首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitronectin and plasminogen activator inhibitor-1 (PAI-1) are important physiological binding partners that work in concert to regulate cellular adhesion, migration, and fibrinolysis. The high affinity binding site for PAI-1 is located within the N-terminal somatomedin B domain of vitronectin; however, several studies have suggested a second PAI-1-binding site within vitronectin. To investigate this secondary site, a vitronectin mutant lacking the somatomedin B domain (rDeltasBVN) was engineered. The short deletion had no effect on heparin-binding, integrin-binding, or cellular adhesion. Binding to the urokinase receptor was completely abolished while PAI-1 binding was still observed, albeit with a lower affinity. Analytical ultracentrifugation on the PAI-1-vitronectin complex demonstrated that increasing NaCl concentration favors 1:1 versus 2:1 PAI-1-vitronectin complexes and hampers formation of higher order complexes, pointing to the contribution of charge-charge interactions for PAI-1 binding to the second site. Furthermore, fluorescence resonance energy transfer between differentially labeled PAI-1 molecules confirmed that two independent molecules of PAI-1 are capable of binding to vitronectin. These results support a model for the assembly of higher order PAI-1-vitronectin complexes via two distinct binding sites in both proteins.  相似文献   

2.
Vitronectin and plasminogen activator inhibitor-1 (PAI-1) are proteins that interact in the circulatory system and pericellular region to regulate fibrinolysis, cell adhesion, and migration. The interactions between the two proteins have been attributed primarily to binding of the somatomedin B (SMB) domain, which comprises the N-terminal 44 residues of vitronectin, to the flexible joint region of PAI-1, including residues Arg-103, Met-112, and Gln-125 of PAI-1. A strategy for deletion mutagenesis that removes the SMB domain demonstrates that this mutant form of vitronectin retains PAI-1 binding (Schar, C. R., Blouse, G. E., Minor, K. M., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309). In the current study, the complementary binding site on PAI-1 was mapped by testing for the ability of a battery of PAI-1 mutants to bind to the engineered vitronectin lacking the SMB domain. This approach identified a second, separate site for interaction between vitronectin and PAI-1. The binding of PAI-1 to this site was defined by a set of mutations in PAI-1 distinct from the mutations that disrupt binding to the SMB domain. Using the mutations in PAI-1 to map the second site suggested interactions between alpha-helices D and E in PAI-1 and a site in vitronectin outside of the SMB domain. The affinity of this second interaction exhibited a K(D) value approximately 100-fold higher than that of the PAI-1-somatomedin B interaction. In contrast to the PAI-1-somatomedin B binding, the second interaction had almost the same affinity for active and latent PAI-1. We hypothesize that, together, the two sites form an extended binding area that may promote assembly of higher order vitronectin-PAI-1 complexes.  相似文献   

3.
The serine proteinase inhibitor, plasminogen activator inhibitor type-1 (PAI-1), binds to the adhesion protein vitronectin with high affinity at a site that is located directly adjacent to the vitronectin RGD integrin binding sequence. The binding of PAI-1 to vitronectin sterically blocks integrin access to this site and completely inhibits the binding of purified integrins to vitronectin; however, its inhibition of endothelial and smooth muscle cell adhesion to vitronectin is at most 50-75%. Because PAI-1 binds vitronectin with approximately 10-100-fold higher affinity than purified integrins, we have analyzed the mechanism whereby these cells are able to overcome this obstacle. Our studies exclude proteolytic removal of PAI-1 from vitronectin as the mechanism, and show instead that cell adhesion in the presence of PAI-1 is dependent on integrin-cytoskeleton engagement. Disrupting endothelial or smooth muscle cell actin polymerization and/or focal adhesion assembly reduces cell adhesion to vitronectin in the presence of PAI-1 to levels similar to that observed for the binding of purified integrins to vitronectin. Furthermore, endothelial cell, but not smooth muscle cell adhesion to vitronectin in the presence of PAI-1 requires both polymerized microtubules and actin, further demonstrating the importance of the cytoskeleton for integrin-mediated adhesion. Finally, we show that cell adhesion in the presence of PAI-1 leads to colocalization of PAI-1 with the integrins alphavbeta3 and alphavbeta5 at the cell-matrix interface.  相似文献   

