首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the role of MmpL8-mediated lipid transport in sulfatide biogenesis, we insertionally inactivated the mmpL8 gene in Mycobacterium tuberculosis. Characterization of this strain showed that the synthesis of mature sulfolipid SL-1 was interrupted and that a more polar sulfated molecule, termed SL-N, accumulated within the cell. Purification of SL-N and structural analysis identified this molecule as a family of 2,3-diacyl-alpha,alpha'-D-trehalose-2'-sulfates. This structure suggests that transport and biogenesis of SL-1 are coupled and that the final step in sulfatide biosynthesis may be the extra-cellular esterification of two trehalose 6-positions with hydroxyphthioceranic acids. To assess the effect of the loss of this anionic surface lipid on virulence, we infected mice via aerosol with the MmpL8 mutant and found that, although initial replication rates and containment levels were identical, compared with the wild type, a significant attenuation of the MmpL8 mutant strain in time-to-death was observed. Early in infection, differential expression of cytokines and cytokine receptors revealed that the mutant strain less efficiently suppresses key indicators of a Th1-type immune response, suggesting an immunomodulatory role for sulfatides in the pathogenesis of tuberculosis.  相似文献   

2.
Mycobacterium tuberculosis urease (urea amidohydrolase [EC 3.5.1.5]) was purified and shown to contain three subunits: two small subunits, each approximately 11,000 Da, and a large subunit of 62,000 Da. The N-terminal sequences of the three subunits were homologous to those of the A, B, and C subunits, respectively, of other bacterial ureases. M. tuberculosis urease was specific for urea, with a Km of 0.3 mM, and did not hydrolyze thiourea, hydroxyurea, arginine, or asparagine. The enzyme was active over a broad pH range (optimal activity at pH 7.2) and was remarkably stable against heating to 60 degrees C and resistant to denaturation with urea. The enzyme was not inhibited by 1 mM EDTA but was inhibited by N-ethylmaleimide, hydroxyurea, acetohydroxamate, and phenylphosphorodiamidate. Urease activity was readily detectable in M. tuberculosis growing in nitrogen-rich broth, but expression increased 10-fold upon nitrogen deprivation, which is consistent with a role for the enzyme in nitrogen acquisition by the bacterium. The gene cluster encoding urease was shown to have organizational similarities to urease gene clusters of other bacteria. The nucleotide sequence of the M. tuberculosis urease gene cluster revealed open reading frames corresponding to the urease A, B, and C subunits, as well as to the urease accessory molecules F and G.  相似文献   

3.
Qamra R  Prakash P  Aruna B  Hasnain SE  Mande SC 《Biochemistry》2006,45(23):6997-7005
Chorismate mutase catalyzes the first committed step toward the biosynthesis of the aromatic amino acids, phenylalanine and tyrosine. While this biosynthetic pathway exists exclusively in the cell cytoplasm, the Mycobacterium tuberculosis enzyme has been shown to be secreted into the extracellular medium. The secretory nature of the enzyme and its existence in M. tuberculosis as a duplicated gene are suggestive of its role in host-pathogen interactions. We report here the crystal structure of homodimeric chorismate mutase (Rv1885c) from M. tuberculosis determined at 2.15 A resolution. The structure suggests possible gene duplication within each subunit of the dimer (residues 35-119 and 130-199) and reveals an interesting proline-rich region on the protein surface (residues 119-130), which might act as a recognition site for protein-protein interactions. The structure also offers an explanation for its regulation by small ligands, such as tryptophan, a feature previously unknown in the prototypical Escherichia coli chorismate mutase. The tryptophan ligand is found to be sandwiched between the two monomers in a dimer contacting residues 66-68. The active site in the "gene-duplicated" monomer is occupied by a sulfate ion and is located in the first half of the polypeptide, unlike in the Saccharomyces cerevisiae (yeast) enzyme, where it is located in the later half. We hypothesize that the M. tuberculosis chorismate mutase might have a role to play in host-pathogen interactions, making it an important target for designing inhibitor molecules against the deadly pathogen.  相似文献   

