首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species that originated in China and has been introduced to Hawaii and the U.S. mainland. Colonies are headed either by a pair of reproductives (simple families) or by varying numbers of inbreeding reproductives (extended families), and therefore have variable degrees of inbreeding. Worker size also varies among colonies of Formosan termites. We tested whether variation in worker size can be explained by the breeding system. Workers were collected from colonies from three geographically separated populations (China, Hawaii, and Louisiana), and body weight and head size were measured. Microsatellite genotyping was used to establish whether colonies were simple or extended families and to determine the heterozygosity of workers and their degree of inbreeding relative to their colony (F (IC), sensitive to the number of reproductives). All Chinese colonies contained multiple inbreeding neotenics. In Hawaii, 37% of the colonies were simple families and 63% were extended families, both having considerable degrees of inbreeding. In Louisiana, 57% of the colonies were simple families, which were mostly headed by unrelated pairs, and 43% were extended families. In simple families, size and body weight of workers were not associated with F (IC) or heterozygosity. In extended families of two populations, both size parameters were negatively correlated with F (IC); however, heterozygosity was not associated with worker size in any of the populations. This suggests that the number of reproductives within colonies has a stronger influence on worker size than the individuals' genetic diversity in Formosan subterranean termite colonies.  相似文献   

2.
The success of evaluating areawide control of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), in urban landscapes hinges on detailed understanding of colony movement and plasticity of the breeding system. Most previous studies of colony affiliation and breeding systems of C. formosanus have been conducted in relatively undisturbed park-like areas. However, disturbance in the form of landscaping, construction, and nearby treatment may impact termite colony dynamics in urban habitats. Therefore, we used microsatellite genotyping to identify the number of colonies, assess colony movement, and investigate the breeding structure of colonies surrounding the Supreme Court Building in New Orleans, LA. During 4 yr, 18 distinct colonies were identified in the study area. In contrast to earlier studies in park-like areas, which indicated stable foraging areas, colonies in this study moved frequently into and out of inground stations. Five colonies were simple families; two of these colonies were headed by inbred nestmate pairs, and three of these colonies were headed by outbred unrelated pairs. Thirteen colonies were extended families headed by fewer than five neotenic reproductives. During the study, the predominant breeding system shifted; simple family colonies either moved or were eliminated, and they were replaced with new extended family colonies. In one case, a generation turnover within a colony from simple to extended family was observed.  相似文献   

3.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species in many parts of the world, including the U.S. mainland. The reasons for its invasive success may have to do with the flexible social and spatial organization of colonies. We investigated the population and breeding structure of 14 C. formosanus colonies in Louis Armstrong Park, New Orleans, LA. This population has been the focus of extensive study for many years, providing the opportunity to relate aspects of colony breeding structure to previous findings on colony characteristics such as body weight and number of workers, wood consumption, and intercolony aggression. Eight colonies were headed by a single pair of outbred reproductives (simple families), whereas six colonies were headed by low numbers of multiple kings and/or queens that were likely the neotenic descendants of the original colony (extended families). Within the foraging area of one large extended family colony, we found genetic differentiation among different collection sites, suggesting the presence of separate reproductive centers. No significant difference between simple family colonies and extended family colonies was found in worker body weight, soldier body weight, foraging area, population size, or wood consumption. However, level of inbreeding within colonies was negatively correlated with worker body weight and positively correlated with wood consumption. Also, genetic distance between colonies was positively correlated with aggression levels, suggesting a genetic basis to nestmate discrimination cues in this termite population. No obvious trait associated with colony reproductive structure was found that could account for the invasion success of this species.  相似文献   

4.
The goal of this study was to test whether the breeding system and/or the degree of inbreeding of field colonies of the Formosan subterranean termite, Coptotermes formosanus, Shiraki (Isoptera: Rhinotermitidae) influences bacterial load on the cuticle of foraging workers. We enumerated bacterial load on the cuticle of groups of workers foraging in 20 inground monitoring stations surrounding the French Market in New Orleans, LA, and identified bacteria species using 16S rRNA gene sequencing. We used microsatellite genotyping to assign the 20 worker groups to seven simple family colonies (headed by a single pair of reproductives) and four extended family colonies (headed by multiple inbreeding reproductives) with a wide range of degrees of inbreeding. Workers from extended family colonies had a higher bacterial load than those from simple family colonies; however, bacterial load was not significantly correlated to the degree of inbreeding, possibly because of confounding factors in colony life history, such as age and/or size of colonies. Colonies with high bacterial load did not have a higher proportion of entomopathogens, and thus, bacterial load is not necessarily an indicator for disease risk. The majority of bacteria cultured from the cuticle of termites were soil bacteria with no known pathology against termites.  相似文献   

