首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major disease-causing mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine 508 (F508), which adversely affects processing and plasma membrane targeting of CFTR. Under conditions predicted to stabilize protein folding, F508 CFTR is capable of trafficking to the plasma membrane and retains cAMP-regulated anion channel activity. Overexpression is one factor that increases CFTR trafficking; therefore, we hypothesized that expression of a domain mimic of the first nucleotide-binding fold (NBF1) of CFTR, i.e., the site of F508, may be sufficient to overwhelm the quality control process or otherwise stabilize F508 CFTR and thereby restore cAMP-stimulated anion secretion. In epithelial cells expressing recombinant F508 human (h)CFTR, expression of wild-type NBF1 increased the amount of both core-glycosylated and mature protein to a greater extent than expression of F508 NBF1. Expression of wild-type NBF1 in the F508 hCFTR cells increased whole cell Cl current density to 50% of that in cells expressing wild-type hCFTR. Expression of NBF1 in polarized epithelial monolayers from a F508/F508 cystic fibrosis mouse (MGEF) restored cAMP-stimulated transepithelial anion secretion but not in monolayers from a CFTR-null mouse (MGEN). Restoration of anion secretion was sustained in NBF1-expressing MGEF for >30 passages, whereas MGEN corrected with hCFTR progressively lost anion secretion capability. We conclude that expression of a NBF1 domain mimic may be useful for correction of the F508 CFTR protein trafficking defect in cystic fibrosis epithelia. protein processing; mouse; retrovirus; gene therapy  相似文献   

2.
Hypoxia of endothelial cells leads to MMP-2-dependent survival and death   总被引:2,自引:0,他引:2  
Exposure of endothelial cells (ECs) to hypoxia has separately been shown to induce their angiogenesis or death. Matrix metalloproteinase (MMP)-2 is associated with EC angiogenesis, although recent studies also implicate this molecule in EC death. We studied the effect of hypoxia in the absence or presence of TNF- (characteristic of the inflammatory microenvironment accompanying hypoxia) on MMP-2 expression and its role in angiogenesis (proliferation, migration, and tube formation) and in the death of primary human umbilical vein endothelial cells (HUVECs). Hypoxia alone (24–48 h in 0.3% O2 in the hypoxic chamber) and furthermore, when combined with TNF-, significantly enhanced MMP-2 expression and activity. Hypoxia also led to a reduction in membrane type 1 MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 mRNA and protein while enhancing the expression of v3 integrin and the cytoskeletal protein phosphopaxillin. Moreover, hypoxia led to colocalization of v3 and MMP-2, but not MT1-MMP, with phosphopaxillin in ECs. These results suggest MT1-MMP-independent activation of MMP-2 during hypoxia and support interactions between the ECM, integrins, and the cytoskeleton in hypoxia-induced MMP-2-related functions. Hypoxia enhanced EC migration in an MMP-2-dependent manner while leading to a reduction of cell number via their apoptosis, which was also dependent on MMP-2. In addition, hypoxia caused an aberrant tubelike formation on Matrigel that appeared to be unaffected by MMP-2. The hypoxia-induced, MMP-2-dependent migration of ECs is in accordance with the proangiogenic role ascribed to MMP-2, while the involvement of this protease in the hypoxia-related death of ECs supports an additional apoptotic role for this protease. Hence, in the hypoxic microenvironment, MMP-2 appears to have a dual autocrine role in determining the fate of ECs. gelatinase activity; angiogenesis; apoptosis; tumor necrosis factor-  相似文献   

