首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The population density and demography of five species of arctic Collembola were studied in a naturally patchy habitat, consisting of Carex ursinae tussocks with varying degrees of isolation. Focal predictor variables were those describing the spatial configuration of tussocks, including tussock size and isolation and the amount of habitat (cover) at a 1-m2 scale surrounding each tussock population. The Collembola populations were heavily influenced by environmental stochasticity in the form of winter mortality and summer drought, and the influence of patchiness on population characteristics was evaluated in this context. The five species showed very different responses to the structuring effect of the habitat, depending on life history characteristics, mobility and habitat requirements. Population density was highly variable in both time and space. Spring densities indicated larger winter mortality compared to observations from a previous study, and the snow- and ice-free season from June to August only resulted in population growth for Folsomia sexoculata. In the other species, adult mortality must have been high as there was no net population growth despite observed reproduction. The exception was Hypogastrura viatica, whose population decline was more likely to have been the result of migration out of the study area. Cover was the most important variable explaining density. No pure area or isolation effects at the tussock level were detected, even in areas with very low habitat cover. Drought was probably an important mortality factor, as July was particularly warm and dry. Due to qualitative differences in the tussocks and the matrix substrate, desiccation risk would be higher during dispersal between tussocks. We suggest that increased dispersal mortality gave the observed pattern of increased density in relation to cover, both in general and in F. quadrioculata, an opportunistic species otherwise known for rapid population growth. Onychiurus groenlandicus, which had a similar density response to cover, may also be influenced by a rescue effect sustaining densities in areas with high cover. The cover effect can be viewed as a large-scale factor which encompasses the general spatial neighbourhood of each tussock, where inter-population processes are important, as opposed to internal patch dynamics. Received: 15 March 1999 / Accepted: 22 March 2000  相似文献   

2.
We employed an experimental model system to investigate the mechanisms underlying patterns of patch occupancy and population density in a high arctic assemblage of Collembola species inhabiting a sedge tussock landscape on Svalbard. The replicate model systems consisted of 5 cores of the tussocks (habitat patches) imbedded in a barren matrix. Four of the patches were open so that animals could migrate between them, while there was one closed patch per system to test the effect of migration on extinction rate. There were model systems of two types: one with long and one with short inter‐patch distances to test the effect of patch isolation on colonisation and extinction rates. Each of the four most common collembolan species at the field site were introduced to two open patches per system (source patches), with the other two functioning as colonisation patches for the species. The experiment was run in an ecotrone over three identical, simulated arctic summers separated by winters of 3 weeks. Six replicates of systems with short and long inter‐patch distances were sampled at the end of each summer. The species varied markedly in their performance in both open arenas and closed patches, indicating differential responses to patch humidity, consistent with their differential distribution along the moisture gradient in the field site. The extinction – colonisation dynamics differed markedly between species as predicted from our field studies. This could partly be ascribed to differential dispersal and colonisation ability, but also to different tolerance to spatially variable patch quality and/or tendency for aggregative behaviour. Three of the species exhibited dynamics that superficially resemble what could be expected from classical metapopulation dynamics. However, there was a striking discrepancy between what would be expected from the effect of migration on the extinction rate of isolated patches (in particular closed patches) and the observed rates. Thus, metapopulation processes, such as stochastic colonisation and extinction events due to demographic stochasticity, were relatively unimportant compared to other sources of spatial variability among which subtle differences in patch quality are probably most important. We discuss the value of combining field studies with model system experiments, in particular when habitat quality cannot easily be measured in the field. However, our field and laboratory studies also emphasise the need for a thorough knowledge of species‐specific life history traits for making biologically sound interpretations based on both observational and experimental data.  相似文献   

3.
Increasing evidence shows that facilitative interaction and negative plant–soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a ‘ring’ forming sedge dominant in grazed grassland, and the consequences for species coexistence. The structure of aboveground tussocks was described. A Lithium tracer assessed belowground distribution of functional roots. Seed rain and seedling emergence were compared for different positions in relation to Scirpus tussocks. Soil bioassays were used to compare growth on soil taken from inside and outside Scirpus tussocks of four coexisting species (Mentha acquatica, Pulicaria dysenterica, Scirpus holoschoenus and Dittrichia viscosa). We also compared plant performance of dominant plant species inside and outside Scirpus tussocks in the field. The ‘ring’ shaped tussocks of S. holoschoenus were generated by centrifugal rhizome development. Roots were functional and abundant under the tillers and extending outside the tussocks. The large roots mats that were present in the inner tussock zone were almost all dead. Seedling emergence and growth both showed a strong negative feedback of Scirpus in the inner tussock zone. Scirpus clonal development strongly reduced grass biomass. In the degenerated tussock zone, Pulicaria and Mentha mortality was lower, and biomass of individual plants and seed production were higher. This positive indirect interaction could be related to species-specific affinity to soil conditions generated by Scirpus, and interspecific competitive release in the degenerated tussock zone. We conclude that Scirpus negative feedback affects its seedling emergence and growth contributing to the development of the degenerated inner tussock zone. Moreover, this enhances species coexistence through facilitative interaction because the colonization of the inner tussock zone is highly species-specific.  相似文献   