4.
The Mycobacterium tuberculosis cell wall is a complex structure essential for the viability of the organism and its interaction with the host. The glycolipid lipoarabinomannan (LAM) plays an important role in mediating host-bacteria interactions and is involved in modulation of the immune response. The arabinosyltransferase EmbC required for LAM biosynthesis is essential. We constructed recombinant strains of M. tuberculosis expressing a variety of alleles of EmbC. We demonstrated that EmbC has a functional signal peptide in M. tuberculosis. Over- or underexpression of EmbC resulted in reduced or increased sensitivity to ethambutol, respectively. The C-terminal domain of EmbC was essential for activity because truncated alleles were unable to mediate LAM production in Mycobacterium smegmatis and were unable to complement an embC deletion in M. tuberculosis. The C-terminal domain of the closely related arabinosyltransferase EmbB was unable to complement the function of the EmbC C-terminal domain. Two functional motifs were identified. The GT-C motif contains two aspartate residues essential for function in the DDX motif. The proline-rich region contains two highly conserved asparagines (Asn-638 and Asn-652). Mutation of these residues was tolerated, but loss of Asn-638 resulted in the synthesis of truncated LAM, which appeared to lack arabinose branching. All embC alleles that were incapable of complementing LAM production in M. smegmatis were not viable in M. tuberculosis, supporting the hypothesis that LAM itself is essential in M. tuberculosis.  相似文献   

5.
Previously we had demonstrated that the termini of the arabinan component of mycobacterial cell wall arabinogalactan, the site of mycolic acid location, consists mostly of clusters of a pentaarabinofuranoside, [beta-D-Araf-(1----2)-alpha-D-Araf-(1----]2----(3 and 5)-alpha-D-Araf. Subsequently, the same arrangement was shown to dominate the non-reducing ends of lipoarabinomannan (LAM), a key component in the interaction of mycobacteria with host cell. Accordingly, we had proposed that mycobacteria universally elaborate the same Araf-containing motifs in two settings for different pathophysiological purposes. However, we now report that the termini of LAM from the virulent, Erdman, strain of Mycobacterium tuberculosis, unlike those from the attenuated H37Ra strain, are extensively capped with mannosyl (Manp) residues, either a single alpha-D-Manp, a dimannoside (alpha-D-Manp-(1----2)-alpha-D-Manp), or a trimannoside (alpha-D-Manp-(1----2)-alpha-D-Manp-(1----2)-alpha-D-Manp ). The use of monoclonal antibodies demonstrates a clear difference in the antigenicity of the basic and mannose-capped LAM. The possibility that these structures are a factor in the virulence of some strains of M. tuberculosis and represent an example of carbohydrate mimicry in mycobacterial infections is discussed.  相似文献   

6.
Molecular Biology Reports - Tuberculosis (TB) remains a prominent health concern worldwide. Besides extensive research and vaccinations available, attempts to control the pandemic are cumbersome...  相似文献   

7.
Peptidoglycan is the major structural component of the Staphylococcus aureus cell wall, in which it maintains cellular integrity, is the interface with the host, and its synthesis is targeted by some of the most crucial antibiotics developed. Despite this importance, and the wealth of data from in vitro studies, we do not understand the structure and dynamics of peptidoglycan during infection. In this study we have developed methods to harvest bacteria from an active infection in order to purify cell walls for biochemical analysis ex vivo. Isolated ex vivo bacterial cells are smaller than those actively growing in vitro, with thickened cell walls and reduced peptidoglycan crosslinking, similar to that of stationary phase cells. These features suggested a role for specific peptidoglycan homeostatic mechanisms in disease. As S. aureus missing penicillin binding protein 4 (PBP4) has reduced peptidoglycan crosslinking in vitro its role during infection was established. Loss of PBP4 resulted in an increased recovery of S. aureus from the livers of infected mice, which coincided with enhanced fitness within murine and human macrophages. Thicker cell walls correlate with reduced activity of peptidoglycan hydrolases. S. aureus has a family of 4 putative glucosaminidases, that are collectively crucial for growth. Loss of the major enzyme SagB, led to attenuation during murine infection and reduced survival in human macrophages. However, loss of the other three enzymes Atl, SagA and ScaH resulted in clustering dependent attenuation, in a zebrafish embryo, but not a murine, model of infection. A combination of pbp4 and sagB deficiencies resulted in a restoration of parental virulence. Our results, demonstrate the importance of appropriate cell wall structure and dynamics during pathogenesis, providing new insight to the mechanisms of disease.  相似文献   