5.
Subterranean termites have unusual plasticity in their breeding systems. As a result of their cryptic foraging and nesting habits, detailed information on the numbers and types of reproductive individuals in colonies has been difficult to obtain. In this study, we used microsatellite markers to infer the major features of the breeding system of the Formosan subterranean termite, Coptotermes formosanus, in southern Japan, where it is believed to have been introduced from China. A total of 30 colonies was sampled from two islands (Kyushu and Fukue) located 100 km apart. Twenty workers from each colony were genotyped at six microsatellite loci. Analysis of worker genotypes within colonies indicated that 27 colonies (90%) were simple (Mendelian) families. The remaining three colonies, all from Kyushu, were consistent with being extended families having begun as simple families but being currently headed by multiple neotenic (secondary) reproductives descended from the original king and queen. Workers from simple families in both populations were significantly inbred (FIT = 0.10 for Kyushu and 0.46 for Fukue) and highly related to their nestmates (coefficient of relatedness, r = 0.59 for Kyushu and 0.77 for Fukue), suggesting that many simple-family colonies were headed by closely related reproductives, especially in the Fukue population. This conclusion is supported by the high coefficient of relatedness between nestmate reproductives in simple-family colonies (r = 0.23 for Kyushu and 0.61 for Fukue) based on genotypes inferred from their worker offspring. There was moderate genetic differentiation (FST = 0.12) between the two populations, suggesting rather restricted gene flow between them. There was no significant isolation by distance among colonies, as might be expected given the limited dispersal of reproductives, presumably because of the frequent movement of colonies by humans. Finally, there was no evidence of a recent bottleneck, a finding possibly consistent with the more than 300-year history of this species in Japan.  相似文献   

6.
Aldrich BT  Kambhampati S 《Heredity》2007,99(4):443-451
Understanding the origin and maintenance of eusociality in termites has proved problematic, in part, due to a lack of knowledge concerning the variability and evolutionary changes in termite breeding structure. One way to address this is to compare the population genetics of a broad range of termite species. However, few studies have investigated the population genetics of basal termite taxa. We used 12 polymorphic microsatellite loci to characterize and compare the colony genetic structure of 18 colonies of two basal termite subspecies, Zootermopsis nevadensis nevadensis and Zootermopsis nevadensis nuttingi. The average relatedness (r) among individuals within a colony was high (0.59) and similar to values reported for other termite species. Average relatedness between colony founders was lower (0.21) suggesting the alates outbreed. Genotypes of workers and soldiers in 4 out of the 18 colonies were consistent with reproduction by a single pair of primary reproductives and the remaining colonies were inferred to have been derived from more than two reproductives. Eleven colonies with three or more reproductives were consistent with replacement reproductives (neotenics) and the remaining three colonies included genetic contribution from three or more primary reproductives. Comparisons between the subspecies revealed significant differences in breeding structure, specifically in the number and types of reproductives (that is, primaries or neotenics). Furthermore, we observed a larger proportion of colonies with greater than three primary reproductives compared to more derived termite lineages. Thus, our results suggest that breeding structure can vary significantly among termite taxa.  相似文献   