4.
Jonathan M. Levine 《Oikos》2001,95(3):397-408
Although the species pool, dispersal, and local interactions all influence species diversity, their relative importance is debated. I examined their importance in controlling the number of native and exotic plant species occupying tussocks formed by the sedge Carex nudata along a California stream. Of particular interest were the factors underlying a downstream increase in plant diversity and biological invasions. I conducted seed addition experiments and manipulated local diversity and cover to evaluate the degree to which tussocks saturate with species, and to examine the roles of local competitive processes, abiotic factors, and seed supply in controlling the system‐wide patterns.
Seeds of three native and three exotic plants sown onto experimentally assembled tussock communities less successfully established on tussocks with a greater richness of resident plants. Nonetheless, even the most diverse tussocks were somewhat colonized, suggesting that tussocks are not completely saturated with species. Similarly, in an experiment where I sowed seeds onto natural tussocks along the river, colonization increased two‐ to three‐fold when I removed the resident species. Even on intact tussocks, however, seed addition increased diversity, indicating that the tussock assemblages are seed limited. Colonization success on cleared and uncleared tussocks increased downstream from km 0 to km 3 of the study site, but showed no trends from km 3 to km 8. This suggests that while abiotic and biotic features of the tussocks may control the increase in diversity and invasions from km 0 to km 3, similar increases from km 3 to km 8 are more likely explained by potential downstream increases in seed supply. The effective water dispersal of seed mimics and prevailingly downstream winds indicated that dispersal most likely occurs in a downstream direction. These results suggest that resident species diversity, competitive interactions, and seed supply similarly influence the colonization of native and exotic species.  相似文献   

5.
1. The species composition and spatial distribution of small insects (Hemiptera, Coleoptera, Lepidoptera) and arachnids (Araneae, Opiliones, and Pseudoscorpiones) were investigated in three indigenous, upland grasslands identified as the National Vegetation Classification Festuca–Agrostis–Galium typical subcommunity (code U4a), Festuca–Agrostis–Galium, Vaccinium–Deschampsia subcommunity (code U4e), and Nardus stricta species-poor sub-community (code U5a), on which grazing management was manipulated experimentally. 2. Two hypotheses were tested that predicted arthropod diversity in upland grasslands. The habitat heterogeneity hypothesis predicts that the species number and abundance of arthropods will have an asymptotic relationship with increasing numbers of plant species and greater structural heterogeneity in the vegetation. The symbiosis between patches hypothesis states that the species number and abundance of arthropods will express a unimodal relationship with the grain size of sward patches created by grazing. The sward patches must be large enough to be apparent to, and support populations of, arthropods, but small enough that interspersed tussocks provide shelter from weather and a deterrent to disturbance by grazers. 3. The hypotheses were tested by sampling arthropods from the geometrical patterns represented by the individual tussocks and intermediate sward components of three indigenous grasslands produced by different grazing treatments. Paired samples of arthropods were taken by motorized suction sampler, the first of the pair from the grazed sward and the second, the accumulated samples from the surrounding triad of tussocks (U4a and U5a grasslands) or hummocks (U4e grassland). The paired samples were taken from six randomly-selected locations across both replicates of each of the grazing treatments. 4. Arthropod species composition and abundance were compared between the paired sward and tussock samples and in turn with measures of the vertical and horizontal components of vegetation structure, i.e. the variance in vegetation height per unit area and the area covered by tussock compared with sward. 5. There were consistently more species and a greater abundance of arthropods associated with tussocks than with swards and the average species number and abundance for the combined pair of samples declined with increased grazing pressure. The relationship between vertical and horizontal components of vegetation structure and the species number and abundance of selected arthropods was asymptotic as opposed to unimodal, supporting the habitat heterogeneity hypothesis, rather than the symbiosis between patches hypothesis. 6. Small and relatively sedentary insects and arachnids are more sensitive to grazing intensity and species of grazer in these upland, indigenous grasslands than are larger Coleoptera and Araneae, which respond less directly to varied grazing management. The overall linear reduction of small herbivorous and predatory arthropods with increased grazing intensity was buffered in grasslands with substantial tussock patches.  相似文献   