3.
A hallmark of human cytomegalovirus (HCMV) infection is the characteristic enlargement of the host cells (i.e., cytomegaly). Because iron (Fe) is required for cell growth and Fe chelators inhibit viral replication, we investigated the effects of HCMV infection on Fe homeostasis in MRC-5 fibroblasts. Using the metallosensitive fluorophore calcein and the Fe chelator salicylaldehyde isonicotinoyl hydrazone (SIH), the labile iron pool (LIP) in mock-infected cells was determined to be 1.04 ± 0.05 µM. Twenty-four hours postinfection (hpi), the size of the LIP had nearly doubled. Because cytomegaly occurs between 24 and 96 hpi, access to this larger LIP could be expected to facilitate enlargement to 375% of the initial cell size. The ability of Fe chelation by 100 µM SIH to limit enlargement to 180% confirms that the LIP plays a major role in cytomegaly. The effect of SIH chelation on the mitochondrial membrane potential (M) and morphology was studied using the mitochondrial voltage-sensitive dye JC-1. The mitochondria in mock-infected cells were heterogeneous with a broad distribution of M and were threadlike. In contrast, the mitochondria of HCMV-infected cells had a more depolarized M distributed over a narrow range and were grainlike in appearance. However, the HCMV-induced alteration in M was not affected by SIH chelation. We conclude that the development of cytomegaly is inhibited by Fe chelation and may be facilitated by an HCMV-induced increase in the LIP. cell size; mitochondria  相似文献   

4.
We recently demonstrated a role for altered mitochondrial bioenergetics and reactive oxygen species (ROS) production in mitochondrial Ca2+-sensitive K+ (mtKCa) channel opening-induced preconditioning in isolated hearts. However, the underlying mitochondrial mechanism by which mtKCa channel opening causes ROS production to trigger preconditioning is unknown. We hypothesized that submaximal mitochondrial K+ influx causes ROS production as a result of enhanced electron flow at a fully charged membrane potential (m). To test this hypothesis, we measured effects of NS-1619, a putative mtKCa channel opener, and valinomycin, a K+ ionophore, on mitochondrial respiration, m, and ROS generation in guinea pig heart mitochondria. NS-1619 (30 µM) increased state 2 and 4 respiration by 5.2 ± 0.9 and 7.3 ± 0.9 nmol O2·min–1·mg protein–1, respectively, with the NADH-linked substrate pyruvate and by 7.5 ± 1.4 and 11.6 ± 2.9 nmol O2·min–1·mg protein–1, respectively, with the FADH2-linked substrate succinate (+ rotenone); these effects were abolished by the mtKCa channel blocker paxilline. m was not decreased by 10–30 µM NS-1619 with either substrate, but H2O2 release was increased by 44.8% (65.9 ± 2.7% by 30 µM NS-1619 vs. 21.1 ± 3.8% for time controls) with succinate + rotenone. In contrast, NS-1619 did not increase H2O2 release with pyruvate. Similar results were found for lower concentrations of valinomycin. The increase in ROS production in succinate + rotenone-supported mitochondria resulted from a fully maintained m, despite increased respiration, a condition that is capable of allowing increased electron leak. We propose that mild matrix K+ influx during states 2 and 4 increases mitochondrial respiration while maintaining m; this allows singlet electron uptake by O2 and ROS generation. mitochondrial bioenergetics; heart mitochondria  相似文献   

5.
Rattlesnakes, copperheads, and other pit vipers have highly sensitive heat detectors known as pit organs, which are used to sense and strike at prey. However, it is not currently known how temperature change triggers cellular and molecular events that activate neurons supplying the pit organ. We dissociated and cultured neurons from the trigeminal ganglia (TG) innervating the pit organs of the Western Diamondback rattlesnake (Crotalus atrox) and the copperhead (Agkistrodon contortix) to investigate electrophysiological responses to thermal stimuli. Whole cell voltage-clamp recordings indicated that 75% of the TG neurons from C. atrox and 74% of the TG neurons from A. contortix showed a unique temperature-activated inward current (IT). We also found an IT-like current in 15% of TG neurons from the common garter snake, a species that does not have a specialized heat-sensing organ. A steep rise in the current-temperature relationship of IT started just below 18°C, and cooling temperature-responsive TG neurons from 20°C resulted in an outward current, suggesting that IT is on at relatively low temperatures. Ion substitution and Ca2+ imaging experiments indicated that IT is primarily a monovalent cation current. IT was not sensitive to capsaicin or amiloride, suggesting that the current did not show similar pharmacology to other mammalian heat-sensitive membrane proteins. Our findings indicate that a novel temperature-sensitive conductance with unique ion permeability and low-temperature threshold is expressed in TG neurons and may be involved in highly sensitive heat detection in snakes. snake; thermosensory; trigeminal; ion conductance  相似文献   

