首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently we observed that a gas messenger H2S/HS released NO from S-nitrosoglutathione (Ondrias et al., Pflugers Arch. 457 (2008) 271-279). However, the effect of biological compounds on the release is not known. Measuring the NO oxidation product, which is nitrite, by the Griess reaction, we report that unsaturated fatty acid—linoleic acid and lipids having unsaturated fatty acids: asolectin, dioleoylphosphocholine and dioleoylphosphoserine depressed the H2S/HS induced NO release from S-nitrosoglutathione. On the other hand, a depression effect of the saturated fatty acid—myristic acid and lipids having saturated fatty acids, dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine was less pronounced. The inhibition effect increased with the decreasing gel-to-liquid phase transitions temperature of the fatty acids and lipids. We suggest that lipid composition of biological membranes modulates NO release from nitrosoglutathione induced by H2S/HS, assuming that a reaction of H2S/HS with unsaturated bonds of fatty acids may be partially responsible for the effect.  相似文献   

2.
The modulation of TREK-1 leak and Kv1.4 voltage-gated K+ channels by fatty acids and lysophospholipids was studied in bovine adrenal zona fasciculata (AZF) cells. In whole-cell patch-clamp recordings, arachidonic acid (AA) (1–20 µM) dramatically and reversibly increased the activity of bTREK-1, while inhibiting bKv1.4 current by mechanisms that occurred with distinctly different kinetics. bTREK-1 was also activated by the polyunsaturated cis fatty acid linoleic acid but not by the trans polyunsaturated fatty acid linolelaidic acid or saturated fatty acids. Eicosatetraynoic acid (ETYA), which blocks formation of active AA metabolites, failed to inhibit AA activation of bTREK-1, indicating that AA acts directly. Compared to activation of bTREK-1, inhibition of bKv1.4 by AA was rapid and accompanied by a pronounced acceleration of inactivation kinetics. Cis polyunsaturated fatty acids were much more effective than trans or saturated fatty acids at inhibiting bKv1.4. ETYA also effectively inhibited bKv1.4, but less potently than AA. bTREK-1 current was markedly increased by lysophospholipids including lysophosphatidyl choline (LPC) and lysophosphatidyl inositol (LPI). At concentrations from 1–5 µM, LPC produced a rapid, transient increase in bTREK-1 that peaked within one minute and then rapidly desensitized. The transient lysophospholipid-induced increases in bTREK-1 did not require the presence of ATP or GTP in the pipette solution. These results indicate that the activity of native leak and voltage-gated K+ channels are directly modulated in reciprocal fashion by AA and other cis unsaturated fatty acids. They also show that lysophospholipids enhance bTREK-1, but with a strikingly different temporal pattern. The modulation of native K+ channels by these agents differs from their effects on the same channels expressed in heterologous cells, highlighting the critical importance of auxiliary subunits and signaling. Finally, these results reveal that AZF cells express thousands of bTREK-1 K+ channels that lie dormant until activated by metabolites including phospholipase A2 (PLA2)-generated fatty acids and lysophospholipids. These metabolites may alter the electrical and secretory properties of AZF cells by modulating bTREK-1 and bKv1.4 K+ channels.  相似文献   

3.
A mitochondrial hydrophobic component that forms Ca2+-induced nonspecific ion channels in black-lipid membranes (Mironova et al., 1997) has been purified and its nature elucidated. It consists of long-chain saturated fatty acids—mainly palmitic and stearic. These fatty acids, similar to the mitochondrial hydrophobic component, bind Ca2+ with high affinity in comparison with unsaturated fatty acids, saturated fatty acids with shorter aliphatic chains, phospholipids, and other lipids. Ca2+-binding is inhibited by Mg2+ but not by K+. For palmitic acid, the K d for Ca2+ was 5 M at pH 8.5 and 15 M at pH 7.5, with the B max of 0.48 ± 0.08 mmol/g. This corresponds to one Ca2+ ion for eight palmitic acid molecules. The data of IR spectroscopy confirm that Ca2+ does not form ionic bonds with palmitic and stearic acids under hydrophobic conditions. It has been found that in the presence of Ca2+, palmitic and stearic acids, but not unsaturated FFA induce a nonspecific permeability in black-lipid membranes. Addition of Ca2+ in order to induce the permeability transition, increases the extractable amount of palmitic and stearic acids, the effect being prevented by a phospholipase A2 inhibitor. The possible involvement of palmitic and stearic acids in the mitochondrial nonspecific permeability is discussed.  相似文献   

