首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gas chromatographic method with nitrogen–phosphorus detection involving a solid–liquid extraction phase was developed and validated for the simultaneous quantification of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) in plasma. A modification of this method was validated for the analysis of MDMA, MDA, 4-hydroxy-3-methoxymethamphetamine (HMMA) and, 4-hydroxy-3-methoxyamphetamine (HMA) in urine. Under the analytical conditions described, the limits of detection in plasma and urine were less than 1.6 μg/l and 47 μg/l, respectively, for all the compounds studied. Good linearity was observed in the concentration range evaluated in plasma (5–400 μg/l) and urine (100–2000 μg/l) for all compounds tested. The recoveries obtained from plasma were 85.1% and 91.6% for MDMA and MDA, respectively. Urine recoveries were higher than 90% for MDMA and MDA, 74% for HMMA, and 64% for HMA. Methods have been successfully used in the assessment of plasma and urine concentrations of MDMA and its main metabolites in samples from clinical studies in healthy volunteers.  相似文献   

2.
We describe the development and validation of a method for the simultaneous quantification of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), 3-hydroxy-4-methoxymethamphetamine (HMMA), 3-hydroxy-4-methoxyamphetamine (HMA), 3,4-methylenedioxyethylamphetamine (MDEA), methamphetamine (MAMP) and amphetamine (AMP) in sweat. Drugs were eluted from PharmChek sweat patches with sodium acetate buffer, extracted with disk solid phase extraction and analyzed using GC/MS-EI with selected ion monitoring. Limits of quantification (LOQ) for MDMA, MDEA, MAMP and AMP were 2.5 ng/patch, and 5 ng/patch for MDA, HMA and HMMA. This fully validated procedure was more sensitive than previously published analytical methods and permitted the simultaneous analysis of multiple amphetamine analogs in human sweat.  相似文献   

3.
The investigation of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse requires very robust methods with high sensitivity and wide linearity ranges for the quantification of this drug of abuse and its main metabolites in body fluids. An optimized gas chromatography–ion trap mass spectrometry (GC–IT/MS) methodology with electron impact ionization addressing these issues is presented. The sample preparation involves an enzymatic hydrolysis of urine and plasma for conjugate cleavage, a SPE extraction, and a derivatization process. The method was fully validated in rat plasma and urine. Linearity for a wide concentration range was achieved for MDMA, and the metabolites 3,4-methylenedioxyamphetamine (MDA), 4-hydroxy-3-methoxyamphetamine (HMA) and 4-hydroxy-3-methoxymethamphetamine (HMMA). Limits of quantification were 2 ng/mL in plasma and 3.5 ng/mL in urine using a Selected Ion Monitoring detection mode. Selectivity, accuracy, precision, and recovery met the required criteria for the method validation. This GC–IT/MS method provides high sensitivity and adequate performance characteristics for the simultaneous quantification of MDMA, MDA, HMA and HMMA in the studied matrices.  相似文献   

4.
Abstract: 4-Hydroxy-3-methoxyphenylglycol (HMPG) labelled with three deuterium atoms was used to study the disposition of peripherally administered HMPG. Five healthy men were given an intravenous pulse dose of 4.3 μmol of labelled HMPG and subsequent plasma and urine levels of endogenous and labelled HMPG as well as those of 4-hydroxy-3-methoxymandelic acid (HMMA, VMA) were determined by gas chromatography-mass spectrometry, using selected ion detection. Approximately 40% of the injected amount of deuterium-labelled HMPG was recovered in the urine as HMMA and another 40% was eliminated as HMPG conjugates. Thus, the HMPG formed from norepinephrine either in the central or peripheral nervous system undergoes both conjugation and extensive oxidation.  相似文献   