4.
Cell migration involves the integrins, their extracellular matrix ligands, and pericellular proteolytic enzyme systems. We have studied the role of plasminogen activator inhibitor-1 (PAI-1) in cell migration, using human amnion WISH cells and human epidermoid carcinoma HEp-2 cells in an assay measuring migration from microcarrier beads and a modified Boyden-chamber assay. Active, but not latent or reactive center-cleaved, PAI-1 inhibited migration. A PAI-1 mutant without ability to inhibit plasminogen activation was as active as wild-type PAI-1 as a migration inhibitor, showing that inhibition of plasminogen activation was not involved. PAI-1 specifically interfered with integrin- and vitronectin-mediated migration: Migration onto vitronectin-coated but not onto fibronectin-coated surfaces was inhibited by PAI-1, a cyclic RGD peptide inhibited migration, and both cell lines expressed vitronectin-binding αv-integrins. In addition, active PAI-1, but not latent or reactive center-cleaved PAI-1, inhibited vitronectin binding to integrins in anin vitrobinding assay, without affecting binding of fibronectin. Monoclonal antibodies against the urokinase receptor, another vitronectin binding protein, did not affect cell migration in the beads assay, while some inhibitory effect was observed in the Boyden-chamber assay. We conclude that PAI-1, independently of its role as a proteinase inhibitor, inhibits cell migration by competing for vitronectin binding to integrins, while the interference of PAI-1 with binding of vitronectin to the urokinase receptor may play a secondary role. These data define a novel function for the serpin PAI-1, enabling it to regulate cell migration over vitronectin-rich extracellular matrix in the body.  相似文献   

5.
《The Journal of cell biology》1996,134(6):1563-1571
Induction of the urokinase type plasminogen activator receptor (uPAR) promotes cell adhesion through its interaction with vitronectin (VN) in the extracellular matrix, and facilitates cell migration and invasion by localizing uPA to the cell surface. We provide evidence that this balance between cell adhesion and cell detachment is governed by PA inhibitor-1 (PAI-1). First, we demonstrate that uPAR and PAI-1 bind to the same site in VN (i.e., the amino-terminal somatomedin B domain; SMB), and that PAI-1 competes with uPAR for binding to SMB. Domain swapping and mutagenesis studies indicate that the uPAR-binding sequence is located within the central region of the SMB domain, a region previously shown to contain the PAI-1-binding motif. Second, we show that PAI-1 dissociates bound VN from uPAR and detaches U937 cells from their VN substratum. This PAI-1 mediated release of cells from VN appears to occur independently of its ability to function as a protease inhibitor, and may help to explain why high PAI-1 levels indicate a poor prognosis for many cancers. Finally, we show that uPA can rapidly reverse this effect of PAI-1. Taken together, these results suggest a dynamic regulatory role for PAI-1 and uPA in uPAR-mediated cell adhesion and release.  相似文献   

6.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically hydrolyzes the Ser(337)-Ser(338) (P10-P9) and Val(341)-Ile(342) (P6-P5) peptide bonds in human plasminogen activator inhibitor-1 (PAI-1). Cleavage is completely abolished in the presence of the metal chelators EDTA or 1,10-phenanthroline. A stabilized active PAI-1 variant was also cleaved by MMP-3. At an enzyme/substrate ratio of 1/10 at 37 degrees C, PAI-1 protein cleavage occurred with half-lives of 27 or 14 min for active or stable PAI-1 and was associated with rapid loss of inhibitory activity toward tissue-type plasminogen activator with half-lives of 15 or 13 min, respectively. A substrate-like variant of PAI-1, lacking inhibitory activity but with exposed reactive site loop, was cleaved with a half-life of 23 min, whereas latent PAI-1 in which a major part of the reactive site loop is inserted into the molecule, was resistant to cleavage. Biospecific interaction analysis indicated comparable binding of active, stable, and substrate PAI-1 to both proMMP-3 and MMP-3 (K(A) of 12-22 x 10(6) m(-1)), whereas binding of latent PAI-1 occurred with lower affinity (1.7-2.3 x 10(6) m(-1)). Stable PAI-1 bound to vitronectin was cleaved and inactivated by MMP-3 in a manner comparable with that of free PAI-1; however, the cleaved protein did not bind to vitronectin. Cleavage and inactivation of PAI-1 by MMP-3 may thus constitute a mechanism decreasing the antiproteolytic activity of PAI-1 and impairing the potential inhibitory effect of vitronectin-bound PAI-1 on cell adhesion and/or migration.  相似文献   

