首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetes induced by streptozotocin (50 mg/kg body wt, i.p.) in the rats substantially increased the plasma glucose and malondialdehyde levels along with corresponding decrease in the antioxidants levels. Supplementation of vitamin E (200 mg/kg body wt., ip) for 5 weeks resulted in non-significant decrease in the blood glucose levels but plasma malondialdehyde levels were reduced to below normal levels. Plasma vitamin E, vitamin C, uric acid and red blood cell glutathione levels were also restored to near normal levels on vitamin E supplementation to diabetic rats as compared to control (diabetic) rats. The activities of antioxidant enzymes, catalase (EC 1.11.1.6), glutathione peroxidase (GSHPx EC 1.11.1.9), and glutathione reductase (GR EC 1.6.4.2) were also concomitantly restored to near normal levels by vitamin E supplementation to diabetic rats. The results clearly demonstrated that vitamin E supplementation augments the antioxidant defense mechanism in diabetes and provides evidence that vitamin E may have a therapeutic role in free radical mediated diseases.  相似文献   

2.
The plasma levels of lipoperoxides, glutathione peroxidase (GSH-Px), reduced glutathione (GSH), beta carotene, vitamin A, E, some plasma biochemical and blood haematological parameters were investigated in 40 women with habitual abortion (HA) and controls. The levels of GSH, vitamin A, E and beta carotene were significantly lower in women with HA than in controls. However, the plasma levels of lipid peroxidation, alkaline phosphatase (ALP), glucose and blood haemoglobin were significantly higher in HA than in controls. In addition, plasma levels of GSH-Px, AST, ALT, total bilirubin, total protein, albumin, sodium, potassium, calcium and number of white blood cells, red blood cells, platelet and values of packet cell volume showed no significant differences between HA and controls. According to the results of this study, we observed that the levels of lipid peroxidation were increased and plasma levels of vitamin A, E and beta carotene were decreased in HA. The decrease of those antioxidants may play a significant role in women with habitual abortion. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of dietary selenium (Se) and vitamin E supplementation on tissue reduced glutathione (GSH) and glutathione peroxidase activity has been studied in the rat. Increasing Se intake by 0.4 ppm gave significantly higher enzyme levels in all tissues studied, an effect not influenced by vitamin E intake. Further increasing Se to 4 ppm gave higher enzyme levels in red blood cells only, while in liver was there was a significant decrease in enzyme activity probably reflecting Se hepatotoxicity. In the absence of Se supplements increasing dietary vitamin E to 100 mg/kg diet significantly increased enzyme activity but this effect was modified by simultaneous Se supplementation.Se intake had no effect on GSH levels. Rats on high vitamin E intake 500 mg/kg had a significantly higher tissue GSH level. Dietary Se had a sparing effect on vitamin E, rats supplemented with Se having significantly raised plasma vitamin E levels.These results confirm the role of selenium in glutathione peroxidase and also show that vitamin E influences the activity of the enzyme.  相似文献   

4.
Alzheimer's disease is associated with a systemic oxidative stress situation which can be followed in vivo by determining biomarkers such as plasma lipoperoxides and TBARS levels and the oxidation degree of glutathione in red blood cells. It has been observed that Alzheimer's patients show an increased level of plasma TBARS, which indicates a higher free radical oxidation of plasma unsaturated phospholipids, and an increased oxidation of red blood cells glutathione, which indicates oxidative stress in peripheral cells. This latter, glutathione oxidation, was found to correlate statistically with the cognitive status of the patients. Treatment with vitamin E resulted in an improved cognitive performance only of those patients in which the tocopherol acted as an antioxidant, according to blood indicative markers of oxidative stress. Indeed, the effect of vitamin E on Alzheimer's disease patients showed considerable variations both in its antioxidant function and in its capacity to improve cognitive functions. An important conclusion from the reported results is that epidemiological or clinical studies that aim to test the effect of antioxidant supplementation on given functions should include the determination of the antioxidant status of the patients by the measurement of blood markers of oxidative stress.  相似文献   

