首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator‐mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype.  相似文献   

2.
Abundance and visitation of pollinator assemblages tend to decrease with altitude, leading to an increase in pollen limitation. Thus increased competition for pollinators may generate stronger selection on attractive traits of flowers at high elevations and cause floral adaptive evolution. Few studies have related geographically variable selection from pollinators and intraspecific floral differentiation. We investigated the variation of Trollius ranunculoides flowers and its pollinators along an altitudinal gradient on the eastern Qinghai-Tibet Plateau, and measured phenotypic selection by pollinators on floral traits across populations. The results showed significant decline of visitation rate of bees along altitudinal gradients, while flies was unchanged. When fitness is estimated by the visitation rate rather than the seed number per plant, phenotypic selection on the sepal length and width shows a significant correlation between the selection strength and the altitude, with stronger selection at higher altitudes. However, significant decreases in the sepal length and width of T. ranunculoides along the altitudinal gradient did not correspond to stronger selection of pollinators. In contrast to the pollinator visitation, mean annual precipitation negatively affected the sepal length and width, and contributed more to geographical variation in measured floral traits than the visitation rate of pollinators. Therefore, the sepal size may have been influenced by conflicting selection pressures from biotic and abiotic selective agents. This study supports the hypothesis that lower pollinator availability at high altitude can intensify selection on flower attractive traits, but abiotic selection is preventing a response to selection from pollinators.  相似文献   

3.
Floral traits are hypothesized to evolve primarily in response to selection by pollinators. However, selection can also be mediated by other environmental factors. To understand the relative importance of pollinator‐mediated selection and its variation among trait and pollinator types, we analyzed directional selection gradients on floral traits from experiments that manipulated the environment to identify agents of selection. Pollinator‐mediated selection was stronger than selection by other biotic factors (e.g., herbivores), but similar in strength to selection by abiotic factors (e.g., soil water), providing partial support for the hypothesis that floral traits evolve primarily in response to pollinators. Pollinator‐mediated selection was stronger on pollination efficiency traits than on other trait types, as expected if efficiency traits affect fitness via interactions with pollinators, but other trait types also affect fitness via other environmental factors. In addition to varying among trait types, pollinator‐mediated selection varied among pollinator taxa: selection was stronger when bees, long‐tongued flies, or birds were the primary visitors than when the primary visitors were Lepidoptera or multiple animal taxa. Finally, reducing pollinator access to flowers had a relatively small effect on selection on floral traits, suggesting that anthropogenic declines in pollinator populations would initially have modest effects on floral evolution.  相似文献   

4.
Plant traits that increase pollinator visitation should be under strong selection. However, few studies have demonstrated a causal link between natural variation in attractive traits and natural variation in visitation to whole plants. Here we examine the effects of flower number and size on visitation to wild radish by two taxa of pollinators over 3 years, using a combination of multiple regression and experimental reductions in both traits. We found strong, consistent evidence that increases in both flower number and size cause increased visitation by syrphid flies. The results for small bees were harder to interpret, because the multiple regression and experimental manipulation results did not agree. It is likely that increased flower size causes a weak increase in small-bee visitation, but strong relationships between flower number and small-bee visitation seen in 2 years of observational studies were not corroborated by experimental manipulation of this trait. Small bees may actually have responded to an unmeasured trait correlated with flower number, or lower small-bee abundances when the flower number manipulation was conducted may have reduced our ability to detect a causal relationship. We conclude that studies using only 1 year, one method, or measuring only one trait may not provide an adequate understanding of the effects of plant traits on pollinator attraction.  相似文献   