6.
《新西兰生态学杂志》2011,30(3):335-344
This study investigated the effects of different management inputs (fertiliser and seed) and grazing patterns on plant biodiversity in a short tussock grassland with a strong Hieracium pilosella component. Cover abundance of vascular and non-vascular plants and environmental variables were measured in 32 10×10-m plots located in five blocks with different management treatments. Ordination of the floristic data separated the block with the highest management inputs from other blocks. Several adventive species were significantly more abundant in this block, while several native species were either absent or uncommon, but were significantly more abundant in other study blocks. H. pilosella was significantly more abundant in blocks with lower management inputs. Diversity was significantly higher in the block with the highest management inputs. The native tussock Poa colensoi had significantly greater cover abundance while Festuca novae-zelandiae tussocks were significantly taller in this block. Our results suggest that high management inputs reduce the abundance of H. pilosella and diversity of native species, but increase the abundance of other adventive species and the cover and vigour of native tussocks. Our results highlight an interesting management conundrum for short tussock grasslands. No-input management is likely to result in a decline in native biodiversity, as well as production values, as H. pilosella mats deplete soil nutrients and restrict regeneration of native species. However, input of fertiliser and adventive seeds to enhance production values, although resulting in an increase in the vigour and abundance of some native species (mainly tussocks) and a reduction in H. pilosella abundance, will also result in a decline in overall native species richness.  相似文献   

7.
This study tested the hypothesis that habitat structure dictates the distribution and community composition of arboreal arthropods. A diverse arthropod assemblage of Douglas-fir canopies, which included Araneae, Psocoptera, Collembola and Homoptera, was chosen as a model system. Habitat structural diversity, defined as needle density and branching complexity of Douglas-fir branches, was manipulated in a four-month experiment by needle removal, thinning and tying of branches. Abundance of canopy spiders declined significantly following needle density reduction and branch thinning, branch tying significantly increased spider abundance. Distinct habitat utilization patterns were found among individual spider guilds. Orb weavers (Araneidae) dominated spider assemblages in structurally simple habitats, whereas tied branches were colonized primarily by sheet-web weavers (Linyphiidae) and nocturnal hunting spiders (Anyphaenidae and Clubionidae). Spider species richness and average body size of several spider species increased in structurally more complex habitats. Arboreal spiders appeared to be limited by strong bottom-up effects in the form of habitat quality and, to a lesser degree, prey availability. Habitat manipulations did not affect densities or biomass of flying arthropod colonists in the branch vicinity. Needle removal and branch thinning led to a significant decline in the abundance of Psocoptera and Collembola. Tying of branches resulted in an eight-fold increase in Collembola numbers, organisms most sensitive to habitat alterations. Canopy habitat structure modified vertical dispersal of Collembola from forest litter, which may have significant implications for arboreal consumers. Our results lend strong support to the importance of habitat structural diversity in explaining general patterns of arthropod abundance and diversity on plants.  相似文献   

8.
Although the tussock growth form of caespitose graminoids is widespread, the effect of this growth form on light interception and carbon gain of tillers has received little attention. Daily incident photosynthetic photon flux density (PFDinc) and carbon gain in monospecific stands of tussock grasses were compared with those of a hypothetical distribution with the equivalent tiller density per total ground area, but evenly distributed rather than clumped in tussocks. This was computed for two tussock grasses Pseudoroegneria spicata (Pursh) A. Löve (bluebunch wheatgrass) and Agropyron desertorum (Fisch, ex Link) Schult. (creasted wheatgrass) at different plant densities. Daily PFDinc and net photosynthesis (A) were greater if tillers were distributed uniformly rather than clumped in tussocks, except when the density of tussocks was so great as to approach a uniform canopy. When tussock density per ground area was low, much of the difference between tussock and uniform tiller densities in PFDinc and A was due to shading within the tussocks; up to 50–60% of the potential carbon gain was lost in A. desertorum due to shading within tussocks. In a matrix of tussocks, the light field for establishing seedlings was very heterogeneous; potential A ranged from 7 to 96% relative to an isolated seedling. The mean of daily PFDinc and A for seedlings in a tussock stand were nearly identical to the values in corresponding stands of uniform tiller distributions. It is hypothesized that the loss of A resulting from clumping tillers into tussocks is offset by benefits of protecting sequestered belowground resources from invasion by seedlings of competitors.  相似文献   

