共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. Previous studies have shown that interspecific hybridisation is common among taxa from the Daphnia galeata/hyalina/cucullata species complex. We investigated the influence of predator kairomones on the morphology and life histories of nine clones belonging to three taxa (pure D. galeata, F1 hybrids between D. galeata and D. hyalina, and backcrossed D. hyalina) of this species complex. Predators exerting positive (fish) and negative (Chaoborus larvae) size‐selective predation were tested. 2. The most responsive traits were size at maturity and size of neonates. Despite large between‐clone variation, discriminant analysis revealed that the three taxa were distinct from each other in key life‐history traits. F1 hybrids did not react in an intermediate way compared to the other taxa: the multivariate distances between F1 hybrids and either taxon were larger than between pure D. galeata and backcrossed D. hyalina. 3. The average plasticity (calculated across all traits) was similar for all three taxa. With regard to the size at maturity and neonate body size, the strength of the response was a function of the intrinsic values of these traits expressed in the control. For example, for size at maturity, smaller individuals showed a significantly stronger reaction to Chaoborus kairomones than larger ones. 4. Finally, we monitored seasonal changes in body size, egg number and population density of pure D. galeata and F1 hybrids in Greifensee (Switzerland). The two taxa experienced similar seasonal changes in body size but, on some sampling dates, they differed in mean egg number. The observed seasonal changes in Daphnia body size were consistent with what would be expected if the predator assemblage shifted from fish to Chaoborus over the course of the summer. The fluctuations in the frequencies of Daphnia taxa, however, were not related to seasonal variation in Daphnia body size. 5. Experimental data suggest that temporally heterogeneous predation regimes might be an important condition stabilising the co‐occurrence of Daphnia hybrids with parental taxa. Predation regimes, however, cannot solely explain dynamic changes in taxon frequency in Greifensee. 相似文献
3.
Michael W. McCoy Stefan K. Wheat Karen M. Warkentin James R. Vonesh 《Ecology and evolution》2015,5(20):4523-4528
To adaptively express inducible defenses, prey must gauge risk based on indirect cues of predation. However, the information contained in indirect cues that enable prey to fine‐tune their phenotypes to variation in risk is still unclear. In aquatic systems, research has focused on cue concentration as the key variable driving threat‐sensitive responses to risk. However, while risk is measured as individuals killed per time, cue concentration may vary with either the number or biomass killed. Alternatively, fine‐grained variation in cue, that is, frequency of cue pulses irrespective of concentration, may provide a more reliable signal of risk. Here, we present results from laboratory experiments that examine the relationship between red‐eyed treefrog tadpole growth and total cue, cue per pulse, and cue pulse frequency. We also reanalyze an earlier study that examined the effect of fine‐grained variation in predator cues on wood frog tadpole growth. Both studies show growth declines with increasing cue pulse frequency, even though individual pulses in high‐frequency treatments contained very little cue. This result suggests that counter to earlier conclusions, tadpoles are using fine‐grained variation in cue arising from the number of predation events to assess and respond to predation risk, as predicted by consumer–resource theory. 相似文献
4.
5.
Andrew R. Dzialowski Jay T. Lennon W.J. O'Brien Val H. Smith 《Freshwater Biology》2003,48(9):1593-1602
1. The exotic cladoceran Daphnia lumholtzi has recently invaded freshwater systems throughout the United States. Daphnia lumholtzi possesses extravagant head spines that are longer than those found on any other North American Daphnia. These spines are effective at reducing predation from many of the predators that are native to newly invaded habitats; however, they are plastic both in nature and in laboratory cultures. The purpose of this experiment was to better understand what environmental cues induce and maintain these effective predator‐deterrent spines. We conducted life‐table experiments on individual D. lumholtzi grown in water conditioned with an invertebrate insect predator, Chaoborus punctipennis, and water conditioned with a vertebrate fish predator, Lepomis macrochirus. 2. Daphnia lumholtzi exhibited morphological plasticity in response to kairomones released by both predators. However, direct exposure to predator kairomones during postembryonic development did not induce long spines in D. lumholtzi. In contrast, neonates produced from individuals exposed to Lepomis kairomones had significantly longer head and tail spines than neonates produced from control and Chaoborus individuals. These results suggest that there may be a maternal, or pre‐embryonic, effect of kairomone exposure on spine development in D. lumholtzi. 3. Independent of these morphological shifts, D. lumholtzi also exhibited plasticity in life history characteristics in response to predator kairomones. For example, D. lumholtzi exhibited delayed reproduction in response to Chaoborus kairomones, and significantly more individuals produced resting eggs, or ephippia, in the presence of Lepomis kairomones. 相似文献
6.
