首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Memory T cells are heterogeneous in terms of their phenotype and functional properties. We investigated the molecular profiles of human CD8 naive central memory (T(CM)), effector memory (T(EM)), and effector memory RA (T(EMRA)) T cells using gene expression microarrays and phospho-protein-specific intracellular flow cytometry. We demonstrate that T(CM) have a gene expression and cytokine signaling signature that lies between that of naive and T(EM) or T(EMRA) cells, whereas T(EM) and T(EMRA) are closely related. Our data define the molecular basis for the different functional properties of central and effector memory subsets. We show that T(EM) and T(EMRA) cells strongly express genes with known importance in CD8 T cell effector function. In contrast, T(CM) are characterized by high basal and cytokine-induced STAT5 phosphorylation, reflecting their capacity for self-renewal. Altogether, our results distinguish T(CM) and T(EM)/T(EMRA) at the molecular level and are consistent with the concept that T(CM) represent memory stem cells.  相似文献   

2.
3.
4.
Microbial superantigens can alter host immunity through aberrant activation and subsequent anergy of responding naive T cells. We show here that the superantigen, staphylococcal enterotoxin B (SEB), directly induces tolerance in memory CD4 T cells. Murine naive and memory CD4(+) T cells were labeled with the fluorescent dye CFSE and the cells were exposed to SEB before they were cultured with specific peptide antigen. Memory, but not naive, T cells became anergic and did not respond to their cognate peptide antigen. The extent and duration of T cell receptor (TCR) clustering was similar to promote naive T cell activation and memory T cell anergy, suggesting similar TCR-SEB interactions led to distinct intracellular signaling processes in the two cell types. Like SEB, soluble anti-CD3 mAb does not stimulate memory cell proliferation. However, unlike SEB, soluble anti-CD3 mAbs did not induce anergy to cognate peptide. Anergy was directly visualized in vivo. CD4(+) memory T cells were identified in mice that had been administered SEB. The cells failed to proliferate in response to subsequent immunization with their cognate recall antigen. Hence, one mode of pathogen survival is the modulation of host immunity through selective elimination of memory T cell responses.  相似文献   

5.
Functional responses and costimulator dependence of memory CD4+ T cells   总被引:15,自引:0,他引:15  
To examine the functional characteristics of memory CD4+ T cells, we used an adoptive transfer system to generate a stable population of Ag-specific memory cells in vivo and compared their responses to Ag with those of a similar population of Ag-specific naive cells. Memory cells localized to the spleen and lymph nodes of mice and exhibited extremely rapid recall responses to Ag in vivo, leaving the spleen within 3-5 days of Ag encounter. Unlike their naive counterparts, memory cells produced effector cytokines (IFN-gamma, IL-4, IL-5) within 12-24 h of Ag exposure and did not require multiple cycles of cell division to do so. Memory cells proliferated at lower Ag concentrations than did naive cells, were less dependent on costimulation by B7 molecules, and independent of costimulation by CD40. Furthermore, effector cytokine production by memory cells also occurred in the absence of either B7 or CD40 costimulation. Lastly, memory cells were resistant to tolerance induction. Together, these findings suggest that the threshold for activation of memory CD4+ cells is lower than that of naive cells. This would permit memory cells to rapidly express their effector functions in vivo earlier in the course of a secondary immune response, when the levels of Ag and the availability of costimulation may be relatively low.  相似文献   

6.
Recent studies have defined several phenotypic and molecular changes associated with the maturation of naive human B cells within the milieu of germinal centers. Although naive B cells serve as natural precursors to germinal center (GC)/memory (M) subpopulations, little is known about the physiological requirements for the survival of the naive B cell pool in the absence of cell-cell contact or Ag-mediated activation. Because IL-4 induces expression of several membrane receptors such as CD23 which are uniquely present on resting human naive B lymphocytes, we hypothesized that these cells might be intrinsically programmed to respond to IL-4 in the absence of cell division. Using buoyant density-dependent isolation and further enrichment by negative/positive selection of human naive and GC/M subpopulations, we characterized cytokine receptor moieties on these cells and analyzed their survival and growth in the presence of IL-4 or IL-10. Resting naive B cells expressed significantly higher IL-4 receptor alpha-chain on their cell surface than the combined GC/M subpopulation. The IL-10 receptor and the IL-2 receptor gammac chain were almost equally expressed on both subpopulations. When cultured in vitro, the addition of IL-4, but not IL-10, protected naive B cells from apoptosis in the absence of activation and growth. However, IL-4 exerted no such effect on resting GC/M B cells. These data support the hypothesis that IL-4 plays a pivotal role in the survival and maintenance of resting human naive B cells.  相似文献   

