antibodies are not required.  相似文献   

10.
Isolated rat livers were perfused with whole rat blood containing postheparin lipoprotein lipase (LPL) activity. LPL activity disappeared rapidly from the perfusate; the extraction ratio (portal vein-hepatic vein difference) was 0.70 for all time periods studied. Control experiments established that the disappearance of LPL was not due to non-specific inactivation in the apparatus or to the release of an inhibitory by the liver. The addition of heparin to the perfusate in suitable concentration (4 units/ml) almost completely blocked the disappearance of LPL activity from the perfusate. In addition to the perfusion experiments, we studied the effect of heparin on LPL activity when added to the LPL assay system. When heparin was added to the assay system containing fresh postheparin serum from rats, it stimulated LPL activity by about 70%. When heparin was added to postheparin serum which had been perfused through the liver, it stimulated LPL activity over 200%, but it did not restore LPL to its preperfusion value. These observations are compatible with a two-step inactivation system for LPL by the liver. The first step may involve a dissociation of a heparin-apoenzyme complex followed by destruction of the heparin. The second step may involve the removal of the apoenzyme of LPL.  相似文献   

11.
M. H. Tan 《CMAJ》1978,118(6):675-680
Hypertriglyceridemia, a risk factor for premature atherosclerosis, may result from decreased use of plasma triglycerides by tissues. The removal of triglycerides is mediated by the enzyme lipoprotein lipase (LPL). Heparin releases LPL from tissues and post-heparin plasma lipolytic activity (PHLA) has been extensively used to elucidate the mechanism of hypertriglyceridemia in various diseases. There is evidence to show that postheparin plasma contains enzymes other than LPL. Hence data on total PHLA are difficult to interpret. Availability of assays for the LPL component of PHLA has clarified equivocal findings in certain hypertriglyceridemic states. However, the LPL component is also heterogeneous. The LPL "isoenzymes" from various extrahepatic tissues behave differently under various metabolic conditions. Therefore, to understand properly the LPL system it is necessary to study the specific tissue LPL. Furthermore, the serum activator for LPL is now characterized. Its importance is evidenced by the recent discovery of a hypertriglyceridemic patient deficient in this apoprotein.  相似文献   

12.
To address the question whether an increase in insulinemia and/or glycemia affects the total activity of lipoprotein lipase (LPL) in circulation, the enzyme activity was measured after periods of hyperinsulinemia (HI), hyperglycemia (HG), and combined hyperinsulinemia and hyperglycemia (HIHG) induced by euglycemic hyperglycemic clamp, hyperglycemic clamp with the infusion of somatostatin to inhibit endogenous insulin secretion, and hyperglycemic clamp, respectively. The results obtained were compared to those after saline infusion (C). Twelve healthy normolipidemic and non-obese men with normal glucose tolerance were included in the study. At the end of each clamp study, LPL activity was determined first in vivo using an intravenous fat tolerance test and then in vitro in postheparin plasma. Whereas isolated HI had no effect on LPL activity in postheparin plasma, both HG and HIHG reduced LPL activity to 60 % and 56 % of that observed after saline infusion. Similarly, the k2 rate constant determined in intravenous fat tolerance test was reduced to 95 %, 84 %, and 54 % after periods of HI, HG, and HIHG, respectively. The activity of hepatic lipase, another lipase involved in lipoprotein metabolism, was not affected by hyperinsulinemia and/or hyperglycemia. In conclusion, our data suggest that hyperglycemia per se can downregulate the total LPL activity in circulation.  相似文献   

13.
Purified postheparin plasma lipoprotein lipase (LPL) of normolipidemic and primary hyperlipoproteinemic subjects was characterized by lipoprotein C polypeptide activation and specificity for triglycerides in chylomicrons and VLDL. Chromatography of normal LPL on Sephadex G-100 resulted in two protein peaks, LPLC-1 (activated by C-I but not C-II) and LPLC-II (activated by C-II but not C-I). LPL from type I hyperlipoproteinemic subjects was not activated by C-I and C-II activation was reduced to 40% of control. Hydrolysis of chylomicron and VLDL triglycerides was severely impaired. Although chromatography of type I LPL resulted in two protein peaks, the protein peak corresponding to LPLC-I did not exhibit lipolytic activity and LPLC-II was reduced to 50% of control in protein and enzyme specific activity. Type III LPL was normal in respect to LPLC-I while LPLC-II averaged 40% of control. Hydrolysis of chylomicron and VLDL was reduced to 50% and 10% of control, respectively. An etiological implication for LPLC-I and/or LPLC-II in type I and III hyperlipoproteinemias is suggested.  相似文献   