9.
Titus JH  Tsuyuzaki S 《Mycorrhiza》2002,12(6):271-275
Mycorrhizae occur in most terrestrial ecosystems and are crucial to understanding community structure and function. However, their role in primary succession is poorly understood. This study examined the mycorrhizal colonization of six plant species in relation to microsite types on recent volcanic substrates on the summit of Mt. Koma, Hokkaido, Japan. The six microsites were flat, rill, near rock, Carextussock, Polygonum patch and Salix patch. Carex oxyandra was nonmycorrhizal and Agrostis scabra and Campanula lasiocarpa were arbuscular mycorrhizal (AM) at all microsites examined. Agrostis AM colonization levels did not differ across microsites. Near rock Campanula roots contained significantly more hyphae than at flat and Polygonum patch microsites, and rill and Carex tussock Campanula more arbuscules than at Polygonum patches. Penstemon frutescens was found to be facultatively mycotrophic with AM colonization occurring in roots of Penstemon growing in Carex tussocks, Polygonum patches and near rocks. Polygonum weyrichii was found to be ectomycorrhizal. Polygonum located in rills and in Polygonum and Salix patches were more colonized than Polygonum in Carex patches. Salix reinii was heavily ectomycorrhizal.  相似文献   

10.
A soil arthropod community was studied in a dry evergreen forest over a 3-year period from May 1998 to April 2001. Population abundance, species composition, and community structure were investigated over the 3-year study period. The soil arthropods consisted of Acari (75.38%), Collembola (16.11%), and others (8.51%), and their abundances showed a clear difference between the rainy and dry seasons. Population abundance of Collembola and Acari were low during drought conditions. The humidity was the most important factor determining distribution, abundance, and survival of soil Collembola in this tropical forest. High predation and low accumulation of organic matter caused low population abundance of Collembola in the tropical habitat. The collembolan community was dominated by a few dominant species over the study period. The pattern of seasonal changes in numbers of Collembola was similar over the 3-year study period. The species composition of the collembolan community was constant and persistent throughout a 3-year study period. Thus, the collembolan community showed constancy in its species composition with seasonal variability over the 3-year study period.  相似文献   

11.
The False Ringlet (Coenonympha oedippus) is a European butterfly species, endangered due to the severe loss and fragmentation of its habitat. In Hungary, two remaining populations of the butterfly occur in lowland Purple Moorgrass meadows. We studied a metapopulation occupying twelve habitat patches in Central Hungary. Our aim was to reveal what measures of habitat quality affect population size and density of this metapopulation, estimate dispersal parameters and describe phenology of subpopulations. Local population sizes and dispersal parameters were estimated from an extensive mark–release–recapture dataset, while habitat quality was characterized by groundwater level, cover of grass tussocks, bush cover, height of vegetation and grass litter at each habitat patch. The estimated size of the metapopulation was more than 3,000 individuals. We estimated a low dispersal capacity, especially for females, indicating a very low probability of (re)colonization. Butterfly abundance and density in local populations increased with higher grass litter, lower groundwater level and larger area covered by tussocks. We suppose that these environmental factors affect butterfly abundance by determining the microclimatic conditions for both larvae and adult butterflies. Our results suggest that the long-term preservation of the studied metapopulation needs the maintenance of high quality habitat patches by appropriate mowing regime and water regulation. Management also should facilitate dispersal to strengthen metapopulation structure with creating stepping-stones or gradually increase habitat quality in present matrix.  相似文献   

12.
ABSTRACT. 1. A comparative study was performed on growth, reproduction and mortality of three species of marine littoral Collembola: the grassland species, Isotoma viridis (Bourlet), the littoral Hypogastrura viatica (Tullberg) and the intertidal Anurida maritima (Guérin), at different salinities.
2. I. viridis and H. viatica both occur in salt marshes that are only inundated by seawater at very high tides. The first species lives in the higher less saline area and the second in the lower area, where during summer brackish and even hypersaline conditions may occur. The intertidal A.maritima is mainly found at salinities similar to the local seawater.
3. I.viridis and H.viatica both show maximal growth and reproduction and a very low mortality at low salinities, but the latter species is better adapted to higher salinities. A difference between A.maritima and the other two species is that A.maritima is unable to survive freshwater conditions; rather it has an ecological optimum at salinities similar to seawater.
4. A salt-marsh population of I.viridis showed a better survival and a slightly better growth at saline conditions than an inland population of this species.
5. We suggest that H.viatica , living in a very unstable environment, can be considered as a typical r-strategist, while A.maritima , living in a predictable habitat, is more a K-strategist.  相似文献   