Many cases of predator-induced morphological plasticity in daphnids are well studied examples of inducible defenses. However, little is known about the early development of these sometimes conspicuous traits. We compared for the first time in five different Daphnia species the embryonic development of predator-induced and noninduced animals using scanning electron microscopy (SEM). We observed significant morphological changes in the last embryonic stage in helmet formation in Daphnia cucullata and in neck-pedestal development in Daphnia pulex. In contrast, no morphological changes could be found during embryogenesis between induced and noninduced Daphnia lumholtzi, D. longicephala, and D. ambigua. Strategies for initiating the defensive traits differ among Daphnia species because of trade-offs between environmental requirements and developmental constraints. Some general features of Daphnia embryonic development are described using SEM. All Daphnia embryos have to shed at least three different membranes before leaving the brood pouch of the mother. After the embryos shed the third membrane, chemosensillae that are likely able to detect predator-released chemicals are exposed to the olfactory environment. 相似文献
7.
Qide Jin;Yeping Wang;Kun Zhang;Guoqing Li;Yanan Chen;Yujuan Hong;Hanxue Cheng;Daogui Deng; 《Ecology and evolution》2024,14(6):e11422
Daphnia can avoid predation by sensing fish kairomones and producing inducible defenses by altering the phenotype. In this study, the results showed that the morphological and life-history strategies of two Daphnia species (Daphnia pulex and Daphnia sinensis) exposed to Aristichthys nobilis kairomones. In the presence of fish kairomones, the two Daphnia species exhibited significantly smaller body length at maturity, smaller body length of offspring at the 10th instar, and longer relative tail spine of offspring. Nevertheless, other morphological and life-history traits of the two Daphnia species differed. D. pulex showed a significantly longer relative tail spine length and earlier age at maturity after exposure to fish kairomones. The total offspring number of D. sinensis exposed to fish kairomones was significantly higher than that of the control group, whereas that of D. pulex was significantly lower. These results suggest that the two Daphnia species have different inducible defense strategies (e.g., morphological and life-history traits) during prolonged exposure to A. nobilis kairomones, and their offspring also develop morphological defenses to avoid predation. It will provide reference for further exploring the adaptive evolution of Daphnia morphology and life-history traits in the presence of planktivorous fish. 相似文献
8.
Linda C. Weiss Leonie Pötter Annika Steiger Sebastian Kruppert Uwe Frost Ralph Tollrian 《Current biology : CB》2018,28(2):327-332.e3
9.
Antipredator defenses in many species have been shown to exhibitphenotypic plasticity in response to variable predation risk.Some evidence suggests that in certain species adults act asproxy predators, triggering the development of adaptive defensesin juveniles where interaction with a predator is unlikely tooccur. However, almost nothing is known about how adult/juvenileinteractions mediate plasticity. Here, we examine the natureof the antipredator defenses that develop in Trinidadian guppiesas a function of early social experience and investigate theimportance of different types of cue (physical, visual, andolfactory) by rearing juveniles under 3 different social conditions.In the first, only juveniles are present; in the second, onlyvisual and olfactory interaction occurs between adults and juveniles;and in the third, adults physically interact with juveniles.Our analyses show that juveniles reared in the physical presenceof adults spend significantly less time shoaling with adultsthan fish from other treatments in an adult versus juvenileshoal-choice trial. Further, we show that juveniles with experienceof adult aggression have a decreased response latency to a simulatedavian predation attempt and travel a greater distance in thefirst 5 frames of movement after the simulated strike. Finally,juveniles reared with physical experience of adults developedrelatively deeper bodies and were significantly shorter in standardlength than guppies reared without physical experience of adults. 相似文献
10.