5.
Amphetamine-type stimulants (ATS) are a group of chiral amine drugs which are commonly abused for their sympathomimetic and stimulant properties. ATS are extensively metabolised by hepatic cytochrome P450 enzymes. As metabolism of ATS has been shown to be highly stereospecific, stereoselective analytical methods are essential for the quantitative determination of ATS concentrations for both in vivo and in vitro studies of ATS metabolism. This paper describes a new stereoselective method for the simultaneous determination of amphetamine (AM), methamphetamine (MA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), 4-hydroxy-3-methoxymethamphetamine (HMMA), 4-hydroxy-3-methoxyamphetamine (HMA), 3,4-hydroxymethamphetamine (HHMA) and 3,4-hydroxyamphetamine (HHA) in human urine samples validated according to the United States Food and Drug Administration guidelines. In this method, analytes are simultaneously extracted and derivatized with R-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride (R-MTPCl) as the chiral derivatization reagent. Following this, the analytes were subjected to a second derivatization with N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) which targets the hydroxyl groups present in HMMA, HMA, HHMA and HHA. The derivatized analytes were separated and quantified using gas chromatography-mass spectrometry (GC-MS). The method was evaluated according to the established guidelines for specificity, linearity, precision, accuracy, recovery and stability using a five-day protocol. Intra-day precision ranged from 0.89 to 11.23% RSD whereas inter-day precision was between 1.03 and 12.95% RSD. Accuracy values for the analytes ranged from -5.29% to 13.75%. Limits of quantitation were 10 μg/L for AM, MA, MDMA, HMA and HMMA and 2μg/L for MDA, HMA and HHA. Recoveries and stability values were also within accepted values. The method was applied to authentic ATS-positive samples.  相似文献   

6.
An analytical method to simultaneously quantify amphetamine (AMP), methamphetamine (MAMP), methylenedioxymethamphetamine (MDMA), methylenedioxyamphetamine (MDA), methylenedioxyethylamphetamine (MDEA), 3-hydroxy-4-methoxy-methamphetamine (HMMA) and 3-hydroxy-4-methoxy-amphetamine (HMA) in oral fluid is presented. Four hundred microlitres of oral fluid collected via expectoration was extracted by solid phase extraction. GC/MS-EI with selected ion monitoring (SIM) yielded linear curves 5-250 ng/mL for AMP, MAMP, MDMA and MDEA, 5-500 ng/mL for MDA and 25-1,000 ng/mL for HMA and HMMA. Recoveries were greater than 85%, accuracy 87-104%, and precision less than 8.3% coefficient of variation. This assay will be used to investigate distribution of sympathomimetic amines into human oral fluid following controlled drug administration.  相似文献   

7.
3,4-Methylenedioxymethamphetamine (MDMA) is a recreational drug with neurotoxic potential. Pharmacokinetic data of MDMA and its metabolites may shed light on the mechanism of MDMA neurotoxicity. An LC-MS assay with electrospray ionization (ESI) is presented for quantifying MDMA and its metabolites 3,4-methylenedioxyamphetamine (MDA), 3,4-dihydroxymethamphetamine (HHMA), and 4-hydroxy-3-methoxymethamphetamine (HMMA) in squirrel monkey plasma. The method involved enzymatic conjugate cleavage and protein precipitation. Separation was achieved within 14min. The method was validated according to international guidelines with respect to selectivity, linearity, accuracy, precision, recovery, and matrix effect. The present method should prove useful for acquiring pharmacokinetic and toxicokinetic data in squirrel monkeys.  相似文献   

8.
A double isotope labelling technique was used to simultaneously determine the in vivo turnover rates of 4-hydroxy-3-methoxyphenylglycol (HMPG) and 4-hydroxy-3-methoxymandelic acid (HMMA, VMA) and the rate of HMPG oxidation to HMMA. Six healthy men were given intravenous injections of [2H3]HMPG and [2H6]HMMA and their plasma and urine samples analysed by gas chromatography--mass spectrometry (GC/MS) for the protium and deuterium species. HMPG and HMMA production rates were calculated by isotope dilution. The rate of HMPG oxidation to HMMA was obtained from the fraction of [2H3]HMPG recovered as [2H3]HMMA. The results showed that the entire production of HMMA, 1.11 +/- 0.21 mumol/h (mean +/- SE), could be accounted for by oxidation of HMPG, 1.49 +/- 0.31 mumol/h. In another experiment designed to avoid expansion of the HMPG body pool, a tracer dose of [14C]HMPG was given to the same subjects. The levels of [14C]HMPG and [14C]HMMA were measured in urine after extraction and separation by thin layer chromatography. Urinary excretion of endogenous HMPG and HMMA was determined by GC/MS. The results showed that the endogenous HMMA fraction of the total HMPG and HMMA urinary excretion rate, 0.57 +/- 0.04, was the same as the fraction of [14C]HMPG oxidized to [14C]HMMA, 0.62 +/- 0.01. Thus, HMPG is the main intermediate in the metabolic conversion of norepinephrine and epinephrine to HMMA in man.  相似文献   