5.
This study was designed to investigate the effects of fish oil and vitamin E on the antioxidant defense system in hypercholesterolemic rabbits. A high fat and cholesterol diet, with or without supplement by fish oil and/or a vitamin E supplement, was fed to rabbits for 6 weeks. Compared to the reference diet of regular laboratory rabbit chow, a high fat and cholesterol-enriched diet increased atheroma formation, plasma lipid and peroxide levels, decreased blood glutathione levels, and reduced plasma glutathione reductase, glutathione peroxidase, and catalase activities. Fish oil supplementation significantly reduced atheroma and increased glutathione reductase and glutathione peroxidase activities and blood glutathione levels, but increased plasma lipid peroxide levels. Vitamin E supplementation of the fish oil diet enhanced the beneficial effects by increasing glutathione reductase activity and decreasing peroxide levels. These results indicate that a high fat and cholesterol diet attenuates blood glutathione levels and plasma antioxidant enzyme activities, which may account for some of its atherogenic properties. Consumption of fish oil enhances antioxidative defenses against the oxidative stress imposed by hypercholesterolemia, and vitamin E further enhances these beneficial effects.  相似文献   

6.
Studies are reported on the oxidation of vitamin E and changes in lipid and fatty acid composition of rat blood components incubated in vitro with hydroperoxides prepared from autoxidized methyl linoleate. Red blood cells, plasma, serum, and hemoglobin free stroma were incubated at 37 °C with suspensions of linoleate hydroperoxide in Tris buffer at pH 7.4. The RBC were destroyed and substances with excitation-fluorescent properties were produced. Phosphatidylethanolamine, vitamin E and unsaturated fatty acids were oxidized in the reaction. Among the reaction products were substances that gave a positive thiobarbituric acid value, tocoquinone, and an unidentified substance isolated in the nonsaponifiable fraction of the lipid extract of the hemolyzed red cells. The reaction of linoleate hydroperoxide with stroma was similar to that with red blood cells and the same products were observed. In contrast there was little reaction of linoleate hydroperoxide with vitamin E or lipids of the serum or plasma in the absence of red blood cells. The destruction of the red blood cells appeared to be closely related to the oxidation of vitamin E indicating that the strong antioxygenic action of vitamin E in vivo was due to its particular form or structural orientation in the red cell membrane.  相似文献   

7.
High doses of parenterally administered vitamin E (30 mg/kg/die) have been given to albino rabbits. We have found a significant elevation of red blood cells reduced glutathione, while the percent level of oxidized versus the reduced form falls from 2% to 1.3%. This finding could be explained with an elevation of the synthesis of this tripeptide, depending on the stimulation of glutathione-synthetase activity. On the other hand, a reduced utilization of this tripeptide for the free radicals detoxifying activity could be claimed for.  相似文献   

8.
The present study examined the relationship between lipid peroxidation and vitamin C, vitamin E and reduced glutathione levels in plasma, erythrocytes and erythrocyte membranes of pulmonary tuberculosis patients and an equal number of age-and sex-matched healthy subjects. Enhanced plasma, erythrocytes and erythrocyte membrane lipid peroxidation with concomitant decline in vitamin C, vitamin E and reduced glutathione levels were found in pulmonary tuberculosis patients. The elevated lipid peroxidation and decreased vitamin C, vitamin E and reduced glutathione levels indicate the potential of oxidative damage to erythrocytes and erythrocyte membranes of pulmonary tuberculosis patients.  相似文献   

9.
A decline in reduced glutathione (GSH) levels is associated with aging and many age-related diseases. The objective of this study was to determine whether other antioxidants can compensate for GSH depletion in protection against oxidative insults. Rabbit lens epithelial cells were depleted of > 75% of intracellular GSH by 25-200 microM buthionine sulfoximine (BSO). Depletion of GSH by BSO alone had little direct effect on cell viability, but resulted in an approximately 30-fold increase in susceptibility to H(2)O(2)-induced cell death. Experimentally enhanced levels of nonprotein sulfhydryls other than GSH (i.e., N-acetylcysteine) did not protect GSH-depleted cells from H(2)O(2)-induced cell death. In contrast, pretreatment of cells with vitamin C (25-50 microM) or vitamin E (5-40 microM), restored the resistance of GSH-depleted cells to H(2)O(2). However, concentrations of vitamin C > 400 microM and vitamin E > 80 microM enhanced the toxic effect of H(2)O(2). Although levels of GSH actually decreased by 10-20% in cells supplemented with vitamin C or vitamin E, the protective effects of vitamin C and vitamin E on BSO-treated cells were associated with significant ( approximately 70%) decreases in oxidized glutathione (GSSG) and concomitant restoration of the cellular redox status (as indicated by GSH:GSSG ratio) to levels detected in cells not treated with BSO. These results demonstrate a role for vitamin C and vitamin E in maintaining glutathione in its reduced form. The ability of vitamin C and vitamin E in compensations for GSH depletion to protect against H(2)O(2)-induced cell death suggests that GSH, vitamin C, and vitamin E have common targets in their actions against oxidative damage, and supports the preventive or therapeutic use of vitamin C and E to combat age- and pathology-associated declines in GSH. Moreover, levels of these nutrients must be optimized to achieve the maximal benefit.  相似文献   

