首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pseudomonas aeruginosa PNA1, an isolate from chickpea rhizosphere in India, protected pigeonpea and chickpea plants from fusarium wilt disease, which is caused by Fusarium oxysporum f.sp. ciceris and Fusarium udum. Inoculation with strain PNA1 significantly reduced the incidence of fusarium wilt in pigeonpea and chickpea on both susceptible and moderately tolerant genotypes. However, strain PNA1 protected the plants from fusarium wilt until maturity only in moderately tolerant genotypes of pigeonpea and chickpea. Root colonization of pigeonpea and chickpea, which was measured using a lacZ-marked strain of PNA1, showed tenfold lower root colonization of susceptible genotypes than that of moderately tolerant genotypes, indicating that this plant-bacteria interaction could be important for disease suppression in this plant. Strain PNA1 produced two phenazine antibiotics, phenazine-1-carboxylic acid and oxychlororaphin, in vitro. Its Tn5 mutants (FM29 and FM13), which were deficient in phenazine production, caused a reduction or loss of wilt disease suppression in vivo. Hence, phenazine production by PNA1 also contributed to the biocontrol of fusarium wilt diseases in pigeonpea and chickpea.  相似文献   

3.
This study aimed to investigate the inhibitory mechanism of root growth and to compare antioxidative responses in two wheat cultivars, drought-tolerant Ningchun and drought-sensitive Xihan, exposed to different NaCl concentrations. Ningchun exhibited lower germination rate, seedling growth, and lipid peroxidation than Xihan when exposed to salinity. The loss of cell viability was correlated with the inhibition of root growth induced by NaCl stress. Moreover, treatments with H2O2 scavenger dimethylthiourea and catalase (CAT) partly blocked salinity-induced negative effects on root growth and cell viability. Besides, the enhancement of superoxide radical and H2O2 levels, and the stimulation of CAT and diamine oxidase (DAO) as well as the inhibition of glutathione reductase (GR) were observed in two wheat roots treated with salinity. However, hydroxyl radical content increased only in Xihan roots under NaCl treatment, and the changes of soluble peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and cell-wall-bound POD activities were different in drought-tolerant Ningchun and drought-sensitive Xihan exposed to different NaCl concentrations. In conclusion, salinity might induce the loss of cell viability via a pathway associated with extracellular H2O2 generation, which was the primary reason leading to the inhibition of root growth in two wheat cultivars. Here, it was also suggested that increased H2O2 accumulation in the roots of drought-tolerant Ningchun might be due to decreased POD and GR activities as well as enhanced cell-wall-bound POD and DAO ones, while the inhibition of APX and GR as well as the stimulation of SOD and DAO was responsible for the elevation of H2O2 level in drought-sensitive Xihan roots.  相似文献   

4.
Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. ciceris (Foc) is the main soil-borne disease limiting chickpea production. Management of this disease is achieved mainly by the use of resistant cultivars. However, co-infection of a Foc-resistant plant by the fungus and the root-knot nematode Meloidogyne artiellia (Ma) causes breakdown of the resistance and thus limits its efficacy in the control of Fusarium wilt. In this work we aimed to reveal key aspects of chickpea:Foc:Ma interactions, studying fungal- and nematode-induced changes in root proteins, using chickpea lines 'CA 336.14.3.0' and 'ICC 14216K' that show similar resistant (Foc race 5) and susceptible (Ma) responses to either pathogen alone but a differential response after co-infection with both pathogens. 'CA 336.14.3.0' and 'ICC 14216K' chickpea plants were challenged with Foc race 5 and Ma, either in single or in combined inoculations, and the root proteomes were analyzed by two-dimensional gel electrophoresis using three biological replicates. Pairwise comparisons of treatments indicated that 47 protein spots in 'CA 336.14.3.0' and 31 protein spots in 'ICC 14216K' underwent significant changes in intensity. The responsive protein spots tentatively identified by MALDI TOF-TOF MS (27 spots for 'CA 336.14.3.0' and 15 spots for 'ICC 14216K') indicated that same biological functions were involved in the responses of either chickpea line to Foc race 5 and Ma, although common as well as line-specific responsive proteins were found within the different biological functions. To the best of our knowledge, this is the first study at the root proteome level of chickpea response to a biotic stress imposed by single and joint infections by two major soil-borne pathogens.  相似文献   