7.
The serpin plasminogen activator inhibitor-1 (PAI-1) has a dual function: 1) it plays an important role as a direct inhibitor of the plasminogen activation system, and 2) its interaction with the adhesive glycoprotein vitronectin suggests a role in tissue remodeling and metastasis, independent from its proteinase inhibitory properties. Unique to this serpin is the close association between its conformational and functional properties. Indeed, PAI-1 can occur in an active and a latent conformation, but both functions are exclusively present in the active conformation. We report here the epitope localization and functional effects of a monoclonal antibody (MA-124K1) that inhibits rat PAI-1 activity and simultaneously increases the binding of inactive PAI-1 to vitronectin (the affinity constant of PAI-1 for vitronectin is 2 x 10(7) m(-1) in the absence of MA-124K1 and 160 x 10(7) m(-1) in the presence of MA-124K1). To the best of our knowledge, this is the first monoclonal antibody dissociating the proteinase inhibitory properties from the vitronectin binding properties in PAI-1. Mutation of Glu(212) and/or Glu(220) in rat PAI-1 to Ala results in a strongly reduced affinity or absence of binding to MA-124K1. The three-dimensional structure of PAI-1 reveals that these residues constitute a conformational epitope close to the reactive-site loop and compatible with the effect of MA-124K1 on the inhibitory properties of PAI-1. However, the vitronectin binding site is localized at the opposite site of the molecule, indicating that the effect of MA-124K1 involves an allosteric modulation of the vitronectin binding site. Cell culture experiments revealed a significant reduction of cell attachment and migration in the presence of MA-124K1, providing evidence for the functional relevance of this antibody-mediated up-regulation of the vitronectin binding properties of PAI-1. In conclusion, a novel mechanism for interference with PAI-1 functions has been identified and is of importance in the modulation of cell migration and related events (e.g. tumor metastasis).  相似文献   

8.
Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin   总被引:14,自引:0,他引:14  
Immobilized vitronectin was found to bind both purified plasminogen activator inhibitor type 1 (PAI-1) and the PAI-1 in conditioned culture medium of human sarcoma cells. Similarly, immobilized PAI-1 bound both purified vitronectin and vitronectin from normal human serum. These interactions were demonstrated using both enzyme immunoassay and radioiodinated proteins. Solid-phase vitronectin bound PAI-1 with Kd 1.9 x 10(-7) M, and the reverse interaction gave a Kd 5.5 x 10(-8) M. Evidence was also found for a second type of binding with a Kd below 10(-10) M. The molar ratios of the two proteins in the complex at the saturation levels were approximately one molecule of soluble PAI-1 bound per three molecules of immobilized vitronectin and approximately one molecule of soluble vitronectin being bound per one molecule of immobilized PAI-1. Binding of PAI-1 to vitronectin did not lead to an irreversible loss of the ability of PAI-1 to inhibit urokinase (u-PA) and tissue-type plasminogen activator (t-PA). Active u-PA released vitronectin-bound 125I-labeled PAI-1 radioactivity, suggesting that u-PA interacts with the complex. The Mr 50,000 urokinase cleavage product of PAI-1 also bound to vitronectin, but this bound fragment did not inhibit u-PA. Binding of PAI-1 to vitronectin did not interfere with the ability of vitronectin to promote the adhesion and spreading of cells. These results suggest that the interaction between vitronectin and PAI-1 may serve to confine pericellular u-PA activity to focal contact sites where cells use proteolysis in regional detachment.  相似文献   