5.
Plant traits that show little variation across higher taxa are often used as diagnostic traits, but the reason for the stasis of such traits remains unclear. Wild radish, Raphanus raphanistrum, exhibits tetradynamous stamens (four long and two short, producing a dimorphism in anther height within each flower), as do the vast majority of the more than 3,000 species in the Brassicaceae. Here we examine the hypothesis that selection maintains the stasis of dimorphic anther height by investigating the effects of this trait on pollen removal, seed siring success, and seed set in R. raphanistrum using both experimental and observational methods. Observational selection gradient analysis based on lifetime seed siring success provided evidence for an optimum dimorphism that was greater than zero in one of three years. In both experimentally manipulated and unmanipulated flowers, more pollen was removed in single visits from flowers with less dimorphism. There was no significant effect of anther dimorphism on female fitness (seed set). Therefore, there is some evidence to suggest that selection is maintaining anther dimorphism in wild radish, and that higher male fitness might result from restriction of single-visit pollen removal. We discuss these results in light of pollen presentation theory.  相似文献   

6.
为了研究植物生长季内开花时间对花特征表型选择的影响,我们以青藏高原东缘高寒草地的毛茛状金莲花Trollius ranunculoides)为实验材料,在生长季内不同开花时间(花前期、花末期)测定花特征,观察访花昆虫的类群和访花频率,生长季结束后收集种子.根据昆虫访花的喜好和季节内类群与访花频率的变化,分析了不同开花时间毛茛状金莲花的花特征与昆虫的选择;并用种子产量表示雌性适合度,估计了毛茛状金莲花的花特征在不同开花时间所受的表型选择.结果表明:不同花期植物的花特征有显著差异,相应的访花昆虫的类群和频率也存在差异,不同类群昆虫访花喜好也不一样.蜂喜好花瓣和花萼较宽、花茎短和花茎数少的个体,这正符合花前期的特征,因而蜂的访花频率在花前期较高;蝇对花特征没有明显的偏好.而通过雌性适合度估计毛茛状金莲花花特征所受的表型选择则是:花前期,花茎较长和花茎数多的植株适合度大;花末期,花茎数多的植株适合度大.我们的研究表明:在植物生长季,花期的分化伴随着传粉昆虫活动的变化.不同花期,访花昆虫的变化可能对植物花特征的分化起了至关重要的作用.但是访花昆虫对花特征的选择与通过雌性适合度估计植物受到的选择不尽相同,这可能是由于其他因素造成的.  相似文献   

7.
For plants that rely on animals for pollination, the ability to attract the animals to their flowers can be a crucial component of fitness. A large number of studies have documented pollinators to be important selective agents driving the evolution of flower size and correlated traits on a large scale. In this paper, we studied variations of reproductive traits in self-incompatible Trollius ranunculoides (Ranunculaceae) among local habitats at Alpine Meadow. The results showed significant variations of floral size, seed mass per fruit and sex allocation (male/female mass ratio) between different habitats, where floral size and seed mass was not explained fully by variation of plant size among habitats. It suggested that other factors unrelated to plant size might also influence floral variation. However, in our manipulated experiment, it showed no effects of manipulated floral size not only on visit rate of effective pollinators (bees and flies) but also on female success (seed set, seed mass per fruit), irrespective of flower density. Consequently, we could not conclude that the variation of floral size in T. ranunculoides was due to phenotypic plasticity, or natural selection. But if selection occurred, it should not be mediated by pollinators. It was likely that variation of sex allocation between habitats lead to changes of flower or corolla size, because plant invested much less to male function (female-biased sex allocation and larger single seed mass) in shade habitat (bottom of bush) than other exposed habitats, to gain higher fitness. In addition, high-floral density in T. ranunculoides had a negative effect on service of main pollinator (bees) and female success. This situation would influence the strength of selection on floral size.  相似文献   