5.
以‘卫士’为砧木,以‘赤峰特选’为接穂进行嫁接,在光照培养箱内对辣椒自根苗(对照)和嫁接苗进行低温 (8 ℃/5 ℃) 弱光(100 μmol·m-2·s-1)处理,处理7 d后在正常条件(25 ℃/18 ℃,550~600 μmol·m-2·s-1)下恢复3 d,研究低温弱光下辣椒嫁接苗和自根苗电解质渗漏率(EL)、丙二醛(MDA)含量、抗氧化酶活性及根系活力的变化.结果表明:低温弱光胁迫初期,辣椒幼苗叶片与根系的EL、MDA含量和超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)活性均显著升高,而根系活力大幅降低;1~3 d后EL和MDA含量趋于平稳,SOD、POD、APX、GR活性逐渐降低,根系活力呈上升趋势.恢复3 d后,嫁接苗EL、MDA含量、抗氧化酶活性及根系活力多达到或超过胁迫前水平(根系的MDA含量较胁迫前略高);而自根苗的EL和MDA含量仍显著高于胁迫前.与自根苗相比,嫁接苗在各处理阶段的EL和MDA含量显著降低,而SOD、POD、APX、GR活性及根系活力明显升高,说明嫁接可有效降低辣椒植株的膜脂过氧化,减轻低温弱光对其细胞膜的伤害.  相似文献   

6.
Hydrogen peroxide generation rates of uninfected and infected leaves of two tomato (Lycopersicon esculentum) cultivars showing differential susceptibility to Botrytis cinerea were determined. The superoxide anion, hydroxyl radical, ascorbate contents and changes in NADH peroxidase, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities in the apoplast fraction were analysed. Infected leaves had an increased hydrogen peroxide level. It was greater and generally occurred earlier in plants of the less susceptible cv. Perkoz than in those of the more susceptible cv. Corindo. Induction of nitrotetrazolium blue reducing activity and SOD levels in apoplast were higher in cv. Perkoz 24 h after inoculation. In the controls, NADH peroxidase activity in apoplast was higher in the more susceptible cv. Corindo, but after infection it increased faster and to a higher level in the less susceptible cv. Perkoz. NADH oxidation was inhibited by only 15% by a specific inhibitor DPI (diphenylene‐iodonium) but was completely inhibited by KCN and NaN3. Similar increases in APX activity after 48 h and a small increase in catalase activities were observed in both cultivars soon after infection. These results indicate that resistance of tomato plants to infection by the necrotrophic fungus B. cinerea may result from early stimulation of hydrogen peroxide and superoxide radical generations by NADH peroxidase and SOD in apoplastic space, and they confirm the important role of their enhanced production in apoplastic spaces of plants.  相似文献   

7.
This work describes, for the first time, the changes taking place in the antioxidative system of the leaf apoplast in response to plum pox virus (PPV) in different Prunus species showing different susceptibilities to PPV. The presence of p-hydroxymercuribenzoic acid (pHMB)-sensitive ascorbate peroxidase (APX) (class I APX) and pHMB-insensitive APX (class III APX), superoxide dismutase (SOD), peroxidase (POX), NADH-POX, and polyphenoloxidase (PPO) was described in the apoplast from both peach and apricot leaves. PPV infection produced different changes in the antioxidant system of the leaf apoplast from the Prunus species, depending on their susceptibility to the virus. In leaves of the very susceptible peach cultivar GF305, PPV brought about an increase in class I APX, POX, NADH-POX, and PPO activities. In the susceptible apricot cultivar Real Fino, PPV infection produced a decrease in apoplastic POX and SOD activities, whereas a strong increase in PPO was observed. However, in the resistant apricot cultivar Stark Early Orange, a rise in class I APX as well as a strong increase in POX and SOD activities was noticed in the apoplastic compartment. Long-term PPV infection produced an oxidative stress in the apoplastic space from apricot and peach plants, as observed by the increase in H2O2 contents in this compartment. However, this increase was much higher in the PPV-susceptible plants than in the resistant apricot cultivar. Only in the PPV-susceptible apricot and peach plants was the increase in apoplastic H2O2 levels accompanied by an increase in electrolyte leakage. No changes in the electrolyte leakage were observed in the PPV-inoculated resistant apricot leaves, although a 42% increase in the apoplastic H2O2 levels was produced. Two-dimensional electrophoresis analyses revealed that the majority of the polypeptides in the apoplastic fluid had isoelectric points in the range of pI 4-6. The identification of proteins using MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) and peptide mass fingerprinting analyses showed the induction of a thaumatin-like protein as well as the decrease of mandelonitrile lyase in peach apoplast due to PPV infection. However, most of the selected polypeptides showed no homology with known proteins. This fact emphasizes that, at least in Prunus, most of the functions of the apoplastic space remain unknown. It is concluded that long-term PPV infection produced an oxidative stress in the leaf apoplast, contributing to the deleterious effects produced by PPV infection in leaves of inoculated, susceptible Prunus plants.  相似文献   