9.
How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration   总被引:7,自引:0,他引:7  
The interaction of the plasma protein vitronectin with plasminogen activator inhibitor-1 (PAI-1) is central to human health. Vitronectin binding extends the lifetime of active PAI-1, which controls hemostasis by inhibiting fibrinolysis and has also been implicated in angiogenesis. The PAI-1-vitronectin binding interaction also affects cell adhesion and motility. For these reasons, elevated PAI-1 activities are associated both with coronary thrombosis and with a poor prognosis in many cancers. Here we show the crystal structure at a resolution of 2.3 A of the complex of the somatomedin B domain of vitronectin with PAI-1. The structure of the complex explains how vitronectin binds to and stabilizes the active conformation of PAI-1. It also explains the tissue effects of PAI-1, as PAI-1 competes for and sterically blocks the interaction of vitronectin with cell surface receptors and integrins. Structural understanding of the essential biological roles of the interaction between PAI-1 and vitronectin opens the prospect of specifically designed blocking agents for the prevention of thrombosis and treatment of cancer.  相似文献   

10.
Plasminogen activator inhibitor-1 (PAI-1) binds to the somatomedin B (SMB) domain of vitronectin. It inhibits the adhesion of U937 cells to vitronectin by competing with the urokinase receptor (uPAR; CD87) on these cells for binding to the same domain. Although the inhibitor also blocks integrin-mediated cell adhesion, the molecular basis of this effect is unclear. In this study, the effect of the inhibitor on the adhesion of a variety of cells (e.g., U937, MCF7, HT-1080, and HeLa) to vitronectin was assessed, and the importance of the SMB domain in these interactions was determined. Although PAI-1 blocked the adhesion of all of these cells to vitronectin-coated wells, it did not block adhesion to a variant of vitronectin which lacked the SMB domain. Interestingly, HT-1080 and U937 cells attached avidly to microtiter wells coated with purified recombinant SMB (which does not contain the RGD sequence), and this adhesion was again blocked by the inhibitor. These results affirm that PAI-1 can inhibit both uPAR- and integrin-mediated cell adhesion, and demonstrate that the SMB domain of vitronectin is required for these effects. They also show that multiple cell types can employ uPAR as an adhesion receptor. The use of purified recombinant SMB should help to further define this novel adhesive pathway, and to delineate its relationship with integrin-mediated adhesive events.  相似文献   

11.
The interaction between guanidine-activated bovine type 1 plasminogen activator inhibitor (PAI-1) and bovine vitronectin was investigated. Activated PAI-1 bound to vitronectin in a dose- and time-dependent manner, and binding was saturable. The dissociation constant (Kd) for this interaction was estimated to be 3.10(-10) mol/l by Scatchard analysis. Complexes of activated PAI-1 and vitronectin were relatively stable at 4 degrees C (T1/2 greater than 24 h), but dissociated with a T1/2 of 4 h at 37 degrees C. The half-life of PAI-1 activity was increased from 2.5 to 4.5 h upon binding to immobilized vitronectin. In order to identify the binding domain(s) in vitronectin for activated PAI-1, the ability of PAI-1 to bind to vitronectin fragments was assessed. Vitronectin was cleaved by thrombin in a dose- and time-dependent manner, generating fragments of Mr 60,000, 54,000 and 38,000. The PAI-1 binding domain(s) were not destroyed by this treatment, since the digested vitronectin competed with immobilized vitronectin for PAI-1 binding to the same extent as uncleaved vitronectin. The thrombin digested vitronectin fragments were fractionated by SDS-PAGE and analyzed by PAI-1 ligand binding. The smallest fragment (Mr 38,000) retained PAI-1 binding function, and sequence analysis demonstrated that this fragment contained the NH2-terminus of bovine vitronectin. These results suggest that the high-affinity binding site for activated PAI-1 is located in the NH2-terminal region of the bovine vitronectin molecule.  相似文献   