4.
NaCl induced changes in fatty acid composition and nitrogenase, glutamine synthetase (GS) and nitrate reductase (NR) activities have been studied in a diazotrophic cyanobacterium Anabaena cylindrica. GC-MS analysis revealed that the cellular fatty acid composition of NaCl untreated cells of A. cylindrica contained saturated and unsaturated fatty acids in high (85.15%) and low (13.17%) proportions, respectively. In contrast, NaCl adapted cells of A. cylindrica had reduced and increased levels of saturated (45.2%) and unsaturated (40%) fatty acids, respectively. It had a higher overall level of fatty acid unsaturation under NaCl stress mainly due to increase in C12:4, C10:1, C16:1 and C18:2 constituents. The activities of nitrogenase, GS and NR were reduced significantly in NaCl adapted cells as compared to its NaCl untreated counterparts.  相似文献   

5.
Delipidation of beef heart electron transport particles with phospholipase A2 has been examined. When the particles were treated with the lipase and subjected to a low bovine serum albumin wash, ATPase activity was unaffected as was the lipid/protein ratio of the particles. However, energisation by ATP/Mg2+ was abolished. Furthermore, unsaturated but not saturated fatty acids discharged the steady-state ATP-driven membrane potential of control samples. When the phospholipase A2 hydrolysis products were removed, inhibition of energy-linked reactions in the lipid-depleted particles was still observed and was interpreted in terms of non-specific leaks in the vesicle membranes, and ‘specific’ leaks through impaired H+-ATPase complexes. ATPase activity was less susceptible to delipidation than energisation but was, nevertheless, strongly inhibited at 50 percent lipid depletion.

Spin label studies indicated a decrease in the fluidity of particle membranes accompanying delipidation. Moreover, the discontinuity seen in Arrhenius plots of ATPase activity was shifted from 17°C (control) to 22°C at 50 percent phospholipid depletion. The data are consistent with a release of unsaturated fatty acids by phospholipase A2 rendering the transport particles both leakier and the membranes less fluid than controls.  相似文献   

6.
Summary Cis-unsaturated fatty acids, but not saturated fatty acids, inhibited phospholipase A2 activity (PLA2) in vitro, and may function as endogenous suppressors of lipolysis. To probe the possible role of lipid peroxidation in the regulation of myocardial lipid catabolism, a neutral-active and Ca2+-dependent PLA2 was extracted from rat heart and was partially purified by sulfopropyl cation exchange chromatography. Myocardial PLA, activity was inhibited in a dose-dependent manner by oleic, linoleic, linolenic, and arachidonic acids; the IC50 for arachidonic acid was approx 65 M. Palmitic acid was not inhibitory. When arachidonic acid was incubated at 37°C, exposed to air, there was a time- and pH-dependent peroxidation of the arachidonic acid as monitored by turbidity, thiobarbituric acid reactivity, and thin layer chromatography. Peroxidation was increased as the pH was lowered from 7.5 to 4.5, and was accompanied by a decrease in PLA2 inhibitory potency. Thus, arachidonate incubated for 24 hours at pH's 4.5, 6.0 and 7.5 lost 84%, 32%, and 20% respectively, of its inhibitory potency. Therefore, in vitro acidosis promotes the oxidation of cis-unsaturated fatty acids and relieves their inhibitory or suppressive activity toward PLA2s. Increased lipid peroxidation of unesterified unsaturated fatty acids during acidosis may therefore promote lipolysis observed during myocardial ischemia and reperfusion injury.  相似文献   