Cortez MH 《Ecology letters》2011,14(2):202-209
Interspecific interactions depend not only on the population densities of the interacting species, but on their phenotypes as well. Phenotypic variation can be plastic or heritable and both mechanisms can drive phenotypic change at rates comparable to or faster than those of ecological dynamics (e.g. changes in population abundances or spatial distributions). In this study, we compare the effects rapidly induced and rapidly evolving defences have on community dynamics by considering the fast phenotypic change limit using fast-slow systems theory. Our approach allows us to study phenotypically plastic and evolving systems with one overarching theory, thus capturing the effects rapidly induced defences have on ecological dynamics and how those effects differ from the effects of evolving defences. Our results show that rapidly induced defences tend to stabilize community dynamics and that some behaviours observed in rapidly evolving systems cannot be produced by phenotypic plasticity. 相似文献
11.
Does microcystin disrupt the induced effect of Daphnia kairomone on colony formation in Scenedesmus?
In natural aquatic system, Scenedesmus and Microcystis species usually coexist. Microcystins are released into water after lysis of Microcystis cells during the collapse of heavy blooms. The released toxins can then come into contact with a wide range of aquatic organisms. In this study, we used filtered Daphnia test water containing kairomone from Daphnia magna to stimulate the inducible colony formation in Scenedesmus obliquus under microcystin-contaminated system, to examine how microcystin affects the induced effect of Daphnia kairomone on colony formation in S. obliquus. The results showed neither microcystin nor Daphnia kairomone affected the growth of S. obliquus. Microcystin neither promoted nor impaired the overall Daphnia-induced colony formation in S. obliquus, except reducing the proportion of eight-celled colonies on day 2, indicating that the effect of microcystin was just short-term and in general did not disrupt grazer-induced colony formation of S. obliquus. 相似文献
12.
Jerker Vinterstare Christer Brnmark P. Anders Nilsson R. Brian Langerhans Olof Berglund Jennie
rjes Tomas Brodin Jerker Fick Kaj Hulthn 《Ecology and evolution》2021,11(14):9435
Predator‐inducible defenses constitute a widespread form of adaptive phenotypic plasticity, and such defenses have recently been suggested linked with the neuroendocrine system. The neuroendocrine system is a target of endocrine disruptors, such as psychoactive pharmaceuticals, which are common aquatic contaminants. We hypothesized that exposure to an antidepressant pollutant, fluoxetine, influences the physiological stress response in our model species, crucian carp, affecting its behavioral and morphological responses to predation threat. We examined short‐ and long‐term effects of fluoxetine and predator exposure on behavior and morphology in crucian carp. Seventeen days of exposure to a high dose of fluoxetine (100 µg/L) resulted in a shyer phenotype, regardless of the presence/absence of a pike predator, but this effect disappeared after long‐term exposure. Fluoxetine effects on morphological plasticity were context‐dependent as a low dose (1 µg/L) only influenced crucian carp body shape in pike presence. A high dose of fluoxetine strongly influenced body shape regardless of predator treatment. Our results highlight that environmental pollution by pharmaceuticals could disrupt physiological regulation of ecologically important inducible defenses. 相似文献
13.
14.
To investigate the effects of infochemicals from Daphnia magna reared at different densities on the growth and morphological development of Scenedesmus obliquus, we cultured S. obliquus with filtrates from D. magna with a density of 0, 6, 30, 150, 300, and 600 ind L−1, respectively. Results showed no significant differences in S. obliquus growth rates among the treatments with different Daphnia densities. On days 3 and 5, the proportion of eight-celled colonies in the treatments constituted 30% of the S. obliquus populations. Importantly, the number of cells per particle increased significantly with increasing density of Daphnia, indicating a grazer density-dependent response. Specifically, the density-response relationship followed a rectangular hyperbolic model in the first five days of treatment, and then switched to a linear model, which implies that the relationship between the inducible colony size of S. obliquus and Daphnia density may also be dependent upon incubation time. 相似文献
15.