12.
Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1   总被引:4,自引:0,他引:4  
The process of angiogenesis is important in both normal and pathologic physiology. However, the mechanisms whereby factors such as basic fibroblast growth factor promote the formation of new blood vessels are not known. In the present study, we demonstrate that exogenously added plasminogen activator inhibitor-1 (PAI-1) at therapeutic concentrations is a potent inhibitor of basic fibroblast growth factor-induced angiogenesis in the chicken chorioallantoic membrane. By using specific PAI-1 mutants with either their vitronectin binding or proteinase inhibitor activities ablated, we show that the inhibition of angiogenesis appears to occur via two distinct but apparently overlapping pathways. The first is dependent on PAI-1 inhibition of proteinase activity, most likely chicken plasmin, while the second is independent of PAI-1's anti-proteinase activity and instead appears to act through PAI-1 binding to vitronectin. Together, these data suggest that PAI-1 may be an important factor regulating angiogenesis in vivo.  相似文献   

13.
Plasminogen activator inhibitor-type 1 (PAI-1) is the primary inhibitor of endogenous plasminogen activators that generate plasmin in the vicinity of a thrombus to initiate thrombolysis, or in the pericellular region of cells to facilitate migration and/or tissue remodeling. It has been shown that the physiologically relevant form of PAI-1 is in a complex with the abundant plasma glycoprotein, vitronectin. The interaction between vitronectin and PAI-1 is important for stabilizing the inhibitor in a reactive conformation. Although the complex is clearly significant, information is vague regarding the composition of the complex and consequences of its formation on the distribution and activity of vitronectin in vivo. Most studies have assumed a 1:1 interaction between the two proteins, but this has not been demonstrated experimentally and is a matter of some controversy since more than one PAI-1-binding site has been proposed within the sequence of vitronectin. To address this issue, competition studies using monoclonal antibodies specific for separate epitopes confirmed that the two distinct PAI-1-binding sites present on vitronectin can be occupied simultaneously. Analytical ultracentrifugation was used also for a rigorous analysis of the composition and sizes of complexes formed from purified vitronectin and PAI-1. The predominant associating species observed was high in molecular weight (M(r) approximately 320,000), demonstrating that self-association of vitronectin occurs upon interaction with PAI-1. Moreover, the size of this higher order complex indicates that two molecules of PAI-1 bind per vitronectin molecule. Binding of PAI-1 to vitronectin and association into higher order complexes is proposed to facilitate interaction with macromolecules on surfaces.  相似文献   

14.
Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin   总被引:2,自引:0,他引:2  
Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), circulates as a complex with the abundant plasma glycoprotein, vitronectin. This interaction stabilizes the inhibitor in its active conformation In this report, the effects of vitronectin on the interactions of PAI-1 with fibrin clots were studied. Confocal microscopic imaging of platelet-poor plasma clots reveals that essentially all fibrin-associated PAI-1 colocalizes with fibrin-bound vitronectin. Moreover, formation of platelet-poor plasma clots in the presence of polyclonal antibodies specific for vitronectin attenuated the inhibitory effects of PAI-1 on t-PA-mediated fibrinolysis. Addition of vitronectin during clot formation markedly potentiates PAI-1-mediated inhibition of lysis of (125)I-labeled fibrin clots by t-PA. This effect is dependent on direct binding interactions of vitronectin with fibrin. There is no significant effect of fibrin-associated vitronectin on fibrinolysis in the absence of PAI-1. The binding of PAI-1 to fibrin clots formed in the absence of vitronectin was characterized by a low affinity (K(d) approximately 3.5 micrometer) and rapid loss of PAI-1 inhibitory activity over time. In contrast, a high affinity and stabilization of PAI-1 activity characterized the cooperative binding of PAI-1 to fibrin formed in the presence of vitronectin. These findings indicate that plasma PAI-1.vitronectin complexes can be localized to the surface of fibrin clots; by this localization, they may modulate fibrinolysis and clot reorganization.  相似文献   

