首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell migration during wound healing requires adhesion receptor turnover to enable the formation and disassembly of cell-extracellular matrix contacts. Although recent advances have improved our understanding of integrin trafficking pathways, it is not known how extracellular ligand engagement controls receptor dynamics. Using atomic force microscopy, we have measured cell avidity for fibronectin and defined a mechanism for the outside-in regulation of α(5)β(1)-integrin. Surprisingly, adhesive strength was attenuated by the syndecan-4-binding domain of fibronectin due to a rapid triggering of α(5)β(1)-integrin endocytosis. Association of syndecan-4 with PKCα was found to trigger RhoG activation and subsequent dynamin- and caveolin-dependent integrin uptake. Like disruption of syndecan-4 or caveolin, gene disruption of RhoG in mice was found to retard closure of dermal wounds due to a migration defect of the fibroblasts and keratinocytes of RhoG null mice. Thus, this syndecan-4-regulated integrin endocytic pathway appears to play a key role in tissue repair.  相似文献   

2.
Syndecan-4 is a membrane-bound heparan sulfate proteoglycan that participates in cell-cell and cell-matrix interactions and modulates adhesion and migration of many cell types. Through its extracellular domain, syndecan-4 cooperates with adhesion molecules and binds matrix components relevant for cell migration. Importantly, syndecan-4 is a substrate of extracellular proteases, however the biological significance of this cleavage has not been elucidated. Here, we show that the secreted metalloprotease ADAMTS1, involved in angiogenesis and inflammatory processes, cleaves the ectodomain of syndecan-4. We further showed that this cleavage results in altered distribution of cytoskeleton components, functional loss of adhesion, and gain of migratory capacities. Using syndecan-4 null cells, we observed that ADAMTS1 proteolytic action mimics the outcome of genetic deletion of this proteoglycan with regards to focal adhesion. Our findings suggest that the shedding of syndecan-4 by ADAMTS1 disrupts cell adhesion and promotes cell migration.  相似文献   

3.
Fibroblast growth factor-2 (FGF-2), the most abundant growth factor produced by melanoma cells but not by normal melanocytes, is an important regulator of cell proliferation, migration and differentiation. In this study we show that M5 human metastatic melanoma cells’ ability to migrate is significantly enhanced by exogenously added FGF-2 while, neutralization of endogenous FGF-2 stimulates their adhesion. Previously, we have demonstrated that FGF-2 distinctly modulates the synthesis of individual glycosaminoglycans/proteoglycans (GAGs/PGs) subclasses, changing both their amounts and distribution in M5 cells. Here, treatment with FGF-2 strongly reduces the expression levels of the heparan sulfate-containing proteoglycan, syndecan-4. Syndecan-4 is a focal adhesion component in a range of cell types, adherent to several different matrix molecules, including fibronectin (FN). The reduction in syndecan-4 expression by utilizing specific siRNA discriminately increased melanoma cell motility and decreased their attachment on FN, demonstrating a regulatory role of syndecan-4 on these cell functions. Syndecan-4 has previously been demonstrated to regulate focal adhesion kinase (FAK) phosphorylation. In this study FGF-2 was shown to downregulate FAK Y397-phosphorylation during FN-mediated M5 cell adhesion, promoting their migration. The observed decrease in FAK Y397 activation was correlated to syndecan-4 expression levels. Thus, a balance in syndecan-4 expression perpetrated by FGF-2 may be required for optimal M5 cell migration.These results suggest that essential in melanoma progression FGF-2, specifically regulates melanoma cell ability to migrate through a syndecan-4-dependent mechanism.  相似文献   