7.
Summary The Formosan subterranean termite, Coptotermes formosanus Shiraki is the most destructive, difficult to control and economically important species of termite in the southern United States. At present, no information is available on the genetic relatedness of primary Formosan subterranean termite reproductives that establish new colonies. Information on survivorship and fitness components of primary reproductives from different sibships (sibling or nonsibling) is helpful to our understanding of biological and ecological characteristics of different breeding generations in C. formosanus. The present study examined the effects of sibship and colony origin on growth and mortality of incipient colonies of C. formosanus. Seven stock colonies of C. formosanus were collected in 1996 through 1997 in New Orleans and Lake Charles, La, USA. A total of 338 incipient colonies of sibling pairs or nonsibling pairs of C. formosanus were set up. The study indicated that mate relatedness significantly affected mortality and fitness. Nonsibling mates suffered significantly higher mortality than sibling mates originated from New Orleans. However, the decreased success of outbred mates was offset by an increased fecundity compared to inbred colonies over time. Both sibling- and nonsibling-founded colonies from Lake Charles had a significantly higher survival rate than did colonies from New Orleans. Colonies from Lake Charles also produced a significantly higher number of larvae/workers than colonies from New Orleans. The mismatch of habits by mates from different locations and the potential for greater disease risks may be associated with higher mortality in outbred pairs. However, heterozygous offspring of outbred pairs probably have increased genetic variation, which provides greater adaptation potential, thus making the colony more robust in the face of environmental fluctuations.Received 11 March 2002; revised 26 February 2003; accepted 14 March 2003.  相似文献   

8.
Social insects exhibit remarkable variation in their colony breeding structures, both within and among species. Ecological factors are believed to be important in shaping reproductive traits of social insect colonies, yet there is little information linking specific environmental variables with differences in breeding structure. Subterranean termites (Rhinotermitidae) show exceptional variation in colony breeding structure, differing in the number of reproductives and degree of inbreeding; colonies can be simple families headed by a single pair of monogamous reproductives (king and queen) or they can be extended families headed by multiple inbreeding neotenic reproductives (wingless individuals). Using microsatellite markers, we characterized colony breeding structure and levels of inbreeding in populations over large parts of the range of the subterranean termites Reticulitermes flavipes in the USA and R. grassei in Europe. Combining these new data with previous results on populations of both species, we found that latitude had a strong effect on the proportion of extended‐family colonies in R. flavipes and on levels of inbreeding in both species. We examined the effect of several environmental variables that vary latitudinally; while the degree of inbreeding was greatest in cool, moist habitats in both species, seasonality affected the species differently. Inbreeding in R. flavipes was most strongly associated with climatic variables (mean annual temperature and seasonality), whereas nonclimatic variables, including the availability of wood substrate and soil composition, were important predictors of inbreeding in R. grassei. These results are the first showing that termite breeding structure is shaped by local environmental factors and that species can vary in their responses to these factors.  相似文献   

9.
We assessed colony and population structure in three French populations of the termite Reticulitermes grassei using eight polymorphic microsatellite loci. Although most colonies contained the offspring of multiple, highly related replacement reproductives (complex families), some contained the offspring of a single pair of reproductives (simple families), and the proportion of such colonies varied across populations. Populations also showed variability in the numbers of reproductives within complex families; the F-statistics of these families in one population were consistent with having upwards of 100 replacement reproductives, while in another population these colonies contained fewer than 10 pairs of reproductives. Colony boundaries in all populations were well defined, in spite of reports of a widespread breakdown in nestmate recognition and unicolonial populations of R. grassei from these regions in France. A second unexpected finding was a lack of significant isolation by distance among colonies within populations, indicating that colony reproduction by budding was rare or absent. The lack of this form of colony reproduction even within populations where it is expected to be common suggested that the propensity for colony budding may not be as common as suggested by the literature.  相似文献   

10.
Studies describing the population genetic structure and breeding system of basal lineages of termite species remain rare. Such species, however, may reveal ancestral life history attributes potentially influential in the evolution of social life within the Isoptera. Through the development and application of microsatellite DNA loci, we investigated patterns of genetic diversity and differentiation within the dampwood termite Zootermopsis angusticollis collected from three geographically distinct locations in California, USA. Significant genetic differentiation was identified among all sites, which were located 40–150 km apart, and each site was found to represent unique populations with limited levels of gene flow. While Z. angusticollis alates have previously been described as being strong fliers, genetic evidence suggests limited dispersal, possibly due to habitat characteristics restricting long-range flights. Additionally, we characterize patterns of colony genetic structure and breeding system within both Z. angusticollis and its congener Z. nevadensis nuttingi. In Z. angusticollis, simple, extended, and mixed family colonies were observed. The frequency of simple families ranged from 16 to 64%, whereas mixed families were found in only two locations and at low frequencies. In contrast, Z. n. nuttingi, formed primarily extended family colonies. Estimates of relatedness suggest that monogamous pairs heading simple families consist of reproductives showing variable degrees of relatedness from unrelated to close relatives. Additionally, the effective number of neotenic reproductives appears to be low within extended families of both species.  相似文献   