13.
Questions : How do species diversity, frequency and composition in tussocks differ from those in similar sized plots outside tussocks? Does the extent of the differences depend on community types or environmental conditions? Location : A sub‐alpine grassland in the Swiss National Park. Methods : In each of the two communities (short grass and tall graminoid) differing in species composition, grazing intensity and soil nutrient availability, relevés were made in 40 pairs of small circular plots, with one plot located inside a randomly selected Carex sempervirens tussock and the other outside. Results : We found 92 vascular species, of which 46 had a frequency higher than 5%. Species richness (S), pooled cover, Shannon's diversity (H) and cumulative species number (CS) were higher outside than inside the C. sempervirens tussocks, but evenness (J) was lower. S, H and CS differed more in the tall graminoid community than in the short grass community. However, dissimilarity between the paired relevés inside and outside tussocks did not differ between the two communities. Of the 46 most frequent species, 12 were statistically more and only one less frequent outside than inside the tussocks. Vegetation inside and outside tussocks could be clearly distinguished in the ordination space. Conclusion : Vegetation inside C. sempervirens tussocks is different from that in the surrounding area and represents an impoverished but homogenized version of the surrounding vegetation. Although tussocks of C. sempervirens were systematically avoided by grazers, there is little evidence that tussocks facilitate the species growing inside them.  相似文献   

14.
The species–area relationship (SAR) has been extensively studied in a wide range of plant communities, but very few studies have directly addressed how plant communities affect the SAR and what are the underlying mechanisms. Many graminoids form distinct tussocks where many other plant species grow, but no study has investigated whether the SAR holds true for the vegetation on tussocks. In four plant communities on an abandoned subalpine pasture in the Swiss National Park, we made releves on 600 tussocks of Carex sempervirens and measured tussock basal area and other tussock traits. In all four communities, species richness on C. sempervirens tussocks was strongly positively related to tussock basal area (R20.74), while other tussock traits explained very little (R2<0.04). Slope and intercept of the SAR on C. sempervirens tussocks differed significantly among the four communities. This was because plant communities affected richness in smaller tussocks (basal diameter <10 cm) but not that in large tussocks (basal diameter10 cm). We conclude that the SAR holds true for vegetation on C. sempervirens tussocks and changes with plant communities. Changes in the SAR on C. sempervirens tussocks are very likely because smaller tussocks are less independent of the plant communities than the larger ones, regarding disturbance or nutrients.  相似文献   

15.
Growth patterns were investigated for Eriophorum vaginatum tussocks from disturbed and undisturbed tussock tundra at two sites in Alaska. Total basal area of tussocks decreased with increased cryoturbation but mean basal area per tussock did not. Flowering was observed in tussocks of significantly smaller size on disturbed compared to undisturbed tundra. For tussocks with < 10% cover by shrubs and moss, number of tillers per tussock was linearly related to tussock diameter in most disturbed and undisturbed sites. Exceptions occurred in an area that had been bladed with a bulldozer 7 yr before our survey where tiller number increased as the square of diameter and in an area with much frost activity where tiller number was not emulated with diameter. The ratio of daughter tillers to adult tillers decreased with diameter in disturbed tundra, whereas the trend was less pronounced in undisturbed tundra.
Microsuccession in undisturbed tussock tundra was investigated by sampling tussocks with different amounts of shrub and moss cover for number of daughter tillers per adult tiller, weight per tiller, percent nitrogen, and percent phosphorus. Small tussocks without cover by other species and large, partially covered tussocks were not significantly different by any measures, but tussocks that were almost completely buried had significantly (p < 0.05) lower values of tillering index, weight per tiller, and percent phosphorus.  相似文献   