8.
Plant–pollinator relationships are often mediated by floral traits that advertise the presence or amount of rewards. However, herbivores may also use these traits to find their hosts. In Dalechampia scandens, we tested whether floral advertisements that attract pollinators were also used by seed predators, and whether this generated conflicting selection pressures. We studied the influence of natural variation in the size of showy bracts, amount of reward, and two shape traits on pollinator visitation, pollen arrival on stigmas, seed production and seed predation. We then built a multivariate fitness function for these traits to estimate selection generated by pollinators and seed predators. Blossoms with larger bracts were visited by bees more frequently and received more pollen on their stigmas. Seed predators laid more eggs on blossoms with larger bracts and also on blossoms later producing more seeds. Consequently, selection for larger bract size exerted by pollinators was counteracted by the selection exerted by seed predators. As a result, net selection on bract size tended to be stabilizing. Additionally, we found selection on traits that increased the rate of self‐pollination (assuming uniform seed quality). These results illustrate the importance of both mutualists and antagonists in floral evolution, as well as the value of taking an integrative approach to assessing selection on floral traits.  相似文献   

9.
It has often been suggested that selection on floral traits in hermaphroditic plants should occur primarily through differences in male fitness. However, measurements of selection on floral traits through differences in lifetime male fitness have been lacking. We measured selection on a variety of wild radish floral traits using lifetime male fitness measures derived from genetic paternity analysis. These male fitness estimates were then combined with estimates of lifetime female fitness of the same plants to produce measurements of selection based on lifetime total fitness. Contrary to the prediction above, there was no strong evidence for selection on floral morphology through male fitness differences in any of the three years of the study, but there was strong selection for increased flower size through female fitness differences in one year. The main determinant of both male and female fitness in all years was flower number; this lead to moderately positive correlations between male and female fitness in all three years.  相似文献   

10.
Pollen dispersal success in entomophilous plants is influenced by the amount of pollen produced per flower, the fraction of pollen that is exported to other flowers during a pollinator visit, visitation frequency, and the complementarity between pollen donor and recipients. For bumble bee-pollinated Polemonium viscosum the first three determinants of male function are correlated with morphometric floral traits. Pollen production is positively related to corolla and style length, whereas pollen removal per visit by bumble bee pollinators is a positive function of corolla flare. Larger-flowered plants receive more bumble bee visits than small-flowered individuals. We found no evidence of tradeoffs between pollen export efficiency and per visit accumulation of outcross pollen; each was influenced by unique aspects of flower morphology. Individual queen bumble bees of the principal pollinator species, Bombus kirbyellus, were similar in male, female, and absolute measures of pollination effectiveness. An estimated 2.9% of the pollen that bumble bees removed from flowers during a foraging bout was, on average, deposited on stigmas of compatible recipients. Significant plant-to-plant differences in pollen production, pollen export per visit, and outcross pollen receipt were found for co-occurring individuals of P. viscosum indicating that variation in these fitness related traits can be seen by pollinator-mediated selection.  相似文献   

11.
Plant–pollinator interactions are believed to play a major role in the evolution of floral traits. Flower colour and flower size are important for attracting pollinators, directly influencing reproduction, and thus expected to be under pollinator‐mediated selection. Pollinator‐mediated selection is also proposed to play a role in maintaining flower colour polymorphism within populations. However, pigment concentrations, and thus flower colour, are also under selective pressures independent of pollinators. We quantified phenotypic pollinator‐mediated selection on flower colour and size in two colour polymorphic Iris species. Using female fitness, we estimated phenotypic selection on flower colour and size, and tested for pollinator‐mediated selection by comparing selection gradients between flowers open to natural pollination and supplementary pollinated flowers. In both species, we found evidence for pollen limitation, which set the base for pollinator‐mediated selection. In the colour dimorphic Iris lutescens, while pigment concentration and flower size were found to be under selection, this was independent of pollinators. For the polymorphic Iris pumila, pigment concentration is under selective pressure by pollinators, but only for one colour morph. Our results suggest that pollinators are not the main agents of selection on floral traits in these irises, as opposed to the accepted paradigm on floral evolution. This study provides an opposing example to the largely‐accepted theory that pollinators are the major agent of selection on floral traits.  相似文献   