7.
Antigen-specific B and T lymphocytes make up the material grounds of immune memory, their main functional distinction from the so-called "naive" cells is due to the rapid and enhanced response to the antigen-pathogen. An essential distinction between the memory and naive T cells is different sensitivity of these two subpopulations of T lymphocytes to Ca2+-ionophores. Comparative analysis of Ca2+ responses of the immune memory T lymphocytes and naive T cells of mouse CBA/J line to the addition of Ca2+-mobilizing agents concanavalin A, thapsigargin, and ionomycin was carried out. These compounds in concentrations increasing [Ca2+]i in naive cells had no effect on [Ca2+]i in memory cells. Thus, the Ca2+ entrance into memory cells was not activated by exhaustion of intracellular resources. Estimation of intracellular resources of Ca2+, mobilized by ionomycin and thapsigargin in Ca2+ free medium has shown the absence in memory T cells of the intracellular Ca2+ pool, which may be one of factors of their resistance to ionophores. Reduction of the system of Ca2+ influx into memory T cells was shown using the SH-reagent thimerosal. Memory T cells appear to be resistant to "Ca2+ -paradox." Their incubation with 0.5 mM EDTA in the presence or absence of Ca2+ -mobilizing compounds followed by addition of 2 mM CaCl2 did not result in induction of Ca2+ influx into these cells.  相似文献   

8.
Latner DR  Kaech SM  Ahmed R 《Journal of virology》2004,78(20):10953-10959
Unlike naive CD8+ T cells, antigen-experienced memory CD8+ T cells persist over time due to their unique ability to homeostatically proliferate. It was hypothesized that memory cells might differentially regulate the expression of genes that control the cell cycle to facilitate homeostatic proliferation. To test this, the expression levels of 96 different cell cycle regulatory genes were compared between transgenic naive and memory CD8+ T cells that specifically recognize the GP33-41 epitope of lymphocytic choriomeningitis virus (LCMV). It was discovered that relative to naive cells, memory cells overexpress several important genes that control the transition between G(1) and S phase. Some of these genes include those encoding cyclins D3, D2, B1, C, and H, cyclin-dependent kinases (cdk's) 4 and 6, the cdk inhibitors p16, p15, and p18, and other genes involved in protein degradation and DNA replication. Importantly, these differences were observed both in total populations of LCMV-specific naive and memory CD8+ cells and in LCMV-specific CD8+ T-cell populations that were in the G(1) phase of the cell cycle only. In addition, the expression differences between naive and memory cells were exaggerated following antigenic stimulation. The fact that memory cells are precharged with several of the major factors that are necessary for the G(1)- to-S-phase transition suggests they may require a lower threshold of stimulation to enter the cell cycle.  相似文献   

9.
Memory B cells generated during a T cell-dependent immune response rapidly respond to a secondary immunization by producing abundant IgG Abs that bind cognate Ag with high affinity. It is currently unclear whether this heightened recall response by memory B cells is due to augmented IgG-BCR signaling, which has only been demonstrated in the context of naive transgenic B cells. To address this question, we examined whether memory B cells can respond in vivo to Ags that stimulate only through BCR, namely T cell-independent type II (TI-II) Ags. In this study, we show that the TI-II Ag (4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll cannot elicit the recall response in mice first immunized with the T cell-dependent Ag NP-chicken γ-globulin. Moreover, the NP-Ficoll challenge in vivo as well as in vitro significantly inhibits a subsequent recall response to NP-chicken γ-globulin in a B cell-intrinsic manner. This NP-Ficoll-mediated tolerance is caused by the preferential elimination of IgG(+) memory B cells binding to NP with high affinity. These data indicate that BCR cross-linking with a TI-II Ag does not activate IgG(+) memory B cells, but rather tolerizes them, identifying a terminal checkpoint of memory B cell differentiation that may prevent autoimmunity.  相似文献   

10.
11.
Memory B cells help to protect the host from invading pathogens by maintaining persistent levels of Ag-specific serum Ab and generating rapid Ab responses upon re-exposure to Ag. Unambiguous identification of memory B cells has been a major obstacle to furthering our knowledge concerning both the development of B cell memory and secondary Ab responses due to an absence of specific cell surface markers. Germinal centers (GCs) are thought to be the major site of Ig hypermutation and Ag-driven selection of memory B cells. To develop a model that would identify GC-derived memory B cells, we generated transgenic mice that expressed cre recombinase in a GC-specific fashion. Interbreeding these mice with the cre-reporter strain, ROSA26R, produced progeny in which beta-galactosidase (beta-gal) was permanently expressed in B cells of the GC-memory pathway. Analysis following immunization with (4-hydroxy-3-nitrophenyl)acetyl coupled to chicken gamma globulin showed that long-lived beta-gal+ B cells exclusively contained somatically mutated lambda1 V regions and were capable of producing Ag-specific Ab-forming cell (AFC) responses that were >100-fold higher than those afforded by beta-gal- B cells following adoptive transfer to naive hosts. Secondary challenge of immune mice showed that only approximately 20% of secondary AFCs expressed beta-gal. Interestingly, we found that somatic hypermutation of rearranged lambda1 V regions within secondary AFCs showed a strong correlation with beta-gal expression, suggesting that nonmutated B cells contribute significantly to secondary Ab responses. This model should provide useful insights into memory B cell development, maintenance, and differentiation following immunization or pathogenic infection.  相似文献   