4.
In multicellular organisms, cell behavior is dictated by interactions with the extracellular matrix. Consequences of matrix-engagement range from regulation of cell migration and proliferation, to secretion and even differentiation. The signals underlying each of these complex processes arise from the molecular interactions of extracellular matrix receptors on the surface of the cell. Integrins are the prototypic receptors and provide a mechanical link between extracellular matrix and the cytoskeleton, as well as initiating some of the adhesion-dependent signaling cascades. However, it is becoming increasingly apparent that additional transmembrane receptors function alongside the integrins to regulate both the integrin itself and signals downstream. The most elegant of these examples is the transmembrane proteoglycan, syndecan-4, which cooperates with α(5)β(1)-integrin during adhesion to fibronectin. In vivo models demonstrate the importance of syndecan-4 signaling, as syndecan-4-knockout mice exhibit healing retardation due to inefficient fibroblast migration. In wild-type animals, migration of fibroblasts toward a wound is triggered by the appearance of fibronectin that leaks from damaged capillaries and is deposited by macrophages in injured tissue. Therefore there is great interest in discovering strategies that enhance fibronectin-dependent signaling and could accelerate repair processes. The integrin-mediated and syndecan-4-mediated components of fibronectin-dependent signaling can be separated by stimulating cells with recombinant fibronectin fragments. Although integrin engagement is essential for cell adhesion, certain fibronectin-dependent signals are regulated by syndecan-4. Syndecan-4 activates the Rac1 protrusive signal, causes integrin redistribution, triggers recruitment of cytoskeletal molecules, such as vinculin, to focal adhesions, and thereby induces directional migration. We have looked for alternative strategies for activating such signals and found that low-intensity pulsed ultrasound (LIPUS) can mimic the effects of syndecan-4 engagement. In this protocol we describe the method by which 30 mW/cm(2), 1.5 MHz ultrasound, pulsed at 1 kHz (Fig. 1) can be applied to fibroblasts in culture (Fig. 2) to induce Rac1 activation and focal adhesion formation. Ultrasound stimulation is applied for a maximum of 20 minutes, as this combination of parameters has been found to be most efficacious for acceleration of clinical fracture repair. The method uses recombinant fibronectin fragments to engage α(5)β(1)-integrin, without engagement of syndecan-4, and requires inhibition of protein synthesis by cycloheximide to block deposition of additional matrix by the fibroblasts. The positive effect of ultrasound on repair mechanisms is well documented, and by understanding the molecular effect of ultrasound in culture we should be able to refine the therapeutic technique to improve clinical outcomes.  相似文献   

5.

Background

Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression.

Methodology/Principal Findings

We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration.

Conclusions/Significance

Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.  相似文献   

6.
Two domains of fibronectin deliver two different but cooperative signals required for focal adhesion formation. The signal from the cell-binding domain is mediated by integrins, whereas the signal from the heparin-binding domain is recognized by heparan sulfate proteoglycans, of which syndecan-4 has been hypothesized to be involved in focal adhesion formation. We generated mice deficient in syndecan-4 to study its role directly. Even in fibroblasts from syndecan-4-deficient mice, focal adhesions were formed, and actin fibers terminated normally at focal adhesions when they were cultured on coverslips coated with fibronectin or with a mixture of its cell-binding and heparin-binding fragments. However, when the cells were cultured on the cell-binding fragment and the heparin-binding fragment was added to the medium, focal adhesion formation was impaired in the syndecan-4 null fibroblasts as compared with that in wild-type cells. Therefore, syndecan-4 is essential for promoting focal adhesion formation only when the signal of the heparin-binding domain of fibronectin is delivered as a soluble form, most probably from the apical surface. When the signal is delivered as a substratum-bound form, other molecule(s) also participate(s) in the signal reception.  相似文献   

7.
Syndecan-4 is an ubiquitous, plasma membrane-spanning heparan sulfate proteoglycan involved in proliferation, differentiation, adhesion and migration of cells in vitro. Syndecan-4 knockout (KO) mice show no obvious defects but respond abnormally to experimental stress conditions. In the adult, syndecan-4 is the most abundant syndecan of renal tissue. We therefore investigated the consequences of syndecan-4 deficiency during progression of kidney disease using unilaterally nephrectomized mice, a model of glomerular hyperfiltration and renal hypertrophy. 60 days after unilateral nephrectomy (UNX), mesangial expansion, enhanced matrix production (collagens I and IV, fibronectin) and focal segmental glomerulosclerosis, resembling early stages of diabetic nephropathy, was apparent in male but not female syndecan-4 KO mice. No defect was detected in wild type UNX males. Syndecan-2 mRNA and protein were not detectable in renal glomeruli of wild type mice, but were induced specifically in the glomeruli of the syndecan-4 deficient kidneys after unilateral nephrectomy. Due to the structural similarities of syndecans-2 and -4 we hypothesize that de novo-production of syndecan-2 in kidneys after unilateral nephrectomy reflects a compensatory response. However, this response is counterproductive since syndecan-2 supports the pro-sclerotic activity of TGF-beta1 which is increased in parallel with syndecan-2 synthesis. By contrast, signaling through syndecan-4 negatively controls the production of pro-sclerotic TGF-beta1.  相似文献   