6.
While there is circumstantial evidence to suggest a requirement for phospholipase C-1 (PLC-1) in actin reorganization and cell migration, few studies have examined the direct mechanisms that link regulators of the actin cytoskeleton with this crucial signaling molecule. This study was aimed to examine the role that villin, an epithelial cell-specific actin-binding protein, and its ligand PLC-1 play in migration in intestinal and renal epithelial cell lines that endogenously or ectopically express human villin. Basal as well as epidermal growth factor (EGF)-stimulated cell migration was accompanied by tyrosine phosphorylation of villin and its association with PLC-1. Inhibition of villin phosphorylation prevented villin-PLC-1 complex formation as well as villin-induced cell migration. The absolute requirement for PLC-1 in villin-induced cell migration was demonstrated by measuring cell motility in PLC-1–/– cells and by downregulation of endogenous PLC-1. EGF-stimulated direct interaction of villin with the Src homology domain 2 domain of PLC-1 at the plasma membrane was demonstrated in living cells by using fluorescence resonance energy transfer. These results demonstrate that villin provides an important link between the activation of phosphoinositide signal transduction pathway and epithelial cell migration. fluorescence resonance energy transfer; actin  相似文献   

7.
Calsequestrin (CS) is the low-affinity, high-capacity calcium binding protein segregated to the lumen of terminal cisternae (TC) of the sarcoplasmic reticulum (SR). The physiological role of CS in controlling calcium release from the SR depends on both its intrinsic properties and its localization. The mechanisms of CS targeting were investigated in skeletal muscle fibers and C2C12 myotubes, a model of SR differentiation, with four deletion mutants of epitope (hemagglutinin, HA)-tagged CS: CS-HA24NH2, CS-HA2D, CS-HA3D, and CS-HAHT, a double mutant of the NH2 terminus and domain III. As judged by immunofluorescence of transfected skeletal muscle fibers, only the double CS-HA mutant showed a homogeneous distribution at the sarcomeric I band, i.e., it did not segregate to TC. As shown by subfractionation of microsomes derived from transfected skeletal muscles, CS-HAHT was largely associated to longitudinal SR whereas CS-HA was concentrated in TC. In C2C12 myotubes, as judged by immunofluorescence, not only CS-HAHT but also CS-HA3D and CS-HA2D were not sorted to developing SR. Condensation competence, a property referable to CS oligomerization, was monitored for the several CS-HA mutants in C2C12 myoblasts, and only CS-HA3D was found able to condense. Together, the results indicate that 1) there are at least two targeting sequences at the NH2 terminus and domain III of CS, 2) SR-specific target and structural information is contained in these sequences, 3) heterologous interactions with junctional SR proteins are relevant for segregation, 4) homologous CS-CS interactions are involved in the overall targeting process, and 5) different targeting mechanisms prevail depending on the stage of SR differentiation. protein-protein interactions; oligomerization; intracellular sorting  相似文献   

8.
Recently, we demonstrated that the peroxisome proliferator-activated receptor- (PPAR-) ligands, either 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) or ciglitazone, increased endothelial nitric oxide (·NO) release without altering endothelial nitric oxide synthase (eNOS) expression (4). However, the precise molecular mechanisms of PPAR--stimulated endothelial·NO release remain to be defined. Superoxide anion radical (O2·) combines with ·NO to decrease·NO bioavailability. NADPH oxidase, which produces O2·, and Cu/Zn-superoxide dismutase (Cu/Zn-SOD), which degrades O2·, thereby contribute to regulation of endothelial cell·NO metabolism. Therefore, we examined the ability of PPAR- ligands to modulate endothelial O2· metabolism through alterations in the expression and activity of NADPH oxidase or Cu/Zn-SOD. Treatment with 10 µM 15d-PGJ2 or ciglitazone for 24 h decreased human umbilical vein endothelial cell (HUVEC) membrane NADPH-dependent O2· production detected with electron spin resonance spectroscopy. Treatment with 15d-PGJ2 or ciglitazone also reduced relative mRNA levels of the NADPH oxidase subunits, nox-1, gp91phox (nox-2), and nox-4, as measured using real-time PCR analysis. Concordantly, Western blot analysis demonstrated that 15d-PGJ2 or ciglitazone decreased nox-2 and nox-4 protein expression. PPAR- ligands also stimulated both activity and expression of Cu/Zn-SOD in HUVEC. These data suggest that in addition to any direct effects on endothelial·NO production, PPAR- ligands enhance endothelial·NO bioavailability, in part by altering endothelial O2· metabolism through suppression of NADPH oxidase and induction of Cu/Zn-SOD. These findings further elucidate the molecular mechanisms by which PPAR- ligands directly alter vascular endothelial function. reduced nicotinamide adenine dinucleotide phosphate oxidase; copper/zinc superoxide dismutase; nitric oxide; endothelial cells  相似文献   