7.
Summary Unidirectional 22Na+ and 36Cl fluxes were determined in short-circuited, stripped rumen mucosa from sheep by using the Ussing chamber technique. In both CO2/HCO 3 -containing and CO2/HCO 3 -free solutions, replacement of gluconate by short-chain fatty acids (SCFA, 39 mM) significantly enhanced mucosal-toserosal Na+ absorption without affecting the Cl transport in the same direction. Short-chain fatty acid stimulation of Na+ transport was at least partly independent of Cl and could almost completely be abolished by 1 mM mucosal amiloride, while stimulation of Na+ transport was enhanced by lowering the mucosal pH from 7.3 to 6.5. Similar to the SCFA action, raising the PCO2 in the mucosal bathing solution led to an increase in the amiloride-sensitive mucosal-to-serosal Na+ flux. Along with its effect on sodium transport, raising the PCO2 also stimulated chloride transport. The results are best explained by a model in which undissociated SCFA and/or CO2 permeate the cell membrane and produce a raise in intracellular H+ concentration. This stimulates an apical Na+/H+ exchange, leading to increased Na+ transport. The stimulatory effect of CO2 on Cl transport is probably mediated by a Cl/HCO 3 exchange mechanism in the apical membrane. Binding of SCFA anions to that exchange as described for the rat distal colon (Binder and Mehta 1989) probably does not play a major role in the rumen.Abbreviations DIDS 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid - G t transepithelial conductance (mS·cm-2) - HSCFA undissociated short-chain fatty acids - J ms mucosal-to-serosal flux (Eq · cm-2 · h-1) - J net net flux (Eq · cm-2 · h-1) - J sm serosal-to-mucosal flux (Eq · cm-2 · h-1) - PD transepithelial potential difference (mV) - SCFA dissociated short-chain fatty acids - SCFA short-chain fatty acids  相似文献   

8.
The binding of cAMP to the chemotactic cAMP receptor in intact Dictyostelium discoideum cells and isolated membranes is strongly inhibited by unsaturated fatty acids. In isolated membranes, cis-unsaturated fatty acids decreased the number of accessible cAMP binding sites, without significantly altering their affinity. Most potent were C18 and C20 cis-poly unsaturated fatty acids, like arachidonic acid, linoleic acid and linolenic acid. Trans-unsaturated fatty acid was less potent than its cis isomer, while saturated fatty acids did not affect the binding of cAMP to receptors at all. Oxidation reactions were not important for the effect of unsaturated fatty acids. When membranes were preincubated with millimolar concentrations of Ca2+, the effect of unsaturated fatty acids was strongly diminished. Mg2+ was ineffective. Ca2+, if presented after the incubation of membranes with unsaturated fatty acids, did not reverse the inhibitory effect. The specificity of the fatty acid effect, and the interference with Ca2+, but not Mg2+, suggest that the properties of the cAMP receptor are changed as a result of alterations in the lipid bilayer structure of the membrane.  相似文献   

9.
Arachidonic acid (AA) plays important physiological or pathophysiological roles. Here, we show in cultured rat astrocytes that: (i) endothelin-1 or thapsigargin (Tg) induces store-depleted activated Ca2+ entry (CCE), which is inhibited by 2-aminoethoxydiphenyl borane (2-APB) or La3+; (ii) AA (10 μM) and other unsaturated fatty acids (8,11,14-eicosatrienoic acid and γ-linoleic acid) have an initial inhibitory effect on the CCE, due to AA- or fatty acid-induced internal acid load; (iii) after full activation of CCE, AA induces a further Ca2+ influx, which is not inhibited by 2-APB or La3+, indicating that AA activates a second Ca2+ entry pathway, which coexists with CCE; and (iv) Tg or AA activates two independent and co-existing non-selective cation channels and the Tg-induced currents are initially inhibited by addition of AA or weak acids. A possible pathophysiological effect of the AA-induced [Ca]i overload is to cause delayed cell death in astrocytes.  相似文献   