11.
Temporal and spatial analyses are seldom utilized in the study of colony genetic structure, but they are potentially powerful methods which can yield novel insights into the mechanisms underlying variation in breeding systems. Here we present the results of a study which incorporated both of these dimensions in an examination of genetic structure of subterranean termites in the genus Reticulitermes (primarily R. flavipes). Most colonies of this species (70%) were simple families apparently headed by outbred primary reproductives, while most of the remaining (27% of the total) colonies contained low effective numbers of moderately inbred reproductives. Mapping the spatial distribution of colony foraging sites over time revealed that despite the high colony density, the absolute foraging boundaries of most R. flavipes colonies were persistent and exclusive of other conspecific colonies, which suggests that this species is more territorial than has been implied by laboratory studies of intraspecific aggression. Nevertheless, we found a single colony (3% of all colonies) which contained the offspring of more than two unrelated reproductives. Although other studies have also described subterranean termite colonies with a similarly complex genetic composition, we demonstrate here that such colonies can form under natural conditions via the fusion of whole colonies. This study underscores how repeated sampling from individual colonies over time and space can yield information about colony spatial and genetic structure that cannot be obtained from conventional analyses or sampling methods.  相似文献   

12.
Reticulitermes santonensis is a subterranean termite that invades urban areas in France and elsewhere where it causes damage to human-built structures. We investigated the breeding system, colony and population genetic structure, and mode of dispersal of two French populations of R. santonensis. Termite workers were sampled from 43 and 31 collection points, respectively, from a natural population in west-central France (in and around the island of Oleron) and an urban population (Paris). Ten to 20 workers per collection point were genotyped at nine variable microsatellite loci to determine colony identity and to infer colony breeding structure. There was a total of 26 colonies, some of which were spatially expansive, extending up to 320 linear metres. Altogether, the analysis of genotype distribution, F-statistics and relatedness coefficients suggested that all colonies were extended families headed by numerous neotenics (nonwinged precocious reproductives) probably descended from pairs of primary (winged) reproductives. Isolation by distance among collection points within two large colonies from both populations suggested spatially separated reproductive centres with restricted movement of workers and neotenics. There was a moderate level of genetic differentiation (F(ST) = 0.10) between the Oleron and Paris populations, and the number of alleles was significantly higher in Oleron than in Paris, as expected if the Paris population went through bottlenecks when it was introduced from western France. We hypothesize that the diverse and flexible breeding systems found in subterranean termites pre-adapt them to invade new or marginal habitats. Considering that R. santonensis may be an introduced population of the North American species R. flavipes, a breeding system consisting primarily of extended family colonies containing many neotenic reproductives may facilitate human-mediated spread and establishment of R. santonensis in urban areas with harsh climates.  相似文献   

13.
Levee breaches because of Hurricane Katrina in 2005 inundated 80% of the city of New Orleans, LA. Formosan subterranean termites were observed actively foraging within in-ground monitoring stations within months after this period of flooding. It was unknown if the activity could be attributed to preexisting colonies that survived inundation or to other colonies surviving flooding by being located at higher elevations readily invading these territories. Genotypic profiles of 17 termite colonies collected from eight inundated locations before flooding were compared with termite colonies after flooding from the same locations to determine Formosan subterranean termite survival after sustained flooding. Results indicate that 14 colonies were able to survive inundation for extended periods.  相似文献   