8.
Recent evidence has indicated that activated oxygen species (AOS) may function as molecular signals in the induction of defence genes. In the present work, the response of antioxidative enzymes to the plum pox virus (PPV) was examined in two apricot (Prunus armeniaca L.) cultivars, which behaved differently against PPV infection. In the inoculated resistant cultivar (Goldrich), a decrease in catalase (CAT) as well as an increase in total superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were observed. Ascorbate peroxidase (APX), glutathione reductase (GR) and monodehydroascorbate reductase (MDHAR) did not change significantly in relation to non-inoculated (control) plants. In the susceptible cultivar (Real Fino), inoculation with PPV brought about a decrease in CAT, SOD and GR, whereas a rise in APX, MDHAR and DHAR activities was found in comparison to non-inoculated (control) plants. Apricot leaves contain only CuZn-SOD isozymes, which responded differently to PPV depending on the cultivar. Goldrich leaves contained 6 SODs and both SOD 1 and SOD 2 increased in the inoculated plants. In leaves from Real Fino, 5 SODs were detected and only SOD 5 was increased in inoculated plants. The different behaviour of SODs (H2O2-generating enzymes) and APX (an H2O2-remover enzyme) in both cultivars suggests an important role for H2O2 in the response to PPV of the resistant cultivar, in which no change in APX activity was observed. This result also points to further studies in order to determine if an alternative H2O2-scavenging mechanism takes place in the resistant apricot cultivar exposed to PPV. On the other hand, the ability of the inoculated resistant cultivar to induce SOD 1 and SOD 2 as well as the important increase of DHAR seems to suggest a relationship between these activities and resistance to PPV. This is the first report about the effect of PPV infection on the antioxidative enzymes of apricot plants. It opens the way for the further studies, which are necessary for a better understanding of the role of antioxidative processes in viral infection by PPV in apricot plants.  相似文献   

9.
Antioxidant enzymes are related to the resistance to various abiotic stresses including salinity. Barley is relatively tolerant to saline stress among crop plants, but little information is available on barley antioxidant enzymes under salinity stress. We investigated temporal and spatial responses of activities and isoform profiles of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), non-specific peroxidase (POX), and glutathione reductase (GR) to saline stress in barley seedlings treated with 200 mM NaCl for 0, 1, 2, 5 days, respectively. In the control plant, hydrogen peroxide content was about 2-fold higher in the root than in the shoot. Under saline stress, hydrogen peroxide content was decreased drastically by 70% at 2 d after NaCl treatment (DAT) in the root. In the leaf, however, the content was remained unchanged by 2 DAT and increased about 14 % at 5 DAT. In general, the activities of antioxidant enzymes were increased in the root and shoot under saline stress. But the increase was more significant and consistent in the root. The activities of SOD, CAT, APX, POX, and GR were increased significantly in the root within 1 DAT, and various elevated levels were maintained by 5 DAT. Among the antioxidant enzymes, CAT activity was increased the most drastically. The significant increase in the activities of SOD, CAT, APX, POX, and GR in the NaCl-stressed barley root was highly correlated with the increased expression of the constitutive isoforms as well as the induced ones. The hydrogen peroxide content in the root.  相似文献   

10.
Molecular changes elicited by plants in response to fungal attack and how this affects plant–pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label‐free proteomics and NMR‐based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis‐related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea–Foc interactions.  相似文献   

11.
This study investigated oxidative stress and the antioxidant response to boron (B) of chickpea cultivars differing in their tolerance to drought. Three‐week‐old chickpea seedlings were subjected to 0.05 (control), 1.6 or 6.4 mm B in the form of boric acid (H3BO3) for 7 days. At the end of the treatment period, shoot length, dry weight, chlorophyll fluorescence, B concentration, malondialdehyte content and the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were measured. The 1.6 mm B treatment did not cause significant changes in shoot length of cultivars, although shoot length increased in the drought‐tolerant Gökce and decreased in the drought‐sensitive Küsmen after 6.4 mm B treatment. Dry weights of both cultivars decreased with 6.4 mm B treatment. Chlorophyll fluorescence (Fv/Fm) did not change in Gökce at either B level. Nor did it change in Küsmen with 1.6 mm B but Fv/Fm decreased with 6.4 mm B. Boron concentration in the shoots of both cultivars increased significantly with increasing levels of applied B. Significant increases in total SOD activity were observed in shoots of both cultivars given 1.6 and 6.4 mm B. Shoot extracts exhibited five activity bands, two of which were identified as MnSOD and Cu/ZnSOD. In comparison to the control group, all enzyme activities (except APX and SOD) decreased with 1.6 mm B stress. GR activity decreased, while activities of CAT, POX and APX did not change with 6.4 mm B in Küsmen. On the other hand, activities of CAT, APX and SOD increased in Gökce at both B levels. In addition, lipid peroxidation was higher in Küsmen than in Gökce, indicating more damage by B to membrane lipids in the former cultivar. These results suggest that (i) Gökce is tolerant and Küsmen is sensitive to B, and (ii) B tolerance of Gökce might be closely related to increased capacity of the antioxidative system (total SOD, CAT and APX) to scavenge reactive oxygen species and thus suppress lipid peroxidation under B stress. To the best of our knowledge, this is the first report on the antioxidant response of chickpea seedlings to B toxicity.  相似文献   