10.
A comprehensive understanding of animal growth requires adequate knowledge of protein synthesis (PS), which in fish, has traditionally been determined by the flooding dose method. However, this procedure is limited to short-term assessments and may not accurately describe fish growth over extended periods of time. Since deuterium oxide (2H2O) has been used to non-invasively quantify PS in mammals over short- and long-term periods, we aimed at determining if 2H2O could also be used to measure PS in channel catfish. Fish were stocked in a 40-L aquarium with ~ 4% 2H2O and sampled at 4, 8 and 24 h (n = 6 at each time period) to determine 2H-labeling of body water (plasma), as well as protein-free and protein-bound 2H-labeled alanine. The labeling of body water reflected that of aquarium water and the labeling of protein-free alanine remained constant over 24 h and was ~ 3.8 times greater than that of body water. By measuring 2H-labeled alanine incorporation after 24 h of 2H2O exposure we were able to calculate a rate of PS: 0.04 ± 0.01% h− 1. These results demonstrate that PS in fish can be effectively measured using 2H2O and, because this method yields integrative measures of PS, is relatively inexpensive and accounts for perturbations such as feeding, it is a novel and practical assessment option.  相似文献   

11.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

12.
The study investigated the changes in individual molecular species in PE and the effects of a variety of dietary fats with varying proportions of saturated and unsaturated fatty acids on membrane composition, eicosanoid production and cytokine production in thioglycollate-elicited rat macrophages.The data obtained indicates that the greatest degree of modulation by dietary fats on cytokine production was observed after 8 weeks feeding and at this time, the total diacyl species containing linoleic acid (18:2 n-6) and arachidonic acid (20:4 n-6) at the sn-2 position related in a curvilinear fashion to total 18:2 n-6 intake and that IL1 and IL6 production related in a curvilinear fashion to the total diacyl species with 20:4 and 18:2 at the sn-2 position.After 4 weeks of feeding, fish and olive oils enhanced production of IL6 and LTB4, however, while IL1 production, after 8 weeks of dietary treatment, was greatest from macrophages of animals fed corn and olive oils, PGE2 production was greatest in the former group and LTB4 production in the latter. Thus an eicosanoid effect may explain the modulatory influence of olive oil and IL1 production but, cannot explain the effect of corn oil on production of the cytokine. The data from the present study provides some insight into how dietary fats could provide therapy for conditions in which inflammatory cytokines are implicated.  相似文献   

13.
Barley seedlings were pre-treated with 1 and 5 μM H2O2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H2O2 alone had no effect on the proline, malondialdehyde (MDA) and H2O2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase (SOD) isoenzymes appeared in the leaves as a result of 1 μM H2O2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H2O2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14CO2 fixation was higher and MDA, H2O2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested that H2O2 metabolism is involved as a signal in the processes of barley salt tolerance.  相似文献   

14.
Exposure of human peripheral blood monocytes to free arachidonic acid (AA) results in the rapid induction of lipid droplet (LD) formation by these cells. This effect appears specific for AA in that it is not mimicked by other fatty acids, whether saturated or unsaturated. LDs are formed by two different routes: (i) the direct entry of AA into triacylglycerol and (ii) activation of intracellular signaling, leading to increased triacylglycerol and cholesteryl ester formation utilizing fatty acids coming from the de novo biosynthetic route. Both routes can be dissociated by the arachidonyl-CoA synthetase inhibitor triacsin C, which prevents the former but not the latter. LD formation by AA-induced signaling predominates, accounting for 60–70% of total LD formation, and can be completely inhibited by selective inhibition of the group IVA cytosolic phospholipase A2α (cPLA2α), pointing out this enzyme as a key regulator of AA-induced signaling. LD formation in AA-treated monocytes can also be blocked by the combined inhibition of the mitogen-activated protein kinase family members p38 and JNK, which correlates with inhibition of cPLA2α activation by phosphorylation. Collectively, these results suggest that concomitant activation of p38 and JNK by AA cooperate to activate cPLA2α, which is in turn required for LD formation possibly by facilitating biogenesis of this organelle, not by regulating neutral lipid synthesis.  相似文献   