9.
The Na+/K+-ATPase (NKA) is the main route for Na+ extrusion from cardiac myocytes. Different NKA -subunit isoforms are present in the heart. NKA-1 is predominant, although there is a variable amount of NKA-2 in adult ventricular myocytes of most species. It has been proposed that NKA-2 is localized mainly in T-tubules (TT), where it could regulate local Na+/Ca2+ exchange and thus cardiac myocyte Ca2+. However, there is controversy as to where NKA-1 vs. NKA-2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (IPump) measurements and the different ouabain sensitivity of NKA-1 (low) and NKA-2 (high) in rat heart. Ouabain-dependent IPump inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-2, K1/2 = 0.38 ± 0.16 µM) that accounts for 29.5 ± 1.3% of IPump and a low-affinity isoform (NKA-1, K1/2 = 141 ± 17 µM) that accounts for 70.5% of IPump. Detubulation decreased cell capacitance from 164 ± 6 to 120 ± 8 pF and reduced IPump density from 1.24 ± 0.05 to 1.02 ± 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-2 accounted for only 18.2 ± 1.1% of IPump. Thus, 63% of IPump generated by NKA-2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-2/NKA-1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-2 is 4.5 times higher in the T-tubules vs. ESL, whereas NKA-1 is almost uniformly distributed between the TT and ESL. T-tubules; Na+/K+ pump current; ouabain; external sarcolemma; detubulation  相似文献   

10.
Several related isoforms of p38MAPK have been identified and cloned in many species. Although they all contain the dual phosphorylation motif TGY, the expression of these isoforms is not ubiquitous. p38 and -2 are ubiquitously expressed, whereas p38 and - appear to have more restricted expression. Because there is evidence for selective activation by upstream kinases and selective preference for downstream substrates, the functions of these conserved proteins is still incompletely understood. We have demonstrated that the renal mesangial cell expresses the mRNA for all the isoforms of p38MAPK, with p38 mRNA expressed at the highest level, followed by p38 and the lowest levels of expression by p382 and -. To determine the functional effects of these proteins on interleukin (IL)-1-induced inducible nitric oxide synthase (iNOS) expression, we transduced TAT-p38 chimeric proteins into renal mesangial cells and assessed the effects of wild-type and mutant p38 isoforms on ligand induced iNOS expression. We show that whereas p38 and - had minimal effects on iNOS expression, p38 and -2 significantly altered its expression. p38 mutant and p382 wild-type dose dependently inhibited IL-1-induced iNOS expression. These data suggest that p38 and 2 have reciprocal effects on iNOS expression in the mesangial cell, and these observations may have important consequences for the development of selective inhibitors targeting the p38MAPK family of proteins. TAT proteins; p38 MAPK; inducible nitric oxide synthase; mesangial cell; interleukin-1  相似文献   

11.
Angiotensin II (ANG II) has been etiologically linked to vascular disease; however, its role in the alterations of endothelial function that occur in vascular disorders is not completely understood. Matrix metalloproteinases (MMPs) and proinflammatory cytokines are involved in the pathological remodeling of blood vessels that occurs in vascular disease. In this study we evaluated the effects of ANG II on tumor necrosis factor (TNF)- and MMP-2 production in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with ANG II (0.1–10 µM) for 24 h, in the presence or absence of antagonists of ANG II type 1 (AT1R) and type 2 (AT2R) receptors, and the production and release of TNF- and MMP-2 were assessed. ANG II increased TNF- mRNA and protein expression and the release of bioactive TNF-. Moreover, ANG II induced MMP-2 release and reduced the secretion of tissue inhibitor of MMP (TIMP)-2 from endothelial cells. To elucidate whether endogenous TNF- could mediate the effects of ANG II on MMP-2 release, cells were pretreated with anti-TNF- neutralizing antibodies or pentoxifylline (an inhibitor of TNF- synthesis). TNF- inhibition prevented the secretion of MMP-2 induced by ANG II. Furthermore, AT1R antagonism with candesartan prevented the formation of MMP-2 and TNF- and the reduction of TIMP-2 induced by ANG II. These results indicate that ANG II, via AT1R, modulates the secretion of TNF- and MMP-2 from endothelial cells and that TNF- mediates the effects of ANG II on MMP-2 release. remodeling; vasoactive mediators; inflammation  相似文献   