8.
Several human pathogens are to be found within the bacterial genus Mycobacterium, notably Mycobacterium tuberculosis, the causative agent of tuberculosis, one of the most threatening of human infectious diseases, with an annual lethality of about two million people. The characteristic mycobacterial cell envelope is the dominant feature of the biology of M. tuberculosis and other mycobacterial pathogens, based on sugars and lipids of exceptional structure. The cell wall consists of a peptidoglycan-arabinogalactan-mycolic acid complex beyond the plasma membrane. Free-standing lipids, lipoglycans, and proteins intercalate within this complex, complement the mycolic acid monolayer and may also appear in a capsular-like arrangement. The consequences of these structural oddities are an extremely robust and impermeable cell envelope. This review reflects on these entities from the perspective of their synthesis, particularly the structural and functional aspects of the glycosyltransferases (GTs) of M. tuberculosis, the dominating group of enzymes responsible for the terminal stages of their biosynthesis. Besides the many nucleotide-sugar dependent GTs with orthologs in prokaryotes and eukaryotes, M. tuberculosis and related species of the order Actinomycetales, in light of the highly lipophilic environment prevailing within the cell envelope, carry a significant number of GTs of the GT-C class dependent on polyprenyl-phosphate-linked sugars. These are of special emphasis in this review.  相似文献   

9.
The knowledge of the amino acid sequence of both beta-lipotropin (beta-LPH) and gamma-LPH was the starting point that led to the hypothesis, considered revolutionary in 1967, that hormonal precursors exist. This concept was simultaneously proposed for proinsulin and applied later to other polypeptide hormones. The discovery of endorphins brought together two fields of research that were not related: the opiates and the so-called pituitary lipotropic hormones. The demonstration of specific brain opiate receptors led to the hypothesis of the existence of endogenous opiate ligands which could act as neurotransmittors. The isolation of such substances in the brain, first named enkephalins, revealed through their amino acid sequence their structural homology with the pituitary lipolytic hormones. The finding of a more potent opioid substance in the pituitary (beta-endorphin) that comprises the last 31 amino acids of beta-LPH shed a new light on the hypothesis proposed earlier which gave to beta-LPH a role as a precursor molecule. Finally, the addition of ACTH completed a putative multipotent precursor model that has been recently named pro-opiomelanocortin. Pulse-chase experiments have definitely proven that beta-endorphin is a maturation product of a large precursor also containing ACTH and MSH. In other studies, many groups have suggested that endorphins play important roles as possible neuromodulators in pain transmission, in analgesia, in tolerance and dependence, as well as on behavior and endocrine regulations, mainly those related to the hypothalamo-pituitary axes. The elucidation of the biosynthetic process or processes of cerebral endorphins (either enkephalins or beta-endorphin) is of primary importance in order ot understand better their biological as well as regulatory functions. These studies should also be applicable to the biosynthesis of all the other neuronal peptide hormones. It is hoped that they will provide new tools for the study of some important central nervous system functions, such as pain and endocrine control and the physiopathology of behavioral diseases.  相似文献   

10.
Plasmodesmata remain one of the outstanding mysteries in plant biology. In providing conduits for the exchange of small and large, informational molecules they are central to the growth, development and defence of all higher plants. In the past few years, strategies have been devised for the molecular dissection of plasmodesmal composition and function, and we are beginning to see how these enigmatic structures will become to be understood.  相似文献   

11.
A marquee feature of the powerful human pathogen Mycobacterium tuberculosis is its macrophage parasitism. The intracellular survival of this microorganism rests upon its ability to arrest phagolysosome biogenesis, avoid direct cidal mechanisms in macrophages, and block efficient antigen processing and presentation. Mycobacteria prevent Rab conversion on their phagosomes and elaborate glycolipid and protein trafficking toxins that interfere with Rab effectors and regulation of specific organellar biogenesis in mammalian cells. One of the major Rab effectors affected in this process is the type III phosphatidylinositol 3-kinase hVPS34 and its enzymatic product phosphatidylinositol 3-phosphate (PI3P), a regulatory lipid earmarking organellar membranes for specific trafficking events. PI3P is also critical for the process of autophagy, recently recognized as an effector of innate and adaptive immunity. Induction of autophagy by physiological, pharmacological or immunological signals, including the major antituberculosis Th1 cytokine IFN-gamma and its downstream effector p47 GTPase LRG-47, can overcome mycobacterial phagosome maturation block and inhibit intracellular M. tuberculosis survival. This review summarizes the findings centred around the PI3P-nexus where the mycobacterial phagosome maturation block and execution stages of autophagy intersect.  相似文献   