12.
13.
Memory CD8 T cells, unlike their naive precursors, are capable of rapidly producing high levels of cytokines, killing target cells, and proliferating into numerous secondary effectors immediately upon Ag encounter. This ready-to-respond state contributes to their superior ability to confer protective immunity, yet the underlying molecular basis remains unknown. In this study, we show that memory CD8 T cells have increased histone acetylation compared with naive CD8 T cells; however, those activated without CD4 T cell help ("unhelped") remain hypoacetylated and fail to develop into functional, protective memory. Treatment with a histone deacetylase inhibitor during activation results in increased histone acetylation in unhelped CD8 T cells and restores their ability to differentiate into functional memory cells capable of immediate cytokine production and providing protective immunity. These results demonstrate that CD4 T help-dependent chromatin remodeling provides a molecular basis for the enhanced responsiveness of memory CD8 T cells.  相似文献   

14.
TCR signal transduction in antigen-specific memory CD8 T cells   总被引:4,自引:0,他引:4  
Memory T cells are more responsive to Ag than naive cells. To determine whether memory T cells also have more efficient TCR signaling, we compared naive, effector, and memory CD8 T cells of the same antigenic specificity. Surprisingly, initial CD3 signaling events are indistinguishable. However, memory T cells have more extensive lipid rafts with higher phosphoprotein content before TCR engagement. Upon activation in vivo, they more efficiently induce phosphorylation of-LAT (linker for activation of T cells), ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38. Thus, memory CD8 T cells do not increase their TCR sensitivity, but are better poised to augment downstream signals. We propose that this regulatory mechanism might increase signal transduction in memory T cells, while limiting TCR cross-reactivity and autoimmunity.  相似文献   

15.
16.
17.
Detailed characterization of Ag-specific naive and memory B cell Ab repertoires elucidates the molecular basis for the generation of Ab diversity and the optimization of Ab structures that bind microbial Ags. In this study, we analyzed the immunophenotype and VH gene repertoire of rotavirus (RV) VP6-specific B cells in three circulating naive or memory B cell subsets (CD19+IgD+CD27-, CD19+IgD+CD27+, or CD19+IgD-CD27+) at the single-cell level. We aimed to investigate the influence of antigenic exposure on the molecular features of the two RV-specific memory B cell subsets. We found an increased frequency of CD19+IgD+CD27+ unclass-switched memory B cells and a low frequency of somatic mutations in CD19+IgD-CD27+ class-switched memory B cells in RV-specific memory B cells, suggesting a reduced frequency of isotype switching and somatic mutation in RV VP6-specific memory B cells compared with other memory B cells. Furthermore, we found that dominance of the VH1-46 gene segment was a prominent feature in the VH gene repertoire of RV VP6-specific naive B cells, but this dominance was reduced in memory B cells. Increased diversity in the VH gene repertoire of the two memory B cell groups derived from broader usage of VH gene segments, increased junctional diversity that was introduced by differential TdT activities, and somatic hypermutation.  相似文献   

18.
Molecular and functional profiling of memory CD8 T cell differentiation   总被引:40,自引:0,他引:40  
Kaech SM  Hemby S  Kersh E  Ahmed R 《Cell》2002,111(6):837-851
How and when memory T cells form during an immune response are long-standing questions. To better understand memory CD8 T cell development, a time course of gene expression and functional changes in antigen-specific T cells during viral infection was evaluated. The expression of many genes continued to change after viral clearance in accordance with changes in CD8 T cell functional properties. Even though memory cell precursors were present at the peak of the immune response, these cells did not display hallmark functional traits of memory T cells. However, these cells gradually acquired the memory cell qualities of self-renewal and rapid recall to antigen suggesting the model that antigen-specific CD8 T cells progressively differentiate into memory cells following viral infection.  相似文献   

19.
M Siekevitz  C Kocks  K Rajewsky  R Dildrop 《Cell》1987,48(5):757-770
Clonal progeny of naive B cells (producing a primary antibody response) and of memory B cells (producing a secondary response) were identified in a cell transfer system. Primary response clones are typically derived from IgM precursors and express unmutated V regions. Multiple isotype switches occur in these clones. Secondary response clones derive from IgG1 precursors and express highly mutated V regions. Additional switches do not occur. With one exception, there was no evidence for somatic mutation during clonal expansion. The generation of mutated memory cells may thus represent a distinct differentiation pathway. Evidence is presented that, in this pathway, mutants that have lost antigen binding specificity but that remain available for stimulation by a different antigen arise upon antigenic stimulation.  相似文献   

20.
The paucity of murine memory B cell markers has been a significant impediment to the study of memory. The most commonly used marker is IgG, which is neither sensitive nor specific, because activated nonmemory cells can be IgG(+), and memory cells can be IgM(+). In this article, we show that, together, PD-L2 (CD273), CD80, and CD73 define at least five phenotypic subsets of murine memory B cells. These subsets are generated from naive cells bearing a single BCR in response to a single T-dependent Ag. This diversity is independent of class switch, because IgG(1)- and IgM-bearing memory cells are found within each compartment. Memory subsets defined by PD-L2, CD80, and CD73 are biologically distinct from one another, because they differ in ontogeny and selection. Together, these distinctions suggest that there is a spectrum of memory B cells and progressive acquisition from more naive-like to more memory-like properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号