12.
Pollinator‐mediated selection toward larger and abundant flowers is common in naturally pollen‐limited populations. However, floral antagonists may counteract this effect, maintaining smaller‐ and few‐flowered individuals within populations. We quantified pollinator and antagonist visit rates and determined a multiplicative female fitness component from attacked and non‐attacked flowers of the Brazilian hummingbird‐pollinated shrub Collaea cipoensis to determine the selective effects of pollinators and floral antagonists on flower size and number. We predicted that floral antagonists reduce the female fitness component and thus exert negative selective pressures on flower size and number, counteracting the positive effects of pollinators. Pollinators, mainly hummingbirds, comprised 4% of total floral visitation, whereas antagonist ants and bees accounted for 90% of visitation. Nectar‐robbers involved about 99% of floral antagonist visit rates, whereas florivores comprised the remaining 1%. Larger and abundant flowers increased both pollinator and antagonist visit rates and the female fitness component significantly decreased in flowers attacked by nectar‐robbers and florivores in comparison to non‐attacked flowers. We detected that pollinators favored larger‐ and many‐flowered individuals, whereas floral antagonists exerted negative selection on flower size and number. This study confirms that floral antagonists reduce female plant fitness and this pattern directly exerts negative selective pressures on flower size and number, counteracting pollinator‐mediated selection on floral attractiveness traits.  相似文献   

13.
To explore uncertain aspects of the processes that maintain species boundaries, we evaluated contributions of pre‐ and postpollination reproductive isolation mechanisms in sympatric populations of Arnebia guttata and A. szechenyi. For this, we investigated their phylogenetic relationships, traits, microenvironments, pollinator visits, action of natural selection on floral traits, and the outcome of hand pollination between the two species. Phylogenetic analysis indicates that A. szechenyi is a derived species that could be closely related to A. guttata, and both could be diploid species. Arnebia guttata flowers have larger parts than A. szechenyi flowers, but smaller nectar guides. Soil supporting A. szechenyi had higher water contents than soil supporting neighboring populations of A. guttata (in accordance with their geographical distributions). The pollinators shared by the two species preferred A. szechenyi flowers, but interspecific visitations were frequent. We found evidence of conflicting selection pressures on floral tube length, flower diameter and nectar guide size mediated via male fitness, and on flower diameter and floral tube diameter via female fitness. Hand‐pollination experiments indicate complete pollen incompatibility between the two species. Our results suggest that postpollination prezygotic mechanisms are largely responsible for reproductive isolation of sympatric populations of the two Arnebia species.  相似文献   

14.

Background

There are a number of difficulties associated with the study of adaptation. One is a lack of variation in the trait, which is common in adaptations because past selection has removed unfit variants. This lack of variation makes it difficult to determine the relationship between trait variation and fitness. Another difficulty is proving causation in this trait–fitness relationship, because a correlated trait might be the actual adaptation. These difficulties can be ameliorated at least partially by combining studies of natural variation with studies of experimentally manipulated traits and traits whose variance has been augmented by artificial selection.

Scope

We review here a number of our studies on the adaptive value of two aspects of anther position in wild radish (Raphanus raphanistrum, Brassicaceae): anther exsertion, i.e. the degree to which anthers protrude from the mouth of the corolla tube, and anther height dimorphism, i.e. the difference in lengths of the filaments between the two short and four long stamens. We have used both functional analyses, in which the response variable is pollen removal, and measurements of selection, in which the response variable is lifetime male fitness estimated by molecular genetic paternity analyses. In these studies we use both the natural variation in populations as well as manipulated variation, the latter through both stamen removal and artificial selection, to re-create the ancestral trait conditions.