8.
Syndecan-2, a transmembrane heparan sulfate proteoglycan, is known to serve as an adhesion receptor, but details of the regulatory mechanism governing syndecan-2 cell adhesion and migration remain unclear. Here, we examined this regulatory mechanism, showing that overexpression of syndecan-2 enhanced collagen adhesion, cell migration and invasion of normal rat intestinal epithelial cells (RIE1), and increased integrin α2 expression levels. Interestingly, RIE1 cells transfected with either syndecan-2 or integrin α2 showed similar adhesion and migration patterns, and a function-blocking anti-integrin α2 antibody abolished syndecan-2-mediated adhesion and migration. Consistent with these findings, transfection of integrin α2 siRNA diminished syndecan-2-induced cell migration in HCT116 human colon cancer cells. Taken together, these results demonstrate a novel cooperation between syndecan-2 and integrin α2β1 in adhesion-mediated cell migration and invasion. This interactive dynamic might be a possible mechanism underlying the tumorigenic activities of colon cancer cells.  相似文献   

9.
Syndecan-1 is a cell surface proteoglycan that can organize co-receptors into a multimeric complex to transduce intracellular signals. The syndecan-1 core protein has multiple domains that confer distinct cell- and tissue-specific functions. Indeed, the extracellular, transmembrane, and cytoplasmic domains have all been found to regulate specific cellular processes. Our previous work demonstrated that syndecan-1 controls lung epithelial migration and adhesion. Here, we identified the necessary domains of the syndecan-1 core protein that modulate its function in lung epithelial repair. We found that the syndecan-1 transmembrane domain has a regulatory function in controlling focal adhesion disassembly, which in turn controls cell migration speed. In contrast, the extracellular domain facilitates cell adhesion through affinity modulation of α2β1 integrin. These findings highlight the fact that syndecan-1 is a multidimensional cell surface receptor that has several regulatory domains to control various biological processes. In particular, the lung epithelium requires the syndecan-1 transmembrane domain to govern cell migration and is independent from its ability to control cell adhesion via the extracellular domain.  相似文献   

10.
PR-39 is proline-rich peptide produced at sites of tissue injury. While the functional properties of this peptide have not been fully defined, PR-39 may be an important regulator of processes related to cell-matrix adhesion since it reportedly upregulates syndecan-4, which is a critical determinant of focal adhesion formation. The ability of PR-39 to modulate the adhesion and chemokinetic migration behavior of arterial smooth muscle cells (SMCs) in a fashion coordinated with syndecan-4 expression was investigated. Treatment of SMCs with PR-39 did not alter syndecan-1 mRNA, but did induce a two-fold increase in syndecan-4 mRNA (P < 0.0001) and significantly enhanced cell surface expression of both syndecan-4 (P < 0.01) and heparan sulfate (HS) (P < 0.05). These observations were consistent with an observed increase in cell-matrix adhesive strength (P < 0.05) and a reduction in cell speed (P < 0.01) on fibronectin-coated substrates. Incubation of PR-39 treated cells with a soluble fibronectin derived heparin-binding peptide, as a competitive inhibitor of heparan sulfate/matrix interactions, abolished these effects. These data suggest that PR-39 mediated alterations of cell adhesion and motility may be related, in part, to the increased expression of heparan sulfate glycosaminoglycans (GAGs) that accompany the upregulation of cell surface syndecan-4. Furthermore, this investigation supports the notion that factors which control syndecan-4 expression may play an important role in regulating adhesion related cell processes.  相似文献   