15.
In transgenic (TG) tomato (Lycopersicon esculentum Mill.) overexpressed ω-3 fatty acid desaturase gene (LeFAD7) was identified, which was controlled by the cauliflower mosaic virus 35S promoter and induced increased contents of unsaturated fatty acids in thylakoid membrane. Under chilling stress at low irradiance (4 °C, 100 μmol m−2 s−1) TG plants with higher linolenic acids (18: 3) content maintained a higher O2 evolution rate, oxidizable P700 content, and maximal photochemical efficiency (Fv/Fm) than wild type (WT) plants. Low temperature treatment for 6 h resulted in extensive changes of chloroplast ultrastructure: in WT plants most chloroplasts became circular, the number of amyloids increased, appressed granum stacks were dissolved, grana disappeared, and the number of grana decreased, while only a few grana were found in leaves of TG plants. Hence the overexpression of LeFAD7 could increase the content of 18: 3 in thylakoid membrane, and this increase alleviated the photoinhibition of photosystem (PS) 1 and PS2 under chilling at low irradiance.  相似文献   

16.
Inhibition of Photosystem II (PS II) activity induced by continuous light or by saturating single turnover flashes was investigated in Ca2+-depleted, Mn-depleted and active PS II enriched membrane fragments. While Ca2+- and Mn-depleted PS II were more damaged under continuous illumination, active PS II was more susceptible to flash-induced photoinhibition. The extent of photoinactivation as a function of the duration of the dark interval between the saturating single turnover flashes was investigated. The active centres showed the most photodamage when the time interval between the flashes was long enough (32 s) to allow for charge recombination between the S2 or S3 and QB to occur. Illumination with groups of consecutive flashes (spacing between the flashes 0.1 s followed by 32 s dark interval) resulted in a binary oscillation of the loss of PS II-activity in active samples as has been shown previously (Keren N, Gong H, Ohad I (1995), J Biol Chem 270: 806–814). Ca2+- and Mn-depleted PS II did not show this effect. The data are explained by assuming that charge recombination in active PS II results in a back reaction that generates P680 triplet and thence singlet oxygen, while in Ca2+- and Mn-depleted PS II charge recombination occurs through a different pathway, that does not involve triplet generation. This correlates with an up-shift of the midpoint potential of QA in samples lacking Ca2+ or Mn that, in term, is predicted to result in the triplet generating pathway becoming thermodynamically less favourable (G.N. Johnson, A.W. Rutherford, A. Krieger, 1995, Biochim. Biophys. Acta 1229, 201–207). The diminished susceptibility to flash-induced photoinhibition in Ca2+- and Mn-depleted PS II is attributed at least in part to this mechanism. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Jajoo  Anjana  Bharti  Sudhakar 《Photosynthetica》2000,37(4):529-535
Cations such as Mg2+ regulate spillover of absorbed excitation energy mainly in favour of photosystem (PS) 2. Effect of low concentration (<10 mM) of the monovalent cation Na+ on chlorophyll (Chl) a fluorescence was completely overridden by divalent cation Mg2+ (5 mM). Based on Chl a fluorescence yield and 77 K emission measurements, we revealed the role and effectiveness of anions (Cl-, SO4 2-, PO4 3-) in lowering the Mg2+-induced PS2 fluorescence. The higher the valency of the anion, the lesser was the expression of Mg2+ effect. Anions may thus overcome Mg2+ effects up to certain extent in a valency dependent manner, thereby diverting more energy to PS1 even in the presence of MgCl2. They may do so by reversing Mg2+-induced changes.  相似文献   