14.
A novel, real-time, homogeneous fluorogenic lipoprotein lipase (LPL) assay was developed using a commercially available substrate, the EnzChek lipase substrate, which is solubilized in Zwittergent. The triglyceride analog substrate does not fluoresce, owing to apposition of fluorescent and fluorescent quenching groups at the sn-1 and sn-2 positions, respectively, fluorescence becoming unquenched upon release of the sn-1 BODIPY FA derivative following hydrolysis. Increase in fluorescence intensity at 37°C was proportional to LPL concentration. The assay was more sensitive than a similar assay using 1,2-O-dilauryl-rac-glycero-3-glutaric acid-(6-methylresorufin ester) and was validated in biological samples, including determination of LPL-specific activity in postheparin mouse plasma. The simplicity and reproducibility of the assay make it ideal for in vitro, high-throughput screening for inhibitors and activators of LPL, thus expediting discovery of drugs of potential clinical value.  相似文献   

15.
The effects of saturated and polyunsaturated dietary fat on the lipolytic activity of post-heparin plasma, lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were studied in the rat. The lipolytic activity was studied from 0 to 60 min using labelled chylomicrons as the substrate. Triacylglycerol hydrolysis rate was higher for the plasma of rats fed high fat diets (14% fat by weight). Chylomicrons of rats fed saturated or unsaturated fats were hydrolyzed at the same rate within the first 15 min but afterwards hydrolysis of chylomicrons of rats fed saturated fat was slower. The activities of LPL and HTGL were increased by high fat diets. Unsaturated fat increased more LPL activity than saturated fat conversely, HTGL activity was enhanced more by saturated fat than by unsaturated fat.  相似文献   

16.
Conditions for measurement of the lipolytic activities, lipoprotein lipase and hepatic triacylglycerol lipase in cynomolgus monkey postheparin plasma are described. The two activities are separable by heparin-Sepharose chromatography. Goat anti-human hepatic triacylglycerol lipase serum inhibits monkey hepatic triacylglycerol lipase activity and allows direct measurement of lipoprotein lipase in post-heparin plasma. While both human and homologous serum can be used as a source of activator apolipoprotein, homologous serum produces a much greater activation.  相似文献   

17.
To study the role of the two postheparin plasma lipolytic enzymes, lipoprotein lipase (LPL) and hepatic lipase (HL) in high density lipoprotein (HDL) metabolism at a population level, we determined serum lipoproteins, apoproteins A-I, A-II, B, and E, and postheparin plasma LPL and HL activities in 65 subjects with a mean HDL-cholesterol of 34 mg/dl and in 62 subjects with a mean HDL-cholesterol of 87 mg/dl. These two groups represented the highest and lowest 1.4 percentile of a random sample consisting 4,970 subjects. The variation in HDL level was due to a 4.1-fold difference in the HDL2 cholesterol (P less than 0.001) whereas the HDL3 cholesterol level was increased only by 32% (P less than 0.001) in the group with high HDL-cholesterol. Serum apoA-levels were 128 +/- 2.2 mg/dl and 210 +/- 2.8 mg/dl (mean +/- SEM) in hypo- and hyper-HDL cholesterolemia, respectively. Serum apoA-II concentration was elevated by 28% (P less than 0.001) in hyperalphalipoproteinemia. The apoA-I/A-II ratio was elevated only in women with high HDL-cholesterol but not in men, suggesting that elevation of apoA-I is involved in hyperalphalipoproteinemia in females, whereas both apoA proteins are elevated in men with high HDL cholesterol. Serum concentration of apoE and its phenotype distribution were similar in the two groups. The HL activity was reduced in the high HDL-cholesterol group (21.2 +/- 1.5 vs. 38.5 +/- 1.8 mumol/h/ml, P less than 0.001), whereas the LPL activity was elevated in the group with high HDL-cholesterol compared to subjects with low HDL-cholesterol (27.8 +/- 1.3 vs. 19.9 +/- 0.8 mumol/h/ml, P less than 0.001). The HL and LPL activities correlated in opposing ways with the HDL2 cholesterol (r = 0.57, P less than 0.001 and r = 0.51, P less than 0.001, respectively), and this appeared to be independent of the relative ponderosity by multiple correlation analysis. The results demonstrate major influence of both HL and LPL on serum HDL cholesterol concentration at a population level.  相似文献   