9.
Enantiomerically-enriched (S)-3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites (S)-4-hydroxy-3-methoxymethamphetamine (HMMA) and (S)-3,4-dihydroxymethamphetamine (HHMA) were prepared for unequivocal identification of the differential enantioselective metabolism of these compounds as well as for its application in the analysis of biological samples. Capillary electrophoresis with cyclodextrin derivatives and a chemical correlation of (S)-MDMA, (S)-HMMA and (S)-HHMA has been performed to assign the absolute stereochemistry of major isomers in analytical standards enriched with such enantiomers.  相似文献   

10.
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.  相似文献   

11.
The consumption of psychostimulant amphetamine-like drugs has increased significantly in recent years. Some MDMA metabolites are probably involved in the neurotoxicity and neurodegeneration caused by prolonged use rather than MDMA itself. We recently developed a method to analyze MDMA and its five main metabolites in rat plasma [7]. We have now fully validated this method to the quantification of these drugs in rat urine. We extracted MDMA and its metabolites with Oasis WCX cartridges, separated them on a Nucleodur C18 analytical column and quantified them by ion-trap mass spectrometry. Linearity was excellent: 12.5–1250 ng/mL urine for HMA, HMMA, MDA and MDMA, 25–2500 ng/mL for HHMA, and 150–7500 ng/mL for HHA (r2 > 0.993 for all analytes). The lower limits of quantification were 12.5 ng/mL urine for MDMA, MDA, HMA and HMMA, 25 ng/mL for HHMA and 150 ng/mL for HHA. Reproducibility was good (intra-assay precision = 1.7–6.1%; inter-assay precision = 0.6–5.7%), as was accuracy (intra-assay deviation = 0.1–4.8%; inter-assay deviation = 0.7–7.9%). Average recoveries were around 85.0%, except for HHMA (66.2%) and HHA (53.0%) (CV < 8.3%). We also checked the stability of stock solutions and the internal standards after freeze-thawing and in the autosampler. Lastly, we measured the MDMA, MDA, HHMA, HHA, HMMA and HMA in urine samples taken over 24 h from rats given subcutaneous MDMA.  相似文献   

12.
Abstract: 4-Hydroxy-3-methoxyphenylglycol (HMPG) labelled with 14C was used to study the metabolic fate of HMPG in six healthy volunteers. Besides conjugation and oxidation to 4-hydroxy-3-methoxymandelic acid (HMMA, VMA) a minor portion, 8.4 ± 1.1% (mean ± SEM) was excreted as 14C-labelled vantllic acid (VA). To study if VA was formed from HMPG or HMMA (VMA), deuterium-labelled HMPG ([2H3]HMPG) and HMMA ([2H6]HMMA) were simultaneously injected intravenously to seven healthy volunteers. The recovery of [2H3]VA from [2H3]HMPG was 8.3 ± 2.1% and the recovery of [2H6]VA from [2H6]HMMA was 9.0 ± 2.1%. The 2H-labelled VAs were probably formed by a decar boxylation reaction, in the case of HMPG after previous oxidation to HMMA.  相似文献   

13.
Abstract: 4-Hydroxy-3-methoxymandelic acid (HMMA; VMA) labeled with three deuterium atoms was used to study the turnover and fate of HMMA following intravenous injection. Five healthy men were given a pulse dose of 5.0 μmol of labeled HMMA. Plasma and urinary levels of both endogenous and labeled HMMA were subsequently followed by gas chromatography-mass spectrometry using selected ion detection. The kinetic parameters were determined both with and without compensation for the pool expansion caused by the injection of labeled HMMA. The urinary recovery of labeled HMMA was 85 × 10% (mean ± SD). No conversion of HMMA t o 4-hydroxy-3-methoxyphenyl glycol (HMPG) occurred. The biological half-life of HMMA was 0.54 ± 0.22 h. The apparent volume of distribution was 0.36 ± 0.11 L/kg. The production rate or body turnover was 1.27 ± 0.51 μmol HMM/h and urinary excretion rate was 0.82 ± 0.22 μmol/h. These results show that HMMA is turning over rapidly in a relatively small volume of distribution and that, unlike HMPG, it is an end metabolite of norepinephrine in man.  相似文献   