Conclusions

Our work provides convincing evidence that intermediate anther exsertion values are adaptive, and that this is probably an adaptation to a subset of the pollinator fauna, small bees. The picture for anther height dimorphism is much less clear, as the weight of current evidence suggests that current values of this trait might actually be maladaptive; however, if this is true it is difficult to understand how the dimorphism is maintained across the family Brassicaceae.Key words: Wild radish, Raphanus raphanistrum, adaptation, natural selection, anther position, pollination, pollen removal  相似文献   

15.
Crop-weed hybridization can potentially influence the evolutionary ecology of wild populations. Many crops are known to hybridize with wild relatives, but few studies have looked at the long-term persistence of crop genes in the wild. This study investigated one factor in the hybridization process in radish: differential pollinator visitation to wild radish (Raphanus raphanistrum) vs. crop-wild F1 hybrids (R. sativus x R. raphanistrum). Wild genotypes had yellow flowers, a recessive single-locus trait, whereas hybrids always had white or pale pink flowers. In experimental arrays in northern Michigan, total pollinator visitation was significantly biased toward wild plants when the frequencies of wild and hybrid plants were equal. Syrphid flies, the most frequent visitors, preferred wild plants while bumble bees showed no preference. This pattern was also observed when hybrid plants were overrepresented in the array (12 hybrid:2 wild). In contrast, when hybrid plants were rare (2 hybrid:12 wild), neither morph was preferred by any pollinator group. Later in the summer, pollinators were also observed in a large experimental garden with nearly equal frequencies of wild and hybrid plants. Cabbage butterflies (Pieris rapae) strongly overvisited wild plants, while bumble bees showed a slight preference for hybrids. Taken together, these studies suggest that F1 hybrids may not be at a disadvantage with regard to pollinator visits when they occur at low frequencies or when bumble bees are frequent flower visitors. Thus, variation in the proportion of white-flowered morphs among wild radish populations could be influenced by different histories of crop-to-wild hybridization, as well as by variation in the composition of local pollinator taxa.  相似文献   

16.
Within-individual variation in floral advertising and reward traits is a feature experienced by pollinators that visit different flowers of the same plant. Pollinators can use advertising traits to gather information about the quality and amount of rewards, leading to the evolution of signal–reward correlations. As long as plants differ in the reliability of their signals and pollinators base their foraging decisions on this information, natural selection should act on within-individual correlations between signals and rewards. Because birds and bees differ in their cognitive capabilities, and use different floral traits as signals, we tested the occurrence of adaptive divergence of the within-individual signal–reward correlations among Salvia species that are pollinated either by bees or by hummingbirds. They are expected to use different floral advertising traits: frontal traits in the case of bees and side traits in the case of hummingbirds. We confirmed this expectation as bee- and hummingbird-pollinated species differed in which specific traits are predominantly associated with nectar reward at the within-individual level. Our findings highlight the adaptive value of within-individual variation and covariation patterns, commonly disregarded as ‘environmental noise’, and are consistent with the hypothesis that pollinator-mediated selection affects the correlation pattern among floral traits.  相似文献   

17.
Abstract.— The present study explored phenotypic selection on phenological and morphological reproductive traits in hawkmoth-pollinated Platanthera bifolia (Orchidaceae), a Eurasian perennial herb displaying bisexual, long-spurred flowers. The work was carried out during three flowering seasons (1993–1995) in a Swedish population. Fitness was estimated as the number of pollinia removed (male fitness) and fruits produced (female fitness). Targets and patterns of selection were compared between years and sex functions by the use of multiple linear regression (including correlational selection estimates, i.e., of combination of traits), analysis of covariance, and projection pursuit regression (PPR). Results from the nonparametric surface-fitting-method PPR showed that selection was mostly linear, thus justifying the use of the parametric methods. In all study years, male and female fitness were highest in plants with many flowers. This reflects that flower number sets an upper limit to fitness and that a large inflorescence attracts more pollinators. In 1994, the summer was dry and the average spur length of P. bifolia was shorter than in the other years. In this year, male and female fitness were positively related to spur length, apparently because the spur of short-spurred plants was somewhat too short relative to the tongue length of the local pollinator for optimal pollen export and import. Additionally, the dry weather in 1994 caused a tendency for correlational selection, which was not found in the other years of study. Among small individuals (apparently more sensitive to drought than large ones), early-flowering plants had higher male and female fitness. The results show that patterns of selection may vary both between years and between sex functions in perennial hermaphroditic plants. The present study is one of the first to consider correlational selection in plants, which probably is of common occurrence and deserves to be investigated more.  相似文献   