10.
SUMMARY

An involvement of free radicals in thrombosis has been suggested previously. In order to further explore the role of free radicals and antioxidants in thrombosis, we have measured preventive (enzymes of the glutathione redox cycle) and chain-breaking antioxidants (vitamin E and C) in whole blood, platelets, neutrophils (PMNLs), heart and lung following collagen and adrenaline induced thrombosis in mice. A significant decrease in platelet glutathione (GSH) level (54%) and glutathione reductase activity was observed after thrombosis. In addition, GSH content in whole blood was also found to be reduced. In PMNLs, an increase in glutathione peroxidase activity and a four-fold elevation in vitamin C content was observed following thrombosis. However, levels of vitamin E and total thiol groups remained unchanged in both the cells and tissues. The results further suggest involvement of free radicals and PMNLs in thrombosis.  相似文献   

11.
Alcoholic liver disease (ALD) develops as a consequence of priming and sensitizing mechanisms rendered by cross-interactions of primary mechanistic factors and secondary risk factors. Chronic alcohol abuse and its progression to ALD are associated with abnormal metabolism and low tissue or plasma levels, or both, of many micronutrients. Glutathione depletion is considered the most important sensitizing mechanism. In the present study efficacy of lecithin with vitamin-B complex to treat ethanol induced oxidative stress was compared with the effect of lecithin alone, tocopheryl acetate (vitamin E), as well as capacity of hepatic regeneration during abstention. Ethanol (1.6g / kg body weight/ day for 4 weeks) affects body weight in 16-18 week old male albino rats of Wistar strain weighing 200-220 g. Thiobarbituric acid reactive substance level, nitrite content, protein carbonyl group level, redox ratio (oxidized to reduced glutathione ratio), superoxide dismutase activity, and glutathione s-transferase activity significantly increased on ethanol exposure. Whereas reduced glutathione content, and activities of catalase, glutathione reductase and glutathione peroxidase significantly reduced due to ethanol exposure. These changes were reversed by different treatment. The results suggest that tocopheryl acetate (vitamin E) could partially reverse these changes and act as a potential therapeutic agent. However, lecithin with vitamin-B complex treatment is a promising therapeutic approach. Furthermore, preventive measures were more effective than curative treatment. Prevention of oxidative and nitrosative stress along with correction of nutritional deficiency is one of the proposed mechanisms for the therapeutic approach.  相似文献   

12.
In this paper, we evaluate the extent to which flavonoids in red wine (catechin, epicatechin, quercetin and procyanidins) protect against hydrogen peroxide-induced oxidative stress in Fao cells. When cells were exposed to H(2)O(2), malondialdehyde (MDA) levels, oxidized glutathione (GSSG) levels and lactate dehydrogenase (LDH) release increased, indicating membrane damage and oxidative stress. All the flavonoids studied, and in particular epicatechin and quercetin, protected the plasma membrane. Only procyanidins lowered MDA levels and LDH leakage, maintained a higher reduced/oxidized glutathione ratio, and increased catalase/superoxide dismutase and glutathione peroxidase/superoxide dismutase ratios, and glutathione reductase and glutathione transferase activities. These results show that the procyanidin mixture has a greater antioxidant effect than the individual flavonoids studied, probably due to its oligomer content and/or the additive/synergistic effect of its compounds. This suggests that the mixture of flavonoids found in wine has a greater effect than individual phenols, which may explain many of the healthy effects attributed to wine.  相似文献   