11.
The syndecan proteoglycans are an ancient class of receptor, bearing heparan sulfate chains that interact with numerous potential ligands including growth factors, morphogens, and extracellular matrix molecules. The single syndecan of invertebrates appears not to have cell adhesion roles, but these have been described for mammalian paralogues, especially syndecan-4. This member is best understood in terms of interactions, signaling, and structure of its cytoplasmic domain. The zebrafish homologue of syndecan-4 has been genetically linked to cell adhesion and migration in zebrafish embryos, but no molecular and cellular studies have been reported. Here it is demonstrated that key functional attributes of syndecan-4 are common to both zebrafish and mammalian homologues. These include glycosaminoglycan substitution, a NXIP motif in the extracellular domain that promotes integrin-mediated cell adhesion, and a transmembrane GXXXG motif that promotes dimer formation. In addition, despite some amino acid substitutions in the cytoplasmic domain, its ability to form twisted clamp dimers is preserved, as revealed by nuclear magnetic resonance spectroscopy. This technique also showed that phosphatidylinositol 4,5-bisphosphate can interact with the zebrafish syndecan-4 cytoplasmic domain, and that the molecule in its entirety supports focal adhesion formation, and complements the murine null cells to restore a normal actin cytoskeleton identically to the rat homologue. Therefore, the cell adhesion properties of syndecan-4 are consistent across the vertebrate spectrum and reflect an early acquisition of specialization after syndecan gene duplication events at the invertebrate/early chordate boundary.  相似文献   

12.
The syndecans are known to form homologous oligomers that may be important for their functions. We have therefore determined the role of oligomerization of syndecan-2 and syndecan-4. A series of glutathione S-transferase-syndecan-2 and syndecan-4 chimeric proteins showed that all syndecan constructs containing the transmembrane domain formed SDS-resistant dimers, but not those lacking it. SDS-resistant dimer formation was hardly seen in the syndecan chimeras where each transmembrane domain was substituted with that of platelet-derived growth factor receptor (PDGFR). Increased MAPK activity was detected in HEK293T cells transfected with syndecan/PDGFR chimeras in a syndecan transmembrane domain-dependent fashion. The chimera-induced MAPK activation was independent of both ligand and extracellular domain, implying that the transmembrane domain is sufficient to induce dimerization/oligomerization in vivo. Furthermore, the syndecan chimeras were defective in syndecan-4-mediated focal adhesion formation and protein kinase Calpha activation or in syndecan-2-mediated cell migration. Taken together, these data suggest that the transmembrane domains are sufficient for inducing dimerization and that transmembrane domain-induced oligomerization is crucial for syndecan-2 and syndecan-4 functions.  相似文献   

13.
All cells of the musculoskeletal system possess transmembrane syndecan proteoglycans, notably syndecan-4. In fibroblasts it regulates integrin-mediated adhesion to the extracellular matrix. Syndecan-4 null mice have a complex wound repair phenotype while their fibroblasts have reduced focal adhesions and matrix contraction abilities. Signalling through syndecan-4 core protein to the actin cytoskeleton involves protein kinase Cα and Rho family G proteins but also direct interactions with α-actinin. The contribution of the latter interaction to cell–matrix adhesion is not defined but investigated here since manipulation of Rho GTPase and its downstream targets could not restore a wild type microfilament organisation to syndecan-4 null cells. Microarray and protein analysis revealed no significant alterations in mRNA or protein levels for actin- or α-actinin associated proteins when wild type and syndecan-4 knockout fibroblasts were compared. The binding site for syndecan-4 cytoplasmic domain was identified as spectrin repeat 4 of α-actinin while further experiments confirmed the importance of this interaction in stabilising cell–matrix junctions. However, α-actinin is also present in adherens junctions, these organelles not being disrupted in the absence of syndecan-4. Indeed, co-culture of wild type and knockout cells led to adherens junction-associated stress fibre formation in cells lacking syndecan-4, supporting the hypothesis that the proteoglycan regulates cell–matrix adhesion and its associated microfilament bundles at a post-translational level. These data provide an additional dimension to syndecan function related to tension at the cell–matrix interface, wound healing and potentially fibrosis.  相似文献   

14.
Syndecans are cell surface proteoglycans involved in cell adhesion and motility. Syndecan-4 is an important component of focal adhesions and is involved in cytoskeletal reorganization. Previous work has shown that the syndecan-4 ectodomain can support cell attachment. Here, three vertebrate syndecan-4 ectodomains were compared, including that of the zebrafish, and we have demonstrated that the cell binding activity of the syndecan-4 ectodomain is conserved. Cell adhesion to the syndecan-4 ectodomain appears to be a characteristic of mesenchymal cells. Comparison of syndecan-4 ectodomain sequences led to the identification of three conserved regions of sequence, of which the NXIP motif is important for cell binding activity. We have shown that cell adhesion to the syndecan-4 ectodomain involves beta1 integrins in several cell types.  相似文献   