12.
The critical role of embC in Mycobacterium tuberculosis   总被引:1,自引:0,他引:1  
  相似文献   

13.
Mycobacterium tuberculosis (Mtb) virulence is decreased by genetic deletion of the lipoprotein LprG, but the function of LprG remains unclear. We report that LprG expressed in Mtb binds to lipoglycans, such as lipoarabinomannan (LAM), that mediate Mtb immune evasion. Lipoglycan binding to LprG was dependent on both insertion of lipoglycan acyl chains into a hydrophobic pocket on LprG and a novel contribution of lipoglycan polysaccharide components outside of this pocket. An lprG null mutant (Mtb ΔlprG) had lower levels of surface-exposed LAM, revealing a novel role for LprG in determining the distribution of components in the Mtb cell envelope. Furthermore, this mutant failed to inhibit phagosome-lysosome fusion, an immune evasion strategy mediated by LAM. We propose that LprG binding to LAM facilitates its transfer from the plasma membrane into the cell envelope, increasing surface-exposed LAM, enhancing cell envelope integrity, allowing inhibition of phagosome-lysosome fusion and enhancing Mtb survival in macrophages.  相似文献   

14.
核糖体结构存在动态调控,其变化与细菌发育、环境适应等过程密切相关。使用NCBI BLAST比对结核分枝杆菌(Mycobacterium tuberculosis)核糖体蛋白RpsI、RpmI和RpmJ与耻垢分枝杆菌(Mycobacterium smegmatis)相应蛋白的氨基酸序列,发现RpsI N端氨基酸序列存在较大差异。为了探究该N端序列差异对核糖体结构与功能的影响,将表达有结核分枝杆菌rpsI基因(rpsI_Rv)的质粒整合至耻垢分枝杆菌基因组中,并利用同源重组的方法敲除耻垢分枝杆菌rpsI基因,以此构建重组菌株。聚合酶链反应(polymerase chain reaction,PCR)结果表明该重组菌株构建成功。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)显示0.5 mmol/L异丙基-β-D-硫代半乳糖苷(IPTG)于16 ℃可诱导表达RpsI_Rv。用纯化的RpsI_Rv制备特异性多克隆抗体,其效价为 1 600 000。反转录PCR 和蛋白质印迹法(Western blot)显示rpsI_Rv在重组菌株中成功表达。测定重组菌株与空载对照菌株在不同温度下的生长曲线,该重组菌株在不同温度下的生长速率未发生改变。采用通用液体倍比稀释法测定作用于核糖体不同位点的5种抗生素最小抑菌浓度(MIC90),重组菌株对阿米卡星(作用于核糖体小亚基A位点的抗生素)的敏感性升高,提示分枝杆菌RpsI序列差异导致核糖体小亚基A位点附近的结构发生改变,这为分枝杆菌核糖体结构与功能的机制研究提供了数据。  相似文献   

15.
The growth of pathogenic mycobacteria in phagosomes of the host cell correlates with their ability to prevent phagosome maturation. The underlying molecular mechanism remains elusive. In a previous study, we have shown that Mycobacterium avium depletes the phagosome membrane of cell surface-derived glycoconjugates (de Chastellier and Thilo, Eur. J. Cell Biol. 81, 17-25, 2002). We now extended these quantitative observations to the major human pathogen, Mycobacterium tuberculosis (H37Rv). At increasing times after infection of mouse bone marrow-derived macrophages, cell-surface glycoconjugates were labelled enzymatically with [3H]galactose. Subsequent endocytic membrane traffic resulted in a redistribution of this label from the cell surface to endocytic membranes, including phagosomes. The steady-state distribution was measured by quantitative autoradiography at the electron microscope level. Relative to early endosomes, with which phagosomes continued to fuse and rapidly exchange membrane constituents, the phagosome membrane was depleted about 3-fold, starting during infection and in the course of 9 days thereafter. These results were in quantitative agreement with our previous observations for Mycobacterium avium. For the latter case, we now showed by cell fractionation that the depletion was selective, mainly involving glycoproteins in the 110-210 kDa range. Together, these results indicated that pathogenic mycobacteria induced and maintained a bulk change in phagosome membrane composition that could be of special relevance for survival of pathogenic mycobacteria within phagosomes.  相似文献   