13.
Increased levels of oxidative stress due to excessive production of reactive oxygen species are involved in the pathogenesis of periodontitis. Studies suggest a negative association between plasma vitamin C level and the severity of periodontitis. We hypothesized that increases in plasma vitamin C levels after vitamin C intake might clinically reduce gingival oxidative stress in a rat periodontitis model. A ligature was placed around rat mandibular molars for 4 weeks to induce periodontitis, and the rats were then given drinking water with or without 1 g/L vitamin C for 2 weeks after the ligature was removed. The periodontitis-induced rats showed a 149% increase in 8-hydroxydeoxyguanosine level and a 40% decrease in reduced:oxidized glutathione ratio in gingival tissue. Vitamin C intake induced a 175% increase in plasma vitamin C level, resulting in an improvement in the gingival 8-hydroxydeoxyguanosine level (decreased) and in the reduced:oxidized glutathione ratio (increased). Furthermore, in ligature-induced periodontitis lesions, gene expression encoding inflammation, including interleukin-1 alpha and interleukin-1 beta, was more than twofold down-regulated by vitamin C intake. The results suggest that systemic administration of vitamin C could be clinically beneficial in improving periodontitis-induced oxidative stress by down-regulating inflammatory gene expression.  相似文献   

14.
Erythrocyte osmotic fragility (O.F.), acetylcholinesterase (AChE) activity,and the level of malonyl dialdehyde (MDA) of control, mefenamic acid treated, and mefenamic acid with vitamin E treated rats were investigated. Administration of mefenamic acid to albino rats brought about a significant increase in the osmotic fragility of red cells and a significant (p<0.01) decrease in the activity of AChE. We have also observed increased red cell level of MDA and decreased cholesterol (Chl), hemoglobin (Hb), and reduced glutathione (GSH) content. Supplementation of vitamin E to the mefenamic acid treated rats restored the O.F., AChE activity, level of MDA, and Chl, Hb, and GSH content almost to normal. These observations suggest that mefenamic acid causes functional impairment of red cell membrane, while vitamin E shows its protective role in maintaining normal red cell functions.  相似文献   

15.
The tendency of rat red blood cells to hemolyze in the presence of peroxidizing rat liver microsomes is greatly increased if the red cells are obtained from vitamin E deficient rats. Adequate dietary vitamin E supplementation imparts resistance against hemolysis. Dietary butylated hydroxytoluene or the level of erythrocyte glutathione or total thiols are relatively unimportant factors in determining red cell sensitivity to hemolysis induced by perixiziding microsomes. When separated from peroxidizing microsomes by a dialysis membrane, vitamin E deficient cells are completely hemolyzed. Hemolytically active material can be separated from peroxidized microsomes by dialysis at 0°C.  相似文献   

16.
Since experiments with freshly isolated rat hepatocytes have shown that cellular vitamin E is consumed in response to insult by compounds that induce an oxidative stress only after cellular glutathione (GSH) concentrations have been substantially depleted, experiments were performed to determine whether this sequence of events occurred in response to oxidative insult in vivo. The role that plasma vitamin E plays in the response to chemically induced oxidative injury in vivo was also assessed. Treatments with 40 mg/kg of methyl ethyl ketone peroxide (MEKP) quickly induced lipid peroxidation in vivo and from one to 4 h after treatment caused a depression in the plasma content of vitamin E and the liver content of GSH, as well as signs of toxicity (elevations in serum activities of alanine and aspartate aminotransferases). At these time points however, the liver content of vitamin E was either indistinguishable from or slightly elevated from controls. By 12 to 24 h after treatment the liver content of vitamin E was reduced by 20-25% whereas values for all other indicators had returned toward control levels. Pretreatment of rats with L-buthionine-S,R-sulfoximine, an inhibitor of GSH by 4 or 24 h after treatment, did not alter the time course or extent of hepatic vitamin E depletion that was observed after treatment with MEKP. Other compounds that induce oxidative stress and lipid peroxidation to the liver, carbon tetrachloride and menadione, did not provoke an alteration in hepatic vitamin E levels as compared to controls 1 day after treatment. These findings indicate that depletion of hepatic vitamin E may not occur as an immediate consequence of oxidative insult to the liver and that the depletion of hepatic vitamin E levels may not be related to the extent of prior GSH depletion. Moreover, these findings suggest that alterations in the plasma concentration of vitamin E may not reflect concurrent alterations in hepatic vitamin E levels. A mechanism whereby liver vitamin E stores are mobilized for the maintenance of plasma vitamin E levels is proposed.  相似文献   