Phenotypic plasticity in defensive traits is a common response of prey organisms to variable and unpredictable predation regimes and risks. Cladocerans of the genus Daphnia are keystone species in the food web of lentic freshwater bodies and are well known for their ability to express a large variety of inducible morphological defenses in response to invertebrate and vertebrate predator kairomones. The developed defenses render the daphnids less susceptible to predation. So far, primarily large‐scale morphological defenses, like helmets, crests, and tail‐spines, have been documented. However, less is known on whether the tiny spinules, rather inconspicuous traits which cover many Daphnia’s dorsal and ventral carapace margins, respond to predator kairomones, as well. For this reason, we investigated two Daphnia species (D. magna and D. longicephala) concerning their predator kairomone‐induced changes in dorsal and ventral spinules. Since these small, inconspicuous traits may only act as a defense against predatory invertebrates, with fine‐structured catching apparatuses, and not against vertebrate predators, we exposed them to both, an invertebrate (Triops cancriformis or Notontecta maculata) and a vertebrate predator (Leucaspius delineatus). Our results show that the length of these spinules as well as spinules‐covered areas vary, likely depending on the predator the prey is exposed to. We further present first indications of a Daphnia species‐specific elongation of the spinules and an increase of the spinules‐bearing areas. Although we cannot exclude that spinescence is altered because it is developmentally connected to changes in body shape in general, our results suggest that the inducible alterations to the spinule length and spinules‐covered areas disclose another level of predator‐induced changes in two common Daphnia species. The predator‐induced changes on this level together with the large‐scale and ultrastructural defensive traits may act as the overall morphological defense, adjusted to specific predator regimes in nature. 相似文献
16.
Jeschke JM 《Journal of theoretical biology》2006,242(4):900-907
Defenses protect prey, while offenses arm predators. Some defenses and offenses are constitutive (e.g. tortoise shells), while others are phenotypically plastic and not always expressed (e.g. neckteeth in water fleas). All of them are costly and only adaptive at certain prey densities. Here, I analyse such density-dependent effects, applying a functional response model to categorize defenses and offenses and qualitatively predict at which prey densities each category should evolve (if it is constitutive) or be expressed (if it is phenotypically plastic). The categories refer to the step of the predation cycle that a defense or offense affects: (1) search, (2) encounter, (3) detection, (4) attack, or (5) meal. For example, prey warning signals such as red coloration prevent predator attacks and are hence step 4 defenses, while sharp predator eyes enhance detection and are step 3 offenses. My theoretical analyses predict that step 1 defenses, which prevent predators from searching for their next meal (e.g. toxic substances), evolve or are expressed at intermediate prey densities. Other defenses, however, should be most beneficial at low prey densities. Regarding predators, step 1 offenses (e.g. immunity against prey toxins) are predicted to evolve or be expressed at high prey densities, other offenses at intermediate densities. I provide evidence from the literature that supports these predictions. 相似文献
17.
In addition to genetic differences between individuals as a result of nucleotide sequence variation, epigenetic changes that occur as a result of DNA methylation may also contribute to population niche width by enhancing phenotypic plasticity, although this intriguing possibility remains essentially untested. Using the nectar‐living yeast Metschnikowia reukaufii as study subject, we examine the hypothesis that changes in genome‐wide DNA methylation patterns underlie the ability of this fugitive species to exploit a broad resource range in its heterogeneous and patchy environment. Data on floral nectar characteristics and their use by M. reukaufii in the wild were combined with laboratory experiments and methylation‐sensitive amplified polymorphism (MSAP) analyses designed to detect epigenetic responses of single genotypes to variations in sugar environment that mimicked those occurring naturally in nectar. M. reukaufii exploited a broad range of resources, occurring in nectar of 48% of species and 52% of families surveyed, and its host plants exhibited broad intra‐ and interspecific variation in sugar‐related nectar features. Under experimental conditions, sugar composition, sugar concentration and their interaction significantly influenced the mean probability of MSAP markers experiencing a transition from unmethylated to methylated state. Alterations in methylation status were not random but predictably associated with certain markers. The methylation inhibitor 5‐azacytidine (5‐AzaC) had strong inhibitory effects on M. reukaufii proliferation in sugar‐containing media, and a direct relationship existed across sugar × concentration experimental levels linking inhibitory effect of 5‐AzaC and mean per‐marker probability of genome‐wide methylation. Environmentally induced DNA methylation polymorphisms allowed genotypes to grow successfully in extreme sugar environments, and the broad population niche width of M. reukaufii was largely made possible by epigenetic changes enabling genotype plasticity in resource use. 相似文献
18.