14.
Termites (Isoptera) comprise a large and important group of eusocial insects, yet, in contrast to the eusocial Hymenoptera (ants, bees, wasps), the breeding systems of termites remain poorly understood. In this study, I inferred the breeding system of the subterranean termite Reticulitermes flavipes based on colony and population genetic structure as determined from microsatellite and mitochondrial DNA markers. Termites were sampled from natural wood debris from three undisturbed, forested sites in central North Carolina. In each site, two transects separated by 1 km were sampled at approximately 15-m intervals. A total of 1272 workers collected from 57 collection points were genotyped at six microsatellite loci, and mitochondrial DNA haplotype was determined for a subset of these individuals using either restriction fragment length polymorphism or sequence variation in the AT-rich region. Colonies appeared to be localized: workers from the 57 collection points represented 56 genetically distinct colonies with only a single colony occupying two collection points located 15 m apart. Genetic analysis of family structure and comparisons of estimates of F-statistics (F(IT), F(IC), F(CT)) and coefficients of relatedness (r) among nestmate workers with results of computer simulations of potential breeding systems suggested that 77% of all colonies were simple families headed by outbred monogamous pairs, whereas the remaining colonies were extended (inbred) families headed by low numbers of neotenics (about two females and one male) who were the direct offspring of the colony founders. There was no detectable isolation by distance among colonies along transects, suggesting that colony reproduction by budding is not common and that dispersal of reproductives during mating flights is not limited over this distance. Higher-level analysis of the microsatellite loci indicated weak but significant differentiation among sites (F(ST) = 0.06), a distance of 16-38 km, and between transects within sites (F(ST) = 0.06), a distance of 1 km. No significant differentiation at either the transect or site level was detected in the mitochondrial DNA sequence data. These results indicate that the study populations of R. flavipes have a breeding system characterized by monogamous pairs of outbred reproductives and relatively low levels of inbreeding because most colonies do not live long enough to produce neotenics, and those colonies that do generate neotenics contain an effectively small number of them.  相似文献   

15.
The coexistence of multiple unrelated reproductives within social insect colonies decreases the relatedness among colony members and therefore challenges kin selection theory. This study investigated the colony genetic structure of a French introduced population of the American subterranean termite Reticulitermes flavipes by analyzing genotypes at eight microsatellite loci and at one mtDNA region. Results revealed that all colonies contained numerous related secondary reproductives, and that 31% of colonies possessed more than two unrelated reproductives. The presence of several unrelated reproductives within colonies of this species is commonly assumed to result from colony fusion. Although such a high occurrence of colony fusion is the highest ever observed in a termite population, it is probable that the available methodology underestimated the detection of colony fusion in French populations. Overall, these results suggest that French colonies might differ strongly from the great majority of American colonies in their capacity to produce secondary reproductives as well as in their ability to merge. The nature and evolutionary origin of these population differences are discussed.  相似文献   

16.
The existence of altruism in social insects is commonly attributed to altruistic individuals gaining indirect fitness through kin selection. However, recent studies suggest that such individuals might also gain direct fitness through reproduction. Experimental studies on primitive wood-dwelling termites revealed that colony fusion often causes the death of primary reproductives (queen and king), allowing opportunities for workers to inherit the nest by developing into replacement reproductives (neotenics). Therefore, colony fusion has been proposed as an important factor that may have favoured sociality in termites. However, whether colony fusion occurs frequently in natural populations of wood-dwelling termites remains an open question. We analysed eleven colonies of the wood-dwelling termite Kalotermes flavicollis (Kalotermitidae), using two mitochondrial and five nuclear microsatellite markers. Nine of eleven colonies (82%) were mixed families, with offspring of three or more primary reproductives. To our knowledge, this result represents the highest frequency of mixed-family colonies ever reported in termites. Moreover, genetic mixing of colonies appeared extreme in two ways. First, the number of haplotypes per colony was exceptionally high (up to nine), indicating that colonies were composed of multiple queens' offspring. Second, some mixed-family colonies included individuals belonging to two highly divergent genetic lineages. F-statistics and relatedness values suggest that mixed-family colonies most likely result from colony fusion, giving support to the accelerated nest inheritance theory. These findings raise important questions about the mode of foundation of mixed-family colonies and the evolutionary forces that maintain them within populations.  相似文献   