14.
Oxidative stress-induced lipid peroxidation leads to the formation of cytotoxic and genotoxic 2-alkenals, such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). Lipid-derived reactive aldehydes are subject to phase-2 metabolism and are predominantly found as mercapturic acid (MA) conjugates in urine. This study shows evidence for the in vivo formation of ONE and its phase-1 metabolites, 4-oxo-2-nonen-1-ol (ONO) and 4-oxo-2-nonenoic acid (ONA). We have detected the MA conjugates of HNE, 1,4-dihydroxy-2-nonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), the lactone of HNA, ONE, ONO, and ONA in rat urine by liquid chromatography-tandem mass spectrometry comparison with synthetic standards prepared in our laboratory. CCl(4) treatment of rats, a widely accepted animal model of acute oxidative stress, resulted in a significant increase in the urinary levels of DHN-MA, HNA-MA lactone, ONE-MA, and ONA-MA. Our data suggest that conjugates of HNE and ONE metabolites have value as markers of in vivo oxidative stress and lipid peroxidation.  相似文献   

15.
Studies are presented on the toxicological detection of the designer drug methylenedioxyethylapphetamine [MDE, rac-N-ethyl-(3,4-methylenedioxyphenyl)-propane-2-amine] in urine after a single oral dose of 140 mg of MDE by GC-MS and fluorescence polarization immunoassay (FPIA). After acid hydrolysis, extraction and acetylation MDE and its metabolites could be detected by mass chromatography with the selected ions m/z 72, 86, 114, 150, 162 and 164, followed by identification of the peaks underlying full mass spectra by computer library search. The following metabolites could be detected: unchanged MDE and 3,4-dihydroxyethylamphetamine (DHE) for 33,62 h, 3,4-methylenedioxyamphetamine (MDA) for 32–2036 h, and 4-hydroxy-3-methoxyethylamphetamine (HME) for 7 4-hydroxy-3-methoxyamphetamine (HMA), piperonul aceton, 3,4-Dihydroxyphenyl acetone and 4-hydroxy-3-methoxy-phenyl acetone could only be detected in trace amounts within the first few hours. The Abbott TDx FPIA assay amphetamine/metamphetamine II gave positive results in urine for 33--62 h. Therefore, positive immunoassay results could be confirmed by the GC-MS procedure which also allowed the differentiation of MDE and its homologues 3,4-methylenedioxymethamphetamine (MDMA) and MDA as well as other amphetamine derivatives interfering with the TDx assay. Furthermore, this GC-MS procedure allowed the simultaneous detection of most of the toxicologically relevant drugs.  相似文献   

16.
A validated, high pressure liquid chromatographic (HPLC) method for simultaneous quantitation of urinary catecholic acids 4-hydroxy-3-methoxymandelic acid (HMMA) (vanylmandelic acid) (VMA), 4-hydroxy-3-methoxyphenylacetic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA) was developed. Sample preparation involved liquid–liquid extraction of acidified urine, containing iso-HMMA (IS) as internal standard, with ether, evaporation of the organic extract, followed by reconstitution of the residue in phosphate buffer at pH 3.3. After reversed-phase HPLC at 35 °C and separation on a Licrospher 125 mm × 4 mm C18 column (5 μm particle size) with phosphate buffer (pH 3.5)–acetone (950:50, v/v) as eluent, quantitation is achieved by electrochemical detection using coulometric detection at a potential of +350 mV. The method was successfully applied to routine diagnosis of neuroblastoma, carcinoid syndrome and pheochromocytoma.  相似文献   

17.
The formation of conjugates from two antibacterial fluoroquinolone drugs, ciprofloxacin and norfloxacin, was observed in cultures of Trichoderma viride that had been grown in sucrose-peptone broth and extracted 16 d after dosing with the drugs. Both conjugates were purified by high-performance liquid chromatography and found to be optically active. They were identified by mass and proton nuclear magnetic resonance spectra as 4-hydroxy-3-oxo-4-vinylcyclopent-1-enyl ciprofloxacin and 4-hydroxy-3-oxo-4-vinylcyclopent-1-enyl norfloxacin. The transformation of veterinary fluoroquinolones in the presence of fungi may have ecological significance.  相似文献   