18.
We have developed a sandwich-enzyme immunoassay (EIA) for the quantification of lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) in human postheparin plasma (PHP) using monoclonal antibodies (MAbs) directed against the corresponding enzymes purified from human PHP. The sandwich-EIA for LPL was performed by using the combination of two distinct types of anti-LPL MAbs that recognize different epitopes on the LPL molecule. The immunoreactive mass of LPL was specifically measured using a beta-galactosidase-labeled anti-LPL MAb as an enzyme-linked MAb, an anti-LPL MAb linked with the bacterial cell wall as an insolubilized MAb, and purified human PHP-LPL as a standard. The sandwich-EIA for HTGL was carried out by using two distinct anti-HTGL MAbs that recognize different epitopes on HTGL. The limit of detection was 20 ng/ml for LPL and 60 ng/ml for HTGL. Each method yielded a coefficient of variation of less than 6% in intra- and inter-assays, and a high concentration of triglyceride did not interfere with the assays. The average recovery of purified human PHP-LPL and -HTGL added to human PHP samples was 98.8% and 97.5%, respectively. The immunoreactive masses of LPL and HTGL in PHP samples, obtained at a heparin dose of 30 IU/kg, from 34 normolipidemic and 20 hypertriglyceridemic subjects were quantified by the sandwich-EIA. To assess the reliability of the measured mass values, they were compared with the corresponding enzyme activities measured by selective immunoinactivation assay using rabbit anti-human PHP-LPL and -HTGL polyclonal antisera. Both assay methods yielded a highly significant correlation in either normolipidemic (r = 0.945 for LPL; r = 0.932 for HTGL) or hypertriglyceridemic subjects (r = 0.989 for LPL; r = 0.954 for HTGL). The normal mean (+/- SD) level of lipoprotein lipase mass and activity in postheparin plasma was 223 +/- 66 ng/ml and 10.1 +/- 2.9 mumol/h per ml, and that of hepatic triglyceride lipase mass and activity was 1456 +/- 469 ng/ml and 26.4 +/- 8.7 mumol/h per ml, respectively. The present sandwich-enzyme immunoassay methods make it possible to study the molecular nature of LPL and HTGL in PHP from patients with either primary or secondary hyperlipoproteinemia.  相似文献   

19.
Characterization of the lipolytic activity of endothelial lipase   总被引:16,自引:0,他引:16  
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family previously reported to have phospholipase activity. Using radiolabeled lipid substrates, we characterized the lipolytic activity of this enzyme in comparison to lipoprotein lipase (LPL) and hepatic lipase (HL) using conditioned medium from cells infected with recombinant adenoviruses encoding each of the enzymes. In the absence of serum, EL had clearly detectable triglyceride lipase activity. Both the triglyceride lipase and phospholipase activities of EL were inhibited in a dose-dependent fashion by the addition of serum. The ratio of triglyceride lipase to phospholipase activity of EL was 0.65, compared with ratios of 24.1 for HL and 139.9 for LPL, placing EL at the opposite end of the lipolytic spectrum from LPL. Neither lipase activity of EL was influenced by the addition of apolipoprotein C-II (apoC-II), indicating that EL, like HL, does not require apoC-II for activation. Like LPL but not HL, both lipase activities of EL were inhibited by 1 M NaCl. The relative ability of EL, versus HL and LPL, to hydrolyze lipids in isolated lipoprotein fractions was also examined using generation of FFAs as an end point. As expected, based on the relative triglyceride lipase activities of the three enzymes, the triglyceride-rich lipoproteins, chylomicrons, VLDL, and IDL, were efficiently hydrolyzed by LPL and HL. EL hydrolyzed HDL more efficiently than the other lipoprotein fractions, and LDL was a poor substrate for all of the enzymes.  相似文献   

20.
Human lipoprotein lipase and hepatic triglyceride lipase were purified to homogeneity from post-heparin plasma. These enzymes were purified 250,000- and 100,000-fold with yields of 27 +/- 15 and 19 +/- 6%, respectively. Molecular weight determination by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and reducing agents yielded Mr of 60,500 +/- 1,800 and 65,200 +/- 400, respectively, for lipoprotein lipase and hepatic triglyceride lipase. These lipase preparations were shown to be free of detectable antithrombin by measuring its activity and by probing of Western blots of lipases with a monospecific antibody against antithrombin. In additions, probing of Western blots with concanavalin A revealed no glycoproteins corresponding to the molecular weight of antithrombin. Four stable hybridoma-producing distinct monoclonal antibodies (mAb) to hepatic triglyceride lipase were isolated. The specificity of one mAb, HL3-5, was established by its ability to immunoprecipitate hepatic triglyceride lipase catalytic activity. Interaction of HL3-5 with this lipase did not inhibit catalytic activity. The three other mAb interacted with hepatic triglyceride lipase only after denaturation of the enzyme with detergents. The relatedness of these two enzymes was examined by comparing under the same conditions the thermal inactivation, the sensitivity to sulfhydryl and reducing agents, amino acid composition, and the mobility of peptide fragments generated by cyanogen bromide cleavage. The results of these studies strongly support the view that the two enzymes are different proteins. Immunological studies confirm this conclusion. Four mAb to hepatic triglyceride lipase did not interact with lipoprotein lipase in Western blots, enzyme-linked immunosorbent assay, and immunoprecipitation experiments. These immunological studies demonstrate that several epitopes of the hepatic triglyceride lipase protein moiety are not present in the lipoprotein lipase molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号