15.
The inactivation of plasminogen activator inhibitor-1 (PAI-1) by the small molecule PAI-1 inhibitor PAI-039 (tiplaxtinin) has been investigated using enzymatic analysis, direct binding studies, site-directed mutagenesis, and molecular modeling studies. Previously PAI-039 has been shown to exhibit in vivo activity in various animal models, but the mechanism of inhibition is unknown. PAI-039 bound specifically to the active conformation of PAI-1 and exhibited reversible inactivation of PAI-1 in vitro. SDS-PAGE indicated that PAI-039 inactivated PAI-1 predominantly through induction of PAI-1 substrate behavior. Preincubation of PAI-1 with vitronectin, but not bovine serum albumin, blocked PAI-039 activity while analysis of the reciprocal experiment demonstrated that preincubation of PAI-1 with PAI-039 blocked the binding of PAI-1 to vitronectin. Together, these data suggest that the site of interaction of the drug on PAI-1 is inaccessible when PAI-1 is bound to vitronectin and may overlap with the PAI-1 vitronectin binding domain. This was confirmed by site-directed mutagenesis and molecular modeling studies, which suggest that the binding epitope for PAI-039 is localized adjacent to the previously identified interaction site for vitronectin. Thus, these studies provide a detailed characterization of the mechanism of inhibition of PAI-1 by PAI-039 against free, but not vitronectin-bound PAI-1, suggesting for the first time a novel pool of PAI-1 exists that is vulnerable to inhibition by inactivators that bind at the vitronectin binding site.  相似文献   

16.
Functional cooperation between integrins and growth factor receptors has been reported for several systems, one of which is the modulation of insulin signaling by alphavbeta3 integrin. Plasminogen activator inhibitor type-1 (PAI-1), competes with alphavbeta3 integrin for vitronectin (VN) binding. Here we report that PAI-1, in a VN-dependent manner, prevents the cooperation of alphavbeta3 integrin with insulin signaling in NIH3T3 fibroblasts, resulting in a decrease in insulin-induced protein kinase B (PKB) phosphorylation, vascular endothelial growth factor (VEGF) expression and cell migration. Insulin-induced HUVEC migration and angiotube formation was also enhanced in the presence of VN and this enhancement is inhibited by PAI-1. By using specific PAI-1 mutants with either VN binding or plasminogen activator (PA) inhibiting activities ablated, we have shown that the PAI-1-mediated interference with insulin signaling occurs through its direct interaction with VN, and not through its PA neutralizing activity. Moreover, using cells deficient for uPA receptor (uPAR) we have demonstrated that the inhibition of PAI-1 on insulin signaling is independent of uPAR-VN binding. These results constitute the first demonstration of the interaction of PAI-1 with the insulin response.  相似文献   

17.
Human Hep G2 hepatoma and HT 1080 fibrosarcoma cells were cultured in large scale under conditions which allowed enhanced secretion of plasminogen activator inhibitor-1 (PAI-1). A modified urokinase was obtained by reacting urokinase with phenylmethylsulfonyl fluoride followed by alkali treatment. The resulting product, called anhydrourokinase, was found to reversibly bind the PAI-1 when immobilized on cyanogen bromide-activated Sepharose 4B beads. Using this affinity absorbent, we have purified PAI-1 from the cell-conditioned media. A number of differences have been observed during Hep G2 and HT 1080 PAI purification. 1) The PAI activity in Hep G2 medium concentrate is more stable, and the concentrate depleted of active PAI-1 showed spontaneous regeneration of PAI-1 activity. In contrast, the PAI activity in HT 1080 medium concentrate declines rapidly on standing. 2) Hep G2 PAI-1 invariably copurified with an adhesive protein, vitronectin or its NH2-terminal fragment, while pure HT 1080 PAI-1 alone was obtained by affinity purification on anhydrourokinase-Sepharose 4B. 3) Based on specific activity measurement and complex formation analysis using a sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis technique, the purified Hep G2 PAI-1 appears completely active while the HT 1080 PAI-1 is only one-fourth as active. SDS was found to exert dual effects on purified PAI-1s. SDS treatment partially inactivated a fully active Hep G2 PAI-1 and a moderately active HT 1080 PAI-1 but partially activated an HT 1080 PAI-1 whose activity had previously been allowed to decay to a very low level. Purified vitronectin was found to enhance and stabilize the PAI-1 activity of the partially active HT 1080 PAI-1. It is concluded that fully active PAI-1 in association with vitronectin can be isolated by anhydrourokinase-Sepharose 4B chromatography and that vitronectin is a binding protein for PAI-1 which activates and stabilizes PAI-1.  相似文献   