15.
Members of the heparan sulfate proteoglycan family, the syndecans have emerged as integrators of extracellular signals, such as ECM components or growth factors, that activate cytoplasmic signaling cascades and regulate cytoskeletal functions. Specifically, syndecan-2 has been implicated in various cellular processes, from differentiation to migration, including its participation in cell-cell and cell-matrix adhesion. Here, we focused on the involvement of syndecan-2 in epithelial versus mesenchymal differentiation. Colorectal cancer-derived HT-29 M6 epithelial cells were stably transfected with full-length syndecan-2 cDNA, and the effect on cell morphology, adhesion, and mobility was evaluated. Characteristic features of migratory cells such as loss of intercellular contacts, flatter shape and multiple membrane projections were observed in syndecan-2 transfectants. Western blot analysis of the major component of epithelial adherens junctions, E-cadherin, revealed decreased expression levels. Furthermore, syndecan-2 induced stronger adhesion to collagen type I, specifically inhibited by heparin. This was correlated with an increased ability for migration, as demonstrated by wound healing experiments and transwell assays, without affecting their growth rate. These results indicate that syndecan-2 expression in mucus-secreting HT-29 M6 cells induces differentiation toward a migratory mesenchymal-like phenotype.  相似文献   

16.
Choi Y  Kang D  Han IO  Oh ES 《Cellular signalling》2012,24(8):1522-1530
Syndecan-4, a transmembrane heparan sulfate proteoglycan, plays a critical role in cell adhesion. Both the transmembrane and cytoplasmic domains of syndecan-4 are known to contribute to its functions, but the regulatory mechanisms underlying the functional interplay between the two domains were previously unclear. Here, we examined the functional relationship between these two domains. Fluorescence resonance energy transfer (FRET)-based assays showed that syndecan-4 expression enhanced RhoA activation. Furthermore, rat embryonic fibroblasts (REFs) plated on fibronectin fragments lacking the heparin-binding domain that interacts with syndecan-4 showed much lower RhoA activation than that in cells plated on full-length fibronectin, indicating that RhoA is involved in syndecan-4-mediated cell adhesion signaling. Syndecan-4 mutants defective in transmembrane domain-induced oligomerization and syndecan-4 phosphorylation-mimicking cytoplasmic domain mutants showed decreases in RhoA activation and RhoA-related functions, such as adhesion, spreading and focal adhesion formation, and subsequent increase in cell migration, but the inhibitory effect was much higher in cells expressing the transmembrane domain mutants. The cytoplasmic domain mutants (but not the transmembrane domain mutants) retained the capacity to form SDS-resistant dimers, and the cytoplasmic mutants showed less inhibition of syndecan-4-mediated protein kinase C activation compared to the transmembrane domain mutants. Finally, cytoplasmic domain activation failed to overcome the inhibition conferred by mutation of the transmembrane domain. Taken together, these data suggest that the transmembrane domain plays a major role in regulating syndecan-4 functions, and further show that a domain hierarchy exists in the regulation of syndecan-4.  相似文献   

17.
Syndecan-4, a member of the syndecan gene family of proteoglycans, is an important regulator of bFGF signaling. In particular, bFGF-dependent regulation of cell growth and migration has been linked to syndecan-4 cytoplasmic domain-mediated interactions. Screening of a yeast two-hybrid library with a cytoplasmic domain of rat syndecan-4 identified a novel binding partner, here termed synectin. Synectin is highly homologous to semaphorin F binding protein semcap1, glucose 1 transporter binding protein glut1cbp, and RGS-GAIP/neuropilin-1 binding protein GIPC. Overexpression of synectin in ECV304 cells in culture led to a dose-dependent inhibition of migration while not affecting cell adhesion or growth rate. We conclude that synectin is involved in syndecan-4-dependent interactions and may play a role in the assembly of syndecan-4 signaling complex.  相似文献   