17.
刘明花  张小晶  薛薇  陈娇玲  刘鹤  吴佳  苏晓红 《昆虫学报》2014,57(11):1328-1334
摘要: 【目的】为了探讨圆唇散白蚁Reticulitermes labralis补充生殖蚁对巢群稳定和发展的作用。【方法】对野外巢群进行调查研究, 及对婚飞成虫通过雌雄配对与补充生殖蚁隔离巢群进行人工饲养的对比研究。【结果】在野外巢群只发现1对原始蚁王蚁后, 而补充生殖蚁的数量最多可达到689头/巢。圆唇散白蚁有3种类型的补充生殖蚁, 即由工蚁转化来的无翅型补充生殖蚁、若蚁转化来的翅芽型补充生殖蚁和末龄若蚁羽化来的拟成虫型补充生殖蚁。实验室条件下婚飞配对群体和隔离群体建群1个月后的存活率分别为64%和96%。建巢初期婚飞配对群体的子代数目增长缓慢, 2个月时的群体数量为6.3±1.54, 10个月时的群体数量也仅为8.4±1.47; 而隔离建群补充生殖蚁2个月时的群体数量为52.4±6.44, 10个月时的群体数量为164.3±20.85, 都高于婚飞配对群体。 此外, 野外巢群的补充蚁后跟原始蚁后一样都具有发达的卵巢。【结论】在圆唇散白蚁中补充生殖蚁是白蚁巢群主要的繁殖力量, 也是建立新巢群的重要繁殖品级。  相似文献   

18.
Abstract. 1. Previous studies on the arboreal termite community in coconut plantations of northern New Guinea showed that Microcerotermes biroi is the most abundant species, despite the fighting superiority of two competitor species Nasutitermes princeps and N.novarumhebridarum. In this study we tested the hypothesis that the success of M.biroi is due to its efficiency at colonizing new habitats following nuptial flights.
2. We demonstrated experimentally the ability of M.biroi colonies to replace their reproductives when removed, or to produce reproductives in satellite nests when isolated from the remainder of the colony. Replacement reproductives were always neotenics, derived from nymphs or workers.
3. Despite the ability of neotenics to differentiate within their home colonies, 84% of field colonies were headed by dealated imagos. This value constitutes a minimum estimate of the proportion of field colonies founded independently by imagos after the nuptial flight.
4. The monitoring of a young plantation during the first 31/2 years of its colonization by arboreal nesting termites revealed its invasion by M.biroi , which colonized 63% of the trees while neither Nasutitermes species appeared.
5. Our results demonstrate that M.biroi is actually a pioneer species, able to invade a new habitat by means of nuptial flights. They outline the importance of each species' reproductive strategy in shaping the arboreal-nesting termite community.  相似文献   

19.
Colonies of the termite Nasutitermes corniger often contain multiple reproductive queens and kings. We used double-strand conformation polymorphism (DSCP) analysis of mitochondrial DNA (mtDNA) to determine the probable origins of co-occurring reproductives. Colonies differed in queen and king number, in the number of nests containing reproductives, and in the genetic relationships among reproductives. Most of the 44 colonies contained a single pair of maternally unrelated reproductives. In the two single-nest colonies with a pair of queens, the two queens differed in mtDNA haplotype, suggesting nest-founding by unrelated queens. In the seven single-nest colonies with larger numbers of reproductives (11–49), all reproductives shared the same haplotype, a pattern consistent with replacement of a single pair by several offspring. As predicted by theory, the number of coexisting queens was greater for replacement reproductives than for co-foundresses. Several complex colonies contained multiple queens of two or more haplotypes distributed among several interconnected nests. This indicates that several matrilines can persist within a colony through one or more generations of budding and replacement, a hypothesis confirmed by orphaning experiments. The various modes of termite colony formation rival the diversity seen in ant species and demonstrate the remarkable convergence of behaviours between the two groups.  相似文献   

20.
The rejection or acceptance of a foreign reproductive by an alien colony may not always be as straightforward as cue recognition between worker termites. This paper aims to determine whether adoption of foreign reproductives is caused simply by lack of intraspecific aggression or is contingent on the reproductive status of the host colony. In the fungus-culturing termites, Macrotermes gilvus (Hagen) and Macrotermes carbonarius (Hagen), major workers showed low intraspecific aggression towards non-nestmates irrespective of geographic distance between source colonies. Our results indicated that workers were hardly aggressive towards non-nestmates. In royal cell-swapping experiments, both species responded in a similar way: (1) in host colonies with nymphs present, the foreign reproductives were rejected; while (2) in host colonies without nymphs the foreign reproductives were either accepted and breeding resumed or the host colonies died eventually. Workers from the host colonies preferentially maintained offspring nymphs from which adultoid replacement reproductives develop rather than accepting foreign reproductives. There is no fitness gain for the queenless workers in accepting foreign reproductives; however, there is overall benefit to the newly born population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号