12.
Heterotrimeric Gi proteins may play a role in lipopolysaccharide (LPS)-activated signaling through Toll-like receptor 4 (TLR4), leading to inflammatory mediator production. Although LPS is a TLR4 ligand, the gram-positive bacterium Staphylococcus aureus (SA) is a TLR2 ligand, and group B streptococci (GBS) are neither TLR2 nor TLR4 ligands but are MyD88 dependent. We hypothesized that genetic deletion of Gi proteins would alter mediator production induced by LPS and gram-positive bacterial stimulation. We examined genetic deletion of Gi2 or Gi1/3 protein in Gi2-knockout (Gi2–/–) or Gi1/3-knockout (Gi1/3–/–) mice. LPS-, heat-killed SA-, or GBS-induced mediator production in splenocytes or peritoneal macrophages (M) was investigated. There were significant increases in LPS-, SA-, and GBS-induced production of TNF- and IFN- in splenocytes from Gi2–/– mice compared with wild-type (WT) mice. Also, LPS-induced TNF- was increased in splenocytes from Gi1/3–/– mice. In contrast to splenocytes, LPS-, SA-, and GBS-induced TNF-, IL-10, and thromboxane B2 (TxB2) production was decreased in M harvested from Gi2–/– mice. Also, LPS-induced production of IL-10 and TxB2 was decreased in M from Gi1/3–/– mice. In subsequent in vivo studies, TNF- levels after LPS challenge were significantly greater in Gi2–/– mice than in WT mice. Also, myeloperoxidase activity, a marker of tissue neutrophil infiltration, was significantly increased in the gut and lung of LPS-treated Gi2–/– mice compared with WT mice. These data suggest that Gi proteins differentially regulate murine TLR-mediated inflammatory cytokine production in a cell-specific manner in response to both LPS and gram-positive microbial stimuli. Gi protein-deficient mice; endotoxin; group B streptococci; Staphylococcus aureus; Toll-like receptors  相似文献   

13.
Laminin 5-chain, a constituent of laminins-10 and -11, is expressed in endothelial basement membranes. In this study we evaluated the roles of 5 laminins and Lutheran blood group glycoproteins (Lu), recently identified receptors of the laminin 5-chain, in the adhesion of human dermal microvascular and pulmonary artery endothelial cells. Field emission scanning electron microscopy and immunohistochemistry showed that the endothelial cells spread on laminin-10 and formed fibronectin-positive fibrillar adhesion structures. Immunoprecipitation results suggested that the cells produced fibronectin, which they could use as adhesion substratum, during the adhesion process. When the protein synthesis during the adhesion was inhibited with cycloheximide, the formation of fibrillar adhesions on laminin-10 was abolished, suggesting that laminin-10 does not stimulate the formation of any adhesion structures. Northern and Western blot analyses showed that the cells expressed Mr 78,000 and 85,000 isoforms of Lu. Quantitative cell adhesion assays showed that in the endothelial cell adhesion to laminin-10, Lu acted in concert with integrins 1 and v3, whereas in the adhesion to laminin-10/11, Lu and integrin 1 were involved. In the cells adhering to the 5 laminins, Lu and the integrins showed uniform cell surface distribution. These findings indicate that 5 laminins stimulate endothelial cell adhesion but not the formation of fibrillar or focal adhesions. Lu mediates the adhesion of human endothelial cells to 5 laminins in collaboration with integrins 1 and v3. integrin; cycloheximide  相似文献   