12.
The activities of the ascorbate-glutathione cycle enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) and SOD were studied in cell organelles of the cultivated tomato Lycopersicon esculentum (M82) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa). All four enzymes of the ascorbate-glutathione cycle were present in chloroplasts/plastids, mitochondria and peroxisomes of leaf and root cells of both tomato species. In all leaf and root organelles of both species, the activity of MDHAR was similar to, or higher than, that of APX, while the activity of DHAR was one order of magnitude lower than that of MDHAR. Based on these results, it is suggested that in the organelles of both tomato species, ascorbate is regenerated mainly by MDHAR. In both tomato species, GR activity, and to a lesser extent DHAR activity, was found to reside in the soluble fraction of all leaf and root cell organelles, while APX and MDHAR activities were distributed between the membrane and soluble fractions. A higher SOD to APX activity ratio in all Lpa organelles was the major difference between the two tomato species. It is possible that this higher ratio contributes to the inherently better protection of Lpa from salt stress, as was previously reported.  相似文献   

13.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

14.
Effect of high temperature stress on polyamine catabolism and antioxidant enzyme activity in relation to glutathione, ascorbate and proline accumulation was studied in five wheat (Triticum aestivum L.) genotypes (differently susceptible to temperature stress). High temperature significantly increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glutathione S-transferase (GST) in shoots of all genotypes. Higher activities of GPX in C 306, C 273 and APX in PBW 550, PBW 343 and PBW 534 demonstrate their important role in scavenging H2O2. Conversely, high temperature stress led to a significant decline in SOD, CAT, APX and GPX activities of roots with a subsequent increase in diamine oxidase (DAO) and polyamine oxidase (PAO) activities especially in PBW 550 and PBW 343. The concentration of ascorbic acid declined with the imposition of heat stress, however, polyamines responded to high temperature stress by increasing spermidine and spermine levels and decreasing putrescine levels. After exposure to high temperature, proline accumulation was significantly decreased in roots and increased in shoots though maximum concentration was achieved in C 306 genotype. Apparently, the wheat seedlings respond to high temperature mediated increase in reactive oxygen species (ROS) production by altering antioxidative defense mechanism and polyamine catabolism though differentially in five wheat genotypes. Among five genotypes studied, C 306 and C 273 seem to be better protected against temperature stress. The results suggested that shoots were more resistant against the destructive effects of ROS as is indicated by low levels of thiobarbituric acid reactive substances under high temperature stress.  相似文献   

15.
16.
The present study was conducted to evaluate the effect of NaCl on growth and some key antioxidants in chickpea. Eight genotypes of chickpea were grown hydroponically for 15 days and then treated with different concentrations of salt [0 mM (T0), 25 mM (T1), 50 mM (T2), 75 mM (T3), and 100 mM (T4)]. Salinity showed marked changes in growth parameters (fresh and dry weight of root and shoot). The level of lipid peroxidation was measured by estimating malondialdehyde content. Lipid peroxidation increases with the increase in NaCl concentration in all genotypes but salt-tolerant genotypes (SKUA-06 and SKUA-07) were least affected as compared to other genotypes. The chlorophyll content was also affected with elevated levels of NaCl. Increased concentration of salt increased the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase in all chickpea genotypes but maximum activity was observed in salt-tolerant (SKUA-06 and SKUA-07) genotypes. Two genotypes of salt-tolerant and salt-sensitive varieties were analyzed further by real time PCR which revealed that the expression of SOD, APX and CAT genes were increased by NaCl in the salt-tolerant variety. The enhancement in tolerance against salt stress indicates that the genes involved in the antioxidative process are triggered by oxidative stress induced by environmental change. The results indicate that NaCl-induced oxidative stress hampers the normal functioning of the cell. The efficient antioxidants play a great role in mitigating the effect of NaCl stress in chickpea. This screening of NaCl-tolerant genotypes of chickpea can be performed on salt-affected land.  相似文献   