18.
Trade-offs are crucial in understanding phenotypic evolution of organisms. A main source of trade-offs is conflicting selection, a phenomenon very likely in complex multispecific scenarios in which many potential selective agents coexist. The main goal of this study is to investigate the selective trade-offs arising due to conflicting selection on female-fitness components in Erysimum mediohispanicum. I quantified the selection exerted on 10 plant traits by a mutualistic (pollinators) and antagonistic (gall-makers, predispersal and postdispersal seed predators, mammalian herbivores) multispecific assemblage acting sequentially throughout eight selective episodes of the plant, from floral bud to juvenile production. Variation in lifetime female fitness (quantified as number of juveniles) was related mostly to variation in number of flowers, fruit initiation, and seedling establishment. The direction of selection changed among different selective episode for many traits. Most importantly, conflicting selection was frequent in the study system, with half of the phenotypic traits experiencing opposing selection in different selective episodes. Selection at individual life-cycle stages diverged remarkably from selection based on total fitness. Consequently, the evolution of many traits is determined by the relative importance of each episode of selection, with conflicting selection inevitably yielding evolutionary compromises.  相似文献   

19.
Plants might be under selection for both attracting efficient pollinators and deterring wasteful visitors. Particular floral traits can act as exploitation barriers by discouraging the unwelcome visitors. In the genus Penstemon, evolutionary shifts from insect pollination to more efficient hummingbird pollination have occurred repeatedly, resulting in the convergent evolution of floral traits commonly present in hummingbird-pollinated flowers. Two of these traits, a reduced or reflexed lower petal lip and a narrow corolla, were found in a previous flight-cage study to affect floral handling time by bumble bees, therefore potentially acting as “anti-bee” traits affecting preference. To test whether these traits do reduce bumble bee visitation in natural populations, we manipulated these two traits in flowers of bee-pollinated Penstemon strictus to resemble hummingbird-adapted close relatives and measured the preferences of free-foraging bees. Constricted corollas strongly deterred bee visitation in general, and particularly reduced visits by small bumble bees, resulting in immediate specialization to larger, longer-tongued bumble bees. Bees were also deterred—albeit less strongly—by lipless flowers. However, we found no evidence that lip removal and corolla constriction interact to further affect bee preference. We conclude that narrow corolla tubes and reduced lips in hummingbird-pollinated penstemons function as exploitation barriers that reduce bee access to nectaries or increase handling time.  相似文献   

20.
Evolution of plant resistance and tolerance to frost damage   总被引:1,自引:0,他引:1  
Plant defence against any type of stress may involve resistance (traits that reduce damage) or tolerance (traits that reduce the negative fitness impacts of damage). These two strategies have been proposed as redundant evolutionary alternatives. A late‐season frost enabled us to estimate natural selection and genetic constraints on the evolution of frost resistance and tolerance in a wild plant species. We employed a genetic selection analysis (which is unbiased by environmental correlations between traits and fitness) on 75 paternal half‐sibling families of annual wild radish [Raphanus raphanistrum (Brassicaceae)]. In an experimental population in southern Ontario, we found strong selection favouring plant resistance to frost, but selection against tolerance to frost. The selection against tolerance may have been caused by a cost of tolerance, as we provide evidence for a negative genetic correlation between tolerance and fitness in the absence of frost damage. Although we found no evidence for the theoretically predicted trade‐off between frost tolerance and resistance among our families, we did detect negative correlational selection acting on the two traits, indicating that natural selection favoured high resistance combined with low tolerance and low resistance coupled with high tolerance, but not high or low levels of both traits together. There were few genetic correlations between the measured traits overall, but frost tolerance was negatively correlated with initial seed mass, and frost resistance was positively correlated with resistance to insect herbivory. Periodic episodes of strong selection such as that caused by the late‐season frost may be disproportionately important in evolution, and are likely becoming more common because of human alterations of the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号