18.
The genotoxic carcinogen aflatoxin B1 (AFB1) inhibited the calmodulin-stimulated membrane-bound (Ca2+Mg2+)-ATPase. Using the purified enzyme, 12 nmoles per ml of AFB1 caused maximum inhibition of 28% and 50%, of the acidic phospholipid-stimulated and calmodulin-activated Ca2+-ATPase activity respectively. Treatment of red cell ghosts with increasing concentrations of Triton X-100, a non-ionic detergent caused a progressive loss of both the basal and calmodulin-stimulated Ca2+-ATPase activity. The activity of the phospholipid-free, detergent-solubilized enzyme was almost fully restored by phosphatidyl serine (PS) and its sensitivity to calmodulin was restored in the presence of phosphatidyl choline (PC). Analysis of the results obtained using varying concentrations of ATP shows that AFB1 did not affect the Km and Vmax of the unstimulated enzyme whereas these parameters were reduced by about 75% and 50%, respectively, in the presence of calmodulin. Using the product of limited proteolysis by trypsin i.e. the 90 kDa fragment which still retains its calmodulin binding-domain and the 76 kDa fragment which has lost this domain, kinetic studies on the enzyme activity revealed that AFB1 inhibited the calmodulin-activated 90 kDa fragment by about 50% while the 76 kDa was not affected at all by the toxin and calmodulin. The toxin had no significant affect on the basal activity of the 90 kDa limited proteolysis fragment of the enzyme. These observations suggest that AFB1 inhibits the activated Ca2+-ATPase by binding to an important site in the calmodulin-binding domain of the enzyme. It seems likely that the toxin binds to tryptophan in the calmodulin-binding domain, thus causing a reduction in the rate at which this domain can interact with Ca2+-calmodulin or acidic phospholipids. The implication of these observations is that Ca2+-extrusion and other calmodulin-activated enzymes and processes may be slowed down during prolonged exposure to AFB1 because of its anticalmodulin effect.Abbreviations ATP adenosine 5-triphosphate - EGTA ethylenglycolbis (-aminoethylether) N,N-tetraacetic acid - Hepes 4-(2 hydroxyethyl)-1-piperazine ethanesulphonic acid - AFB1 aflatoxin B1 - PMSF phenylmethylsulfonylfluoride - TLCK N--p-tosyl-L-lysine chloromethyl ketone - PC phosphatidycholine - PS phosphatidylserine - PI phosphatidyl inositol - DPG diphosphatidyl glycerol - SDS sodium dodecyl sulphate - Tris-HCl Tris (hydroxymethyl)aminomethane hydrochloride  相似文献   

19.
For the characterization of fatty acids, 2, 4-dinitrophenylhydrazones of p-bromophenacyl esters of even-numbered saturated fatty acids from C2 to C20 and several unsaturated fatty acids from monoethenoid to triethenoid were prepared. The derivatives of linoleic and linolenic acids as well as those of the other unsaturated and saturated acids, were successfully obtained in crystalline forms which showed sharp and high melting points, 72° and 69°, respectively. It was found that the derivatives of unsaturated acids were valuable for characterizing the parent acids, while those of saturated acids were unsuitable for this purpose owing to the similarity of their melting points.  相似文献   

20.
The influence of saturated and unsaturated fatty acid ethanolamides as well as Δ9-tetrahydrocannabinol (Δ9-THC), WIN 55,212-2 and cannabinoid CB1 receptor antagonist SR 141716 on sea urchin fertilization was studied. The ethanolamides of arachidonic, oleic and linoleic acids but not saturated fatty acid (C14–C20) derivatives inhibited fertilization when pre-incubated with sperm cells. Δ9-THC and WIN 55,212-2 also inhibited fertilization, Δ9-THC being ten times as potent as WIN 55,212-2. Selective cannabinoid CB1 receptor antagonist SR 141716 also blocked fertilization and did not antagonize the action of Δ9-THC. The obtained results indicate that different unsaturated fatty acid ethanolamides may control sea urchin fertilization, and that sea urchin sperm cell cannabinoid receptor may differ from the known cannabinoid receptor subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号