18.
The ability of bovine liver and fat to metabolize progesterone and also to form glucuronide conjugates with these progestins in vitro was investigated. Tissue supernatants were incubated with [4-14C] progesterone, UDP-glucuronic acid, and a NADPH generating system for 5 hr, at 37°C. Steroids were identified by thin-layer chromatography, high performance liquid chromatography, and recrystallization to a constant specific activity. The total original radioactivity which could not be removed by exhaustive ether extraction (presumptive conjugates) was 44.7 ± 14.2% in liver, 5.0 ± 3.6% in subcutaneous fat, and 3.7 ± 2.2% in kidney fat samples. Progestins identified in liver samples include 5β-pregnane-3α, 20α-diol (free and conjugate), 5β-pregnane-3α, 20β-diol (free and conjugate), 3α-hydroxy-5sB-pregnan-20-one (free and conjugate), 3β-hydroxy-5β-pregnan-20-one (free), 5β-pregnane-3, 20-dione (free), and progesterone (conjugate). Progestins identified in both the free and conjugate fractions of subcutaneous fat and kidney fat samples include progesterone, 3α-hydroxy-5β-pregnan-20-one, 20β-hydroxy-4-pregnen-3-one, and 20α-hydroxy-4-pregnen-3-one. Differences due to sex of bovine used were noted. These results confirm the ability of bovine liver to readily metabolize progesterone and form glucuronide conjugates of these compounds and suggest that adipose tissues take an active role in these actions in cattle.  相似文献   

19.
The biosynthesis of the glucuronide and sulphate conjugates of 4-hydroxy-3-methoxyphenylethanol was demonstrated in vitro by using the high-speed supernatant and microsomal fractions of liver respectively. These two conjugates were also produced simultaneously by using the post-mitochondrial fraction of rat, rabbit or guinea-pig liver. In contrast only the glucuronide was synthesized by human liver and only the sulphate by mouse and cat livers. Neither of these conjugates was formed by the kidney or the small or large intestine of the rat. A high sulphate-conjugating activity was observed in mouse kidney; the rate of sulphation of 4-hydroxy-3-methoxyphenylethanol with kidney homogenate and high-speed supernatant preparations was 1.8 times greater than with liver preparations. The sulpho-conjugates of 4-hydroxy-3-methoxyphenylethanol and 4-hydroxy-3-methoxy-phenylglycol were also formed by enzyme preparations of rabbit adrenal and rat brain; the glycol was the better substrate in the latter system. Mouse brain did not possess any sulphotransferase activity. For the conjugation of 4-hydroxy-3-methoxyphenylethanol by rabbit liver, the Km for UDP-glucuronic acid was 0.22 mM and that for Na2SO4 was 3.45 mM. The sulphotransferase has a greater affinity for 4-hydroxy-3-methoxyphenyl-ethanol than has glucuronyltransferase, as indicated by their respective Km values of 0.036 and 1.3 mM. It was concluded that sulphate conjugation of 4-hydroxy-3-methoxyphenylethanol predominates in most species of animals.  相似文献   

20.
A simultaneous semi-micro column HPLC method with fluorescence detection of abused drugs, such as 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), amphetamine (AP) and methamphetamine (MP) in rat urine was examined by using 4-(N,N-dimethylaminosulphonyl)-7-fluoro-1,2,3-benzoxadiazole (DBD-F) as a labelling reagent and alpha-phenylethylamine as an internal standard (IS). A sample (50 microL) of rat urine was added to 5 microL IS and 100 microL 100 mmol/L borate buffer (pH 12) and extracted with 1.5 mL n-hexane. After evaporation, 50 microL 75 mmol/L borate buffer (pH 8.5) and 50 microL 20 mmol/L DBD-F in CH3CN were added to the residue and mixed well. The resultant solution was heated for 20 min at 80 degrees C and then cooled in an ice bath. A good separation of DBD-derivatives could be achieved within 45 min using a semi-micro ODS column with an eluent of CH3CN/CH3OH/10 mmol/L imidazole-HNO3 buffer (pH 7.0) (= 45:5:50, v/v/v %). The DBD derivatives were monitored at 565 nm with an excitation at 470 nm. The calibration curves showed good linearity (r = 0.997) with 0.5-15 ng/mL detection limits at a S/N ratio of 3. MDMA and MDA in rat urine could be monitored for 15 h after a single administration of MDMA to rat (2.0 mg/kg, i.p.). The concentrations for MDMA and MDA (n = 3) were 0.13-160.1 and 0.17-10.9 microg/mL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号