14.
Direct association of RhoA with specific domains of PKC-alpha   总被引:1,自引:0,他引:1  
Previous studies performed at our laboratory have shown that agonist-induced contraction of smooth muscle is associated with translocation of protein kinase C (PKC)- and RhoA to the membrane and that this interaction is due to a direct protein-protein interaction. To determine the domains of PKC- involved in direct interaction with RhoA, His-tagged PKC- proteins of individual domains and different combinations of PKC- domains were used to perform in vitro binding assays with the fusion protein glutathione-S-transferase (GST)-RhoA. Coimmunoprecipitation was also performed using smooth muscle cells transfected with truncated forms of PKC- in this study. The data indicate that RhoA directly bound to full-length PKC-, both in vitro (82.57 ± 15.26% above control) and in transfected cells. RhoA bound in vitro to the C1 domain of PKC- [PKC- (C1)] (70.48 ± 20.78% above control), PKC- (C2) (72.26 ± 29.96% above control), and PKC- (C4) (90.58 ± 26.79% above control), but not to PKC- (C3) (0.64 ± 5.18% above control). RhoA bound in vitro and in transfected cells to truncated forms of PKC-, PKC- (C2, C3, and C4), and PKC- (C3 and C4) (94.09 ± 12.13% and 85.10 ± 16.16% above control, respectively), but not to PKC- (C1, C2, and C3) or to PKC- (C2 and C3) (0.47 ± 1.26% and 7.45 ± 10.76% above control, respectively). RhoA bound to PKC- (C1 and C2) (60.78 ± 13.78% above control) only in vitro, but not in transfected cells, and PKC- (C2, C3, and C4) and PKC- (C3 and C4) bound well to RhoA. These data suggest that RhoA bound to fragments that may mimic the active form of PKC-. The studies using cells transfected with truncated forms of PKC- indicate that PKC- (C1 and C2), PKC- (C1, C2, and C3), and PKC- (C2 and C3) did not associate with RhoA. Only full-length PKC-, PKC- (C2, C3, and C4), and PKC- (C3 and C4) associated with RhoA. The association increased upon stimulation with acetylcholine. These results suggest that the functional association of PKC- with RhoA may require the C4 domain. domains; histidine; fusion proteins  相似文献   

15.
Nitric oxide (NO) modulates cellular metabolism by competitively inhibiting the reduction of O2 at respiratory complex IV. The aim of this study was to determine whether this effect could enhance cell survival in the hypoxic solid tumor core by inducing a state of metabolic arrest in cancer cells. Mitochondria from human alveolar type II-like adenocarcinoma (A549) cells showed a fourfold increase in NO-sensitive 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) fluorescence and sixfold increase in Ca2+-insensitive NO synthase (NOS) activity during equilibration from PO2s of 10023 mmHg, which was abolished by N-nitro-L-arginine methyl ester-HCl (L-NAME) and the inducible NOS (iNOS) inhibitor, N6-(1-iminoethyl)-L-lysine dihydrochloride (L-NIL). Similarly, cytosolic and compartmented DAF-FM fluorescence increased in intact cells during a transition between ambient PO2 and 23 mmHg and was abolished by transfection with iNOS antisense oligonucleotides (AS-ODN). In parallel, mitochondrial membrane potential (m), measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), decreased to a lower steady state in hypoxia without change in glycolytic rate, adenylate energy charge, or cell viability. However, L-NAME or iNOS AS-ODN treatment maintained m at normoxic levels irrespective of hypoxia and caused a marked activation of glycolysis, destabilization energy charge, and cell death. Comparison with other cancer-derived (H441) or native tissue-derived (human bronchial epithelial; alveolar type II) lung epithelial cells revealed that the hypoxic suppression of m was common to cells that expressed iNOS. The controlled dissipation of m, absence of an overt glycolytic activation, and conservation of viability suggest that A549 cells enter a state of metabolic suppression in hypoxia, which inherently depends on the activation of iNOS as PO2 falls. cancer; oxygen conformation; mitochondrial nitric oxide synthase; mitochondrial metabolism  相似文献   