18.
Cell protrusions contribute to cell motility and migration by mediating the outward extension and initial adhesion of cell edges. In many cells, these extensions are supported by actin bundles assembled by the actin cross-linking protein, fascin. Multiple extracellular cues regulate fascin and here we focus on the mechanism by which the transmembrane proteoglycan, syndecan-1, specifically activates lamellipodial cell spreading and fascin-and-actin bundling when clustered either by thrombospondin-1, laminin, or antibody to the syndecan-1 extracellular domain. There is almost no knowledge of the signaling mechanisms of syndecan-1 cytoplasmic domain and we have tested the hypothesis that the unique V region of syndecan-1 cytoplasmic domain has a crucial role in these processes. By four criteria--the activities of N-cadherin/V region chimeras, syndecan-1 deletion mutants, or syndecan-1 point mutants, and specific inhibition by a membrane-permeable TAT-V peptide--we demonstrate that the V region is necessary and sufficient for these cell behaviors and map the molecular basis for its activity to multiple residues located across the V region. These activities correlate with a V-region-dependent incorporation of cell-surface syndecan-1 into a detergent-insoluble form. We also demonstrate functional roles of syndecan-1 V region in laminin-dependent C2C12 cell adhesion and three-dimensional cell migration. These data identify for the first time specific cell behaviors that depend on signaling through the V region of syndecan-1.  相似文献   

19.
The fibronectin receptors alpha(5)beta(1) integrin and syndecan-4 cocluster in focal adhesions and coordinate cell migration by making individual contributions to the suppression of RhoA activity during matrix engagement. p190Rho-guanosine triphosphatase-activating protein (GAP) is known to inhibit RhoA during the early stages of cell spreading in an Src-dependent manner. This paper dissects the mechanisms of p190RhoGAP regulation and distinguishes the contributions of alpha(5)beta(1) integrin and syndecan-4. Matrix-induced tyrosine phosphorylation of p190RhoGAP is stimulated solely by engagement of alpha(5)beta(1) integrin and is independent of syndecan-4. Parallel engagement of syndecan-4 causes redistribution of the tyrosine-phosphorylated pool of p190RhoGAP between membrane and cytosolic fractions by a mechanism that requires direct activation of protein kinase C alpha by syndecan-4. Activation of both pathways is necessary for the efficient regulation of RhoA and, as a consequence, focal adhesion formation. Accordingly, we identify p190RhoGAP as the convergence point for adhesive signals mediated by alpha(5)beta(1) integrin and syndecan-4. This molecular mechanism explains the cooperation between extracellular matrix receptors during cell adhesion.  相似文献   

20.
Syndecan-4 modulates focal adhesion kinase phosphorylation   总被引:7,自引:0,他引:7  
The cell-surface heparan sulfate proteoglycan syndecan-4 acts in conjunction with the alpha(5)beta(1) integrin to promote the formation of actin stress fibers and focal adhesions in fibronectin (FN)-adherent cells. Fibroblasts seeded onto the cell-binding domain (CBD) fragment of FN attach but do not fully spread or form focal adhesions. Activation of Rho, with lysophosphatidic acid (LPA), or protein kinase C, using the phorbol ester phorbol 12-myristate 13-acetate, or clustering of syndecan-4 with antibodies directed against its extracellular domain will stimulate formation of focal adhesions and stress fibers in CBD-adherent fibroblasts. The distinct morphological differences between the cells adherent to the CBD and to full-length FN suggest that syndecan-4 may influence the organization of the focal adhesion or the activation state of the proteins that comprise it. FN-null fibroblasts (which express syndecan-4) exhibit reduced phosphorylation of focal adhesion kinase (FAK) tyrosine 397 (Tyr(397)) when adherent to CBD compared with FN-adherent cells. Treating the CBD-adherent fibroblasts with LPA, to activate Rho, or the tyrosine phosphatase inhibitor sodium vanadate increased the level of phosphorylation of Tyr(397) to match that of cells plated on FN. Treatment of the fibroblasts with PMA did not elicit such an effect. To confirm that this regulatory pathway includes syndecan-4 specifically, we examined fibroblasts derived from syndecan-4-null mice. The phosphorylation levels of FAK Tyr(397) were lower in FN-adherent syndecan-4-null fibroblasts compared with syndecan-4-wild type and these levels were rescued by the addition of LPA or re-expression of syndecan-4. These data indicate that syndecan-4 ligation regulates the phosphorylation of FAK Tyr(397) and that this mechanism is dependent on Rho but not protein kinase C activation. In addition, the data suggest that this pathway includes the negative regulation of a protein-tyrosine phosphatase. Our results implicate syndecan-4 activation in a direct role in focal adhesion regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号