Abstract. In this study, we investigated a functional trade-off between trunk attachment and trunk-spine development in the acanthocephalan Corynosoma cetaceum . The worms live attached to the stomach and upper intestine of their cetacean definitive hosts, using the proboscis and spiny foretrunk as the main holdfast; the spiny hindtrunk can also attach by bending ventrally. When the hindtrunk bends, ventral compression generates an anterior fold (AF) and a posterior fold (PF). A morphological analysis based on 7,823 individuals collected from 10 franciscana dolphins, Pontoporia blainvillei , revealed that spines were smaller and more variable in size and occurrence in the folds than on neighboring areas; the growth of fold spines seemed to be inhibited to various degrees. Spines were more reduced in the AF than in the PF, and spines of both folds were more reduced in females than in males. Patterns of reduction appeared to be directly related to the intensity of fold compression associated with hindtrunk bending. Fold compression could induce plastic inhibition of spine growth, and/or could make fold spines maladaptive, spines being reduced by natural selection. Apparently, fold spines neither contact the substrate, nor are they exposed to the environment when the hindtrunk attaches. Therefore, fold spines could have reduced, or lost, their primary function, at least in the definitive host. The reduction and variability of spines in C. cetaceum seem to be unique among Corynosoma species. 相似文献
19.
Abstract. To determine whether increased water motion affects patterns of regeneration in the subtidal burrowing brittlestar Hemipholis elongata (phylum Echinodermata), individuals were subjected to laboratory-controlled turbulence conditions. Half of each replicate aquarium experienced oscillatory (wave-like) turbulence while the other half had no turbulence. Individual brittlestars from which arm-tips had been removed were allowed to burrow and to regenerate. Regenerated arm-tip length and weight were tested for differences between organisms in calm and turbulent conditions. Regenerated arm-tip length differed significantly between control and treatment, but arm-tip dry weight and skeleton/tissue ratio of regenerated arm-tips did not. To quantify plasticity in the skeleton, 15 morphological measurements made on the proximal face of vertebral ossicles (using scanning electron microscopy) were integrated as an index of overall ossicle size. We found a significant difference in the overall size index of the vertebral ossicles between treatments, but could not determine which of the measurements contributed most to the difference. The results indicate that regeneration in H. elongata is a complex process that can be modified by environmental conditions. 相似文献
20.
《Harmful algae》2017
Cyanobacterial and zooplankton inducible defenses are important but understudied process that regulate the trophic interactions of freshwater ecosystem. Daphnia due to its large size is considered an important zooplankton with the high potential to control cyanobacterial blooms. It has been shown that Daphnia through maternal induction transfer tolerance to their next generation against Microcystis toxicity. Maternal induction has been investigated in different Daphnia species without considering phenotypic plasticity of prey. Laboratory experiments were performed to explore cyanobacteria-Daphnia inducible defenses in order to better understand their interactions. Two Daphnia species were fed either with Microcystis aeruginosa PCC7806 (Ma) or Microcystis flos-aquae (Mf) mixed with Chlorella vulgaris (Cv) (exposed Daphnia), and or pure Cv (unexposed Daphnia). Exposed prey cultures were produced by prior exposure to Daphnia infochemicals. Neonates produced by exposed and unexposed Daphnia were fed with mixed diet (Microcystis + Cv) of either exposed and or unexposed prey. Growth parameters and toxin production of exposed prey cultures were significantly different than that of control. Exposed Daphnia fecundity and survival was higher as compared to unexposed Daphnia. Growth and reproduction was reduced in exposed Daphnia when fed with exposed prey as compared to those fed with unexposed prey. This study provides information on the interactive inducible defenses between cyanobacteria and its grazer under laboratory conditions and may increase our understanding of cyanobacteria and Daphnia interactions in the freshwater ecosystem. 相似文献