18.
Serine proteinase inhibitors, including plasminogen activator inhibitor type 1 (PAI-1) and antithrombin, are key regulators of hemostatic processes such as thrombosis and wound healing. Much evidence suggests that PAI-1 can influence such processes, as well as pathological events like tumor metastasis, through its ability to directly regulate binding of blood platelets and cells to extracellular substrata. One way that PAI-1 influences these processes may be mediated through its binding to the plasma protein vitronectin. Binding to PAI-1 results in the incorporation of vitronectin into a higher order complex with a potential for multivalent interactions (Podor, T. J., Shaughnessy, S. G., Blackburn, M. N., and Peterson, C. B. (2000) J. Biol. Chem. 275, 25402-25410). In this study, evidence is provided to support this concept from studies on the effects of PAI-1-induced multimerization on the interactions of vitronectin with matrix components and cell surface receptors. By monitoring complex formation and stability over time using size-exclusion high performance liquid chromatography, a correlation is made between PAI-1-induced multimerization and enhanced cell/matrix binding properties of vitronectin. This evidence indicates that PAI-1 alters the adhesive functions of vitronectin by converting the protein via the higher order complex to a self-associated, multivalent species that is functionally distinct from the abundant monomeric form found in the circulation.  相似文献   

19.
Protein E (PE) of Haemophilus influenzae is a highly conserved ubiquitous surface protein involved in adhesion to and activation of epithelial cells. The host proteins—vitronectin, laminin, and plasminogen are major targets for PE-dependent interactions with the host. To identify novel inhibitory molecules of PE, we used an in vitro selection method based on systematic evolution of ligands by exponential enrichment known as SELEX in order to select 2′F-modified RNA aptamers that specifically bind to PE. Fourteen selection cycles were performed with decreasing concentrations of PE. Sequencing of clones from the 14th selection round revealed the presence of semiconserved sequence motifs in loop regions of the RNA aptamers. Among these, three aptamers showed the highest affinity to PE in electrophoretic mobility shift assays and in dot blots. These three aptamers also inhibited the interaction of PE with vitronectin as revealed by ELISA. Moreover, pre-treatment of H. influenzae with the aptamers significantly inhibited binding of vitronectin to the bacterial surface. Biacore experiments indicated that one of the aptamers had a higher binding affinity for PE as compared to the other aptamers. Our results show that it is possible to select RNA inhibitors against bacterial adhesins using SELEX in order to inhibit interactions with target proteins.  相似文献   

20.
《The Journal of cell biology》1990,111(5):2183-2195
Polyclonal antibodies against plasminogen activator inhibitor type-I (PAI-1) caused rapid retraction and rounding of substrate-attached HT- 1080 cells. The kinetics and extent of antibody-mediated cell rounding were not dependent on either urokinase or plasmin activity. Cells adherent to vitronectin-coated substrates detached within 2 h of antibody addition. Cells adherent to fibronectin were unaffected by the antibodies. Immunoblotting of substrate-attached material indicated that HT-1080 cells deposited PAI-1 into vitronectin, but not fibronectin, dependent contacts. These data suggest that the antibody- mediated cell rounding resulted from a steric disruption of vitronectin- dependent adhesions, indicating that the binding site on vitronectin for PAI-1 is near, but does not overlap, the binding site for vitronectin receptor. The accumulation of PAI-1 into vitronectin- dependent adhesion sites correlated temporally with the preferential degradation of fibronectin from the substrate. HT-1080 cells adherent to either fibronectin or vitronectin were able to activate exogenous plasminogen to plasmin. Plasmin levels were increased 200% on cells adherent to fibronectin and 100% on cells adherent to vitronectin. In the presence of a neutralizing antibody against PAI-1, vitronectin adherent cells activated plasminogen to the same extent as fibronectin adherent cells. Plasmin levels of 200% above baseline were associated with retraction of cells from the substrate. The ability of vitronectin adherent cells to activate exogenous plasmin was completely blocked in the presence of neutralizing antibodies against urokinase. These data represent the first demonstration that vitronectin-associated PAI-1 regulates urokinase in focal contact areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号