16.
Wood sedge (Carex sylvatica) is a well-known ancient woodland species with a long-term persistent seed bank and a caespitose growth habit. All thirteen isolated Carex sylvatica populations in the Dutch Rhine floodplain (including the river branches Waal and IJssel) were mapped in detail and analysed for genetic variation at a large number of AFLP loci and one microsatellite locus. Across all populations, only 40 % of the sampled individuals (n=216) represented a unique genotype. A high number of the studied patches (spatial clusters of tussocks, 2-10 m in diameter) within populations contained only one or a few genotypes. Identical plants (tussocks) were also found 20-500 m apart and in one case even 1000 m apart. Observed heterozygosity levels (H(O)=0.029) were low, indicating low levels of gene flow, which is in agreement with the selfing nature of other caespitose sedges. Although the number of genotypes in populations is low, these genotypes are genetically very distinct and variation within populations accounted for 55% of the total variation. The absence of a correlation between genetic and geographic distances among populations, and the scattered distribution of genotypes among patches within woodlands, support our hypothesis of rare establishments and subsequent local dispersal within woodlands in this forest floor species, which may benefit from and partly depend on human land use and forest management activities.  相似文献   

17.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Abstract Two successive shrub invasions of a short tussock grassland induced by grazing and burning were examined in montane South Island, New Zealand. The first invasion was by a native shrub, matagouri (Discaria toumatou Raoul). The second invasion was by an exotic shrub, Scotch broom (Cytisus scoparius (L.) Link), which invaded the matagouri shrubland that had developed over the grassland. The invasions were investigated using analysis of spatial patterns of both shrubs and tussocks, and age, growth rates and size structure of the shrubs. Competition between the two shrub species was examined using spatial patterns and comparing allometric relationships. After initial invasion by matagouri of the grasslands, stand density increased by consolidation about its initial colonization points. Current matagouri distribution is often negatively associated with tussocks. Scotch broom occurs most frequently in a dense sward of introduced grasses and occasionally in tussocks in interstices among matagouri shrubs. Despite the palatability of Scotch broom to sheep that graze the site, there was no evidence that the spiny matagouri facilitates invasion by protecting Scotch broom seedlings; rather there was negative association between the shrub species. The two species probably compete for above-ground space. However, diameter and height growth rates of Scotch broom far exceed those of matagouri so Scotch broom is likely to increase in biomass rapidly at the site. The autogenic organization and disturbance history of the resident plant communities have rendered each vulnerable to successive invasions.  相似文献   

19.
Clonal plant species often form genetically diverse populations, even when sexual reproduction in a population is rarely observed. Here we test whether the spatially discrete clusters of plants (tussocks of graminoids) formed within populations of some clonal species can likewise be multiclonal. We sampled leaves of ramets (shoots) within 20 tussocks of the grass Achnatherum splendens in the Otindag Sandland in Inner Mongolia, China, and genotyped the ramets using standard molecular protocols. The 20 tussocks were allocated to three classes: (i) small, circular, (ii) large, circular and (iii) large, irregular. Most tussocks (80%) were multiclonal and some contained at least eight different clones. Irregularly shaped tussocks contained twice as many clones as circular tussocks; neither size nor cover within a tussock affected number of clones per tussock, and the smaller clones in a tussock showed no tendency to occur on the edge or near the center of a tussock. These patterns seem more consistent with formation of multiclonal tussocks by coalescence than by colonization. Therefore, individual tussocks, especially large, irregular ones, cannot a priori be treated as genetic individuals without assessing their genetic information in, e.g., population demography, genetics and evolution studies.  相似文献   

20.
Many plant species grow inside tussocks of some graminoids, but the underlying mechanisms remain unclear. We address whether some species occur and flower mainly inside tussocks so that species diversity and sexual reproduction are higher inside than outside tussocks, and whether relieving biological and physical stress is the mechanism associated with the facilitative process. In a heavily grazed grassland on the eastern Tibetan Plateau, where both physical (due to high altitude) and biological conditions (due to heavy grazing) are extremely harsh, we investigated vegetation in paired plots inside and outside 150 Kobresia tibetica tussocks and measured tussock basal area (=plot area). We also measured temperatures at soil surface, 5 and 10 cm depth and the number of animals (yaks, sheep and horses) grazing inside and outside tussocks. Sixty-seven percent of the species occurred and 42% flowered more frequently inside than outside tussocks, but none less frequently. Inside tussocks 78% species flowered, but outside tussocks only 31% did. Consequently, number of species, number of flowering species and number of inflorescences were all markedly larger inside than outside tussocks. Differences in number of species, number of flowering species and number of inflorescences inside and outside tussocks increased with increasing tussock basal area. Soil temperatures were lower inside than outside tussocks, but grazing intensity was much larger outside tussocks. Therefore, tussocks of K. tibetica facilitated the species inside them likely by grazing prevention, but not by increasing warmth. This study provides evidence that plant species colonizing tussocks of graminoids can be facilitated by the tussock species, and facilitation by grazing prevention may be one mechanism causing the coexistence of the species inside tussocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号