16.
A pyrazinamidase (PZase)-deficient pncA mutant of Mycobacterium tuberculosis, constructed by allelic exchange, was used to investigate the effects of heterologous amidase gene expression on the susceptibility of this organism to pyrazinamide (PZA) and related amides. The mutant was highly resistant to PZA (MIC, >2,000 microg/ml), in accordance with the well-established role of pncA in the PZA susceptibility of M. tuberculosis (A. Scorpio and Y. Zhang, Nat. Med. 2:662-667, 1996). Integration of the pzaA gene encoding the major PZase/nicotinamidase from Mycobacterium smegmatis (H. I. M. Boshoff and V. Mizrahi, J. Bacteriol. 180:5809-5814, 1998) or the M. tuberculosis pncA gene into the pncA mutant complemented its PZase/nicotinamidase defect. In both pzaA- and pncA-complemented mutant strains, the PZase activity was detected exclusively in the cytoplasm, suggesting an intracellular localization for PzaA and PncA. The pzaA-complemented strain was hypersensitive to PZA (MIC, /=20 microg/ml) and was also sensitive to benzamide (MIC, 20 microg/ml), unlike the wild-type and pncA-complemented mutant strains, which were highly resistant to this amide (MIC, >500 microg/ml). This finding was consistent with the observation that benzamide is hydrolyzed by PzaA but not by PncA. Overexpression of PzaA also conferred sensitivity to PZA, nicotinamide, and benzamide on M. smegmatis (MIC, 150 microg/ml in all cases) and rendered Escherichia coli hypersensitive for growth at low pH.  相似文献   

17.
18.
19.
CYP130 is one of the 20 Mycobacterium tuberculosis cytochrome P450 enzymes, only two of which, CYP51 and CYP121, have so far been studied as individually expressed proteins. Here we characterize a third heterologously expressed M. tuberculosis cytochrome P450, CYP130, by UV-visible spectroscopy, isothermal titration calorimetry, and x-ray crystallography, including determination of the crystal structures of ligand-free and econazole-bound CYP130 at a resolution of 1.46 and 3.0A(,) respectively. Ligand-free CYP130 crystallizes in an "open" conformation as a monomer, whereas the econazole-bound form crystallizes in a "closed" conformation as a dimer. Conformational changes enabling the "open-closed" transition involve repositioning of the BC-loop and the F and G helices that envelop the inhibitor in the binding site and reshape the protein surface. Crystal structure analysis shows that the portion of the BC-loop relocates as much as 18A between the open and closed conformations. Binding of econazole to CYP130 involves a conformational change and is mediated by both a set of hydrophobic interactions with amino acid residues in the active site and coordination of the heme iron. CYP130 also binds miconazole with virtually the same binding affinity as econazole and clotrimazole and ketoconazole with somewhat lower affinities, which makes it a plausible target for this class of therapeutic drugs. Overall, binding of the azole inhibitors is a sequential two-step, entropy-driven endothermic process. Binding of econazole and clotrimazole exhibits positive cooperativity that may reflect a propensity of CYP130 to associate into a dimeric structure.  相似文献   

20.
A chemically-defined culture medium was developed which supported batch growth of Mycobacterium tuberculosis, strain H37Rv, at a minimum doubling time of 14.7 h. This medium also facilitated chemostat culture of M. tuberculosis at a constant doubling time of 24 h. Chemostat growth was optimized at a dissolved oxygen tension of 20% (v/v) and 0.2% (v/v) Tween-80. Chemostat cultures were dispersed suspensions of single bacilli (1.5-3 microm long), or small aggregates, at a mean density of log10 8.3 cfu ml-1. A limited number of amino acids was utilized (alanine, asparagine, aspartate and serine were depleted by >50%; glycine, arginine, isoleucine, leucine and phenylalanine, by approximately 40%). Chemostat-grown cells were pathogenic in aerosol-infected guinea pigs, producing disseminated infection similar to that caused by plate-grown cells. Cells from chemostat culture were significantly more invasive for J774A.1 mouse macrophages than agar- or batch-grown cells. This study demonstrates the suitability of chemostat culture for the growth of pathogenic mycobacteria in a defined physiological state with potential applications for the controlled production of mycobacterial components for therapeutic and vaccine applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号