16.
We showed previously that the expression of 7-integrin in aortic vascular smooth muscle cells (VSMC) is enhanced in a rat model of atherosclerosis. In the present study, we investigated the effects of platelet-derived growth factor (PDGF) on 7-integrin expression and VSMC adhesion and migration. Expression of the 7-integrin gene was determined by real-time RT-PCR, whereas protein levels were determined by fluorescence-activated cell sorting analysis. PDGF increased 7 cell surface protein expression (12 and 24 h: 3.3 ± 0.8- and 3.6 ± 0.4-fold, P < 0.05 vs. control) and mRNA levels (24 h: 3.1-fold, P < 0.05 vs. control) in a time-dependent manner. Actinomycin D and cycloheximide attenuated PDGF-induced increases in 7-integrin, indicating the involvement of de novo mRNA and protein synthesis. Treatment with the MAPK inhibitors PD-98059, SP-600125, and SB-203580 attenuated PDGF-induced increases in mRNA. In contrast, PD-98059 and SP-600125, but not SB-203580, attenuated PDGF-induced increases in cell surface protein levels. PDGF-treated VSMC adhered to laminin more efficiently (42 ± 6% increase, P < 0.01), and this increase was partially inhibited by anti-7-integrin function-blocking antibody. However, PDGF did not alter migration on laminin, and there was no effect of the anti-7-integrin function-blocking antibody on basal or PDGF-stimulated migration. Immunofluorescence imaging revealed an increase in 7-integrin distribution along the stress fibers. Together, these observations indicate that PDGF enhances 7-integrin expression in VSMC and promotes 7-integrin-mediated adhesion to laminin. vascular injury; laminin; mitogen-activated protein kinase  相似文献   

17.
Protein kinase C (PKC) is involved in the process of ischemic preconditioning (IPC), although the precise mechanism is still a subject of debate. Using specific PKC inhibitors, we investigated which PKC isoforms were involved in IPC of the human atrial myocardium sections and to determine their temporal relationship to the opening of mitochondrial potassium-sensitive ATP (mitoKATP) channels. Right atrial muscles obtained from patients undergoing elective cardiac surgery were equilibrated and then randomized to receive any of the following protocols: aerobic control, 90-min simulated ischemia/120-min reoxygenation, IPC using 5-min simulated ischemia/5-min reoxygenation followed by 90-min simulated ischemia/120-min reoxygenation and finally, PKC inhibitors were added 10 min before and 10 min during IPC followed by 90-min simulated ischemia/120-min reoxygenation. The PKC isoforms inhibitors investigated were V1–2 peptide, GO-6976, rottlerin, and LY-333531 for PKC-, -, - and -, respectively. To investigate the relation of PKC isoforms to mitoKATP channels, PKC inhibitors found to be involved in IPC were added 10 min before and 10 min during preconditioning by diazoxide followed by 90-min simulated ischemia/120-min reoxygenation in a second experiment. Creatine kinase leakage and methylthiazoletetrazolium cell viability were measured. Phosphorylation of PKC isoforms after activation of the sample by either diazoxide or IPC was detected by using Western blot analysis and then analyzed by using Scion image software. PKC- and - inhibitors blocked IPC, whereas PKC- and - inhibitors did not. The protection elicited by diazoxide, believed to be via mitoKATP channels opening, was blocked by the inhibition of PKC- but not - isoforms. In addition, diazoxide caused increased phosphorylation of PKC- to the same extent as IPC but did not affect the phosphorylation of PKC-, a process believed to be critical in PKC activation. The results demonstrate that PKC- and - are involved in IPC of the human myocardium with PKC- being upstream and PKC- being downstream of mitoKATP channels. cardioprotection; protein kinase C isoforms  相似文献   