17.
Myocardial necrosis and mineralization has been identified in a colony of guinea pigs which were subsequently tested for vitamin E and selenium deficiency. Serum vitamin E and whole blood selenium levels were within normal ranges. The erythrocyte glutathione peroxidase test has potential as a predictor of whole blood selenium levels in the guinea pig. The red blood cell hemolysis test used in this study did not correlate consistently with the serum vitamin E levels. We suspect that myocardial necrosis and mineralization may have resulted from inbreeding guinea pigs within the closed colony.  相似文献   

18.
Feeding a basal diet free of vitamins E and C to weanling male rats for 8 months resulted in biochemical changes characteristic of vitamin E deficiency. These included increased liver thiobarbituric acid values; decreased blood GSH levels, plasma vitamin E levels, and glutathione peroxidase activities; and increased activities of plasma pyruvate kinase, glutamic-oxaloacetic transaminase, creatine kinase, lactic dehydrogenase, and malic dehydrogenase. Tube-feeding vitamin C for 21 days resulted in partial reversal effects on the above parameters except activities of glutathione peroxidase, lactic dehydrogenase, and malic dehydrogenase. The results suggest that vitamin C may spare in part the metabolism of vitamin E through its antioxidant property.  相似文献   

19.
Oxidative stress in patients with multiple sclerosis   总被引:5,自引:0,他引:5  
It is well known that brain and nervous system cells are prone to oxidative damage because of their relatively low content of antioxidants, especially enzymatic ones, and of the high levels of both membrane polyunsaturated fatty acids (PUFA) and iron easily released from injured cells. We have investigated the oxidative stress in the blood (plasma, erythrocytes and lymphocytes) of 28 patients affected with multiple sclerosis (MS) and of 30 healthy age matched controls, by performing a multiparameter analysis of non-enzymatic and enzymatic antioxidants--Vitamin E (Vit. E), ubiquinone (UBI), reduced and oxidized glutathione (GSH, GS-SG), superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and fatty acid patterns of phospholipids (PL-FA). PL-FA and Vit. E were assayed by GC-MS; UBI and GSH/GS-SG by HPLC; SOD, GPX and CAT by spectrophotometry. In comparison to controls, patients with MS showed significantly reduced levels of plasma UBI (0.21 +/- 0.10 vs. 0.78 +/- 0.08 mg/ml, p < 0.001), plasma Vit. E (7.4 +/- 2.1 vs. 11.4 +/- 1.8 mg/ml, p < 0.01), lymphocyte UBI (8.1 +/- 4.0 vs. 30.3 +/- 7.2 ng/ml blood, p < 0.001) and erythrocyte GPX (22.6 +/- 5.7 vs. 36.3 +/- 6.4 U/g Hb, p < 0.001). This blood antioxidant deficiency was associated with plasma levels of PL-PUFA--especially C20:3 n-6 and C20:4 n-6--significantly higher than controls. In conclusion, the blood of patients with MS shows the signs of a significant oxidative stress. The possibility of counteracting it by antioxidant administration plus an appropriate diet, might represent a promising way of inhibiting the progression of the disease. Antioxidant supplements should include not only GSH repleting agents, but also Vit. E, ubiquinol, and selenium.  相似文献   

20.
Cellular glutathione levels may exceed vitamin C levels by 10-fold, generating the question about the real antioxidant role that low intracellular concentrations of vitamin C can play in the presence of a vast molar excess of glutathione. We characterized the metabolism of vitamin C and its relationship with glutathione in primary cultures of human endothelial cells oxidatively challenged by treatment with hydrogen peroxide or with activated cells undergoing the respiratory burst, and analyzed the manner in which vitamin C interacts with glutathione to increase the antioxidant capacity of cells. Our data indicate that: (i) endothelial cells express transporters for reduced and oxidized vitamin C and accumulate ascorbic acid with participation of glutathione-dependent dehydroascorbic acid reductases, (ii) although increased intracellular levels of vitamin C or glutathione caused augmented resistance to oxidative stress, 10-times more glutathione than vitamin C was required, (iii) full antioxidant protection required the simultaneous presence of intracellular and extracellular vitamin C at concentrations normally found in vivo, and (iv) intracellular vitamin C cooperated in enhancing glutathione recovery after oxidative challenge thus providing cells with enhanced survival potential, while extracellular vitamin C was recycled through a mechanism involving the simultaneous neutralization of oxidant species. Therefore, in endothelial cells under oxidative challenge, vitamin C functions as an essential cellular antioxidant even in the presence of a vast molar excess of glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号