17.
Interaction of Meloidogyne javanica and Fusarium oxysporum f. sp. ciceri was studied on Fusarium wilt-susceptible (JG 62 and K 850) and resistant (JG 74 and Avrodhi) chickpea cultivars. In greenhouse experiments, inoculation of M. javanica juveniles prior to F. oxysporum f. sp. ciceri caused greater wilt incidence in susceptible cultivars and induced vascular discoloration in roots of resistant cultivars. Nematode reproduction was greatest (P = 0.05) at 25 °C. Number of galls and percentage of root area galled increased when the temperature was increased from 15 °C to 25 °C. Wilt incidence was greater at 20 °C than at 25 °C. Chlorosis of leaves and vascular discoloration of plants did not occur at 15 °C. The nematode enhanced the wilt incidence in wilt-susceptible cultivars only at 25 °C. Interaction between the two pathogens on shoot and root weights was significant only at 20 °C, and F. o. ciceri suppressed the nematode density at this temperature. Wilt incidence was greater in clayey (48% clay) than in loamy sand (85% sand) soils. The nematode caused greater plant damage on loamy sand than on clayey soil. Fusarium wilt resistance in Avrodhi and JG 74 was stable in the presence of M. javanica across temperatures and soil types.  相似文献   

18.
Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars.  相似文献   

19.
The present investigation was undertaken to identify the possible mode of mechanism that could provide tolerance to maize (Zea mays L.) seedlings under waterlogging. Using cup method, a number of maize genotypes were screened on the basis of survival of the seedlings kept under waterlogging. Two tolerant (LM5 and Parkash) and three susceptible (PMH2, JH3459 and LM14) genotypes were selected for the present study. Activities of antioxidant and ethanolic fermentation enzymes and content of hydrogen peroxide (H2O2), glutathione and ascorbic acid were determined in roots of these genotypes after 72 h of waterlogging. Waterlogging treatment caused decline in activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in all the genotypes. However, only susceptible genotypes showed slight increase in glutathione reductase (GR) activity. Significant reduction in APX/GR ratio in susceptible genotypes might be the cause of their susceptibility to waterlogging. The tolerant seedlings had higher GR activity than susceptible genotypes under unstressed conditions. Stress led to decrease in H202 and increase in glutathione content of both tolerant and susceptible genotypes, but only tolerant genotypes exhibited increase in ascorbic acid under waterlogging conditions. In the tolerant genotypes, all the enzymes of anaerobic metabolism viz. alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and pyruvate decarboxylase (PDC) were upregulated under waterlogging, whereas in susceptible genotypes, only ADH was upregulated, suggesting that efficient upregulation of entire anaerobic metabolic machinery is essential for providing tolerance against waterlogging. The study provides a possible mechanism for waterlogging tolerance in maize.  相似文献   

20.
Injection of Red Mexican bean leaves with Pseudomonas phascolicolaRace 2 (compatible, 18 h before P. mors-prunorum or P. phaseolicolaRace 1 (incompatible), or simultaneous inoculation with compatibleand incompatible bacteria (3:1) greatly delayed the appearanceof hypersensitive responses. When compatible bacteria were inoculated12 h or less before incompatible bacteria, or when the ratioof these bacteria was 1:1 or 0.3:1 in simultaneous inoculation,hypersensitive responses did develop. Earlier inoculation withincompatible bacteria delayed the appearance and severity ofdisease symptoms following later inoculation with compatiblebacteria. When selected areas of leaves were inoculated with compatiblebacteria, effects on hypersensitive responses were confinedto these areas when the whole leaf was inoculated later withincompatible bacteria. Inoculation through the upper leaf surfacewith incompatible bacteria did not affect susceptible responseswhen compatible bacteria were inoculated 24 h later throughthe lower surface. Treatment of leaves with heat-killed bacteria or live bacteriain numbers insufficient to cause hypersensitive responses didnot prevent development of these responses following later inoculationwith incompatible bacteria. Use of heat-killed bacteria didsuppress hypersensitive responses in tobacco leaves. Injectionof leaves with cycloheximide (20 p.p.m.) 30 min before inoculationwith incompatible bacteria suppressed leakage of electrolytesand browning of tissues associated with hypersensitive responses.Cycloheximide had little effect on leakage of electrolytes fromleaves inoculated with compatible bacteria or with the developmentof susceptible responses. Exposure of leaves to chloroform vapourdelayed hypersensitive responses by 24 h; treatment with peroxidasehad no effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号