18.
The cellular oxygen sensor is a family of oxygen-dependent proline hydroxylase domain (PHD)-containing enzymes, whose reduction of activity initiate a hypoxic signal cascade. In these studies, prolyl hydroxylase inhibitors (PHIs) were used to activate the PHD-signaling pathway in cardiomyocytes. PHI-pretreatment led to the accumulation of glycogen and an increased maintenance of ATP levels in glucose-free medium containing cyanide. The addition of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) caused a decline of ATP levels that was indistinguishable between control and PHI-treated myocytes. Despite the comparable levels of ATP depletion, PHI-preconditioned myocytes remained significantly protected. As expected, mitochondrial membrane potential (mito) collapses in control myocytes during cyanide and 2-DG treatment and it fails to completely recover upon washout. In contrast, mito is partially maintained during metabolic inhibition and recovers completely on washout in PHI-preconditioned cells. Inclusion of rotenone, but not oligomycin, with cyanide and 2-DG was found to collapse mito in PHI-pretreated myocytes. Thus, continued complex I activity was implicated in the maintenance of mito in PHI-treated myocytes, whereas a role for the "reverse mode" operation of the F1F0-ATP synthase was ruled out. Further examination of mitochondrial function revealed that PHI treatment downregulated basal oxygen consumption to only 15% that of controls. Oxygen consumption rates, although initially lower in PHI-preconditioned myocytes, recovered completely upon removal of metabolic poisons, while reaching only 22% of preinsult levels in control myocytes. We conclude that PHD oxygen-sensing mechanism directs multiple compensatory changes in the cardiomyocyte, which include a low-respiring mitochondrial phenotype that is remarkably protected against metabolic insult. fumarate; hibernation; cardioprotection; anaplerotic  相似文献   

19.
The nephrotoxic metal Cd2+ causes mitochondrial damage and apoptosis of kidney proximal tubule cells. A K+ cycle involving a K+ uniporter and a K+/H+ exchanger in the inner mitochondrial membrane (IMM) is thought to contribute to the maintenance of the structural and functional integrity of mitochondria. In the present study, we have investigated the effect of Cd2+ on K+ cycling in rat kidney cortex mitochondria. Cd2+ (EC50 19 µM) induced swelling of nonenergized mitochondria suspended in isotonic salt solutions according to the sequence KCl = NaCl > LiCl >> choline chloride. Cd2+-induced swelling of energized mitochondria had a similar EC50 value and showed the same cation dependence but was followed by a spontaneous contraction. Mitochondrial Ca2+ uniporter (MCU) blockers, but not permeability transition pore inhibitors, abolished swelling, suggesting the need for Cd2+ influx through the MCU for swelling to occur. Complete loss of mitochondrial membrane potential (m) induced by K+ influx did not prevent contraction, but addition of the K+/H+ exchanger blocker, quinine (1 mM), or the electroneutral protonophore nigericin (0.4 µM), abolished contraction, suggesting the mitochondrial pH gradient (pHm) driving contraction. Accordingly, a quinine-sensitive partial dissipation of pHm was coincident with the swelling-contraction phase. The data indicate that Cd2+ enters the matrix through the MCU to activate a K+ cycle. Initial K+ load via a Cd2+-activated K+ uniporter in the IMM causes osmotic swelling and breakdown of m and triggers quinine-sensitive K+/H+ exchange and contraction. Thus Cd2+-induced activation of a K+ cycle contributes to the dissipation of the mitochondrial protonmotive force. bongkrekic acid; cyclosporin A; lanthanum; Ru360; ruthenium red  相似文献   

20.
Enhanced expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) and other endothelial cell adhesion molecules (ECAMs) are associated with the onset and progression of inflammatory bowel disease (IBD). We show in this study that two cytochrome P-450 (CYP450) inhibitors from Citrus paradis (grapefruit), bergamottin, and 6',7'-dihydroxybergamottin (DHB) block tumor necrosis factor (TNF)--stimulated expression of MAdCAM-1 in cultured endothelial cells and also reduce 47-dependent lymphocyte adhesion. Bergamottin (20–50 µM) or DHB (10–30 µM) pretreatment dose-dependently reduced TNF--mediated expression of MAdCAM-1 and lymphocyte adhesion. Bergamottin and DHB also prevented expression of two other ECAMs, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (but not E-selectin). SKF-525a, a specific CYP450 inhibitor, also blocked the expression of MAdCAM-1 mediated by TNF-. Similar to SKF-525a (20 µM), bergamottin (20 µM) and DHB (20 µM) directly inhibited the activity of CYP450 3A4. These results suggest that natural CYP450 inhibitors may be effective in reducing ECAM expression and leukocyte adhesion and therefore be useful in the clinical treatment of inflammatory states like IBD. cytochrome P-450; inflammatory bowel disease; lymphocytes; mucosal adhesion cell adhesion molecule-1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号