首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Gram-negative enteropathogenic bacteria are the target strains of nifurzide and nifuroxazide treatments, neither drug affected faecal counts of in vitro -susceptible Enterobacteriaceae in healthy volunteers. This absence of activity was shown to be due to the poor solubility of the drugs tested. Therefore, effect of high doses of nifurzide was investigated in gnotobiotic mice. Activity against in vitro susceptible enteropathogens was then observed. Normal bacterial cells were replaced in the faeces by elongated, nonseptate and unflagellated mutants. Moreover, the resistance to colonization by enterotoxigenic Escherichia coli and Shigella flexeri of an anaerobic flora of human origin was sharply decreased.  相似文献   

2.
Inhibition of conjugal transfer of R plasmids by nitrofurans   总被引:1,自引:0,他引:1  
Nifurzide is a nitrofuran with antibacterial activity. As nitrofurans have been reported to interact with DNA, we tested the ability of nifurzide to inhibit plasmid transfer. Inhibition of plasmid transfer between Escherichia coli strains was obtained for ten plasmids belonging to nine incompatibility groups. The same effect was observed when plasmid RP4 was harboured in six different members of the Enterobacteriaceae. Inhibition depended on the reduction of the -NO2 group of nifurzide and was obtained with four other nitrofuran derivatives.  相似文献   

3.
Glycolate oxidase that was partially purified from pea leaves was inactivated in vitro by blue light in the presence of FMN. Inactivation was greatly retarded in the absence of O2. Under aerobic conditions H2O2 was formed. The presence of catalase, GSH or dithiothreitol protected glycolate oxidase against photoinactivation. Less efficient protection was provided by ascorbate, histidine, tryptophan or EDTA. The presence of superoxide dismutase or of hydroxyl radical scavengers had no, or only minor, effects. Glutathione suppressed H2O2 accumulation and was oxidized in the presence of glycolate oxidase in blue light. Glycolate oxidase was also inactivated in the presence of a superoxide-generating system or by H2O2 in darkness. In intact leaves photoinactivation of glycolate oxidase was not observed. However, when catalase was inactivated by the application of 3-amino-1,2,4-triazole or depleted by prolonged exposure to cycloheximide a strong photoinactivation of glycolate oxidase was also seen in leaves. In vivo blue and red light were similarly effective. Furthermore, glycolate oxidase was photoinactivated in leaves when the endogenous GSH was depleted by the application of buthionine sulfoximine. Both catalase and antioxidants, in particular GSH, appear to be essential for the protection of glycolate oxidase in the peroxisomes in vivo.  相似文献   

4.
The functional activities of acidic isoferritins (AIF) and lactoferin (LF) were evaluated. The inhibitory activity of AIF (AIFIA) was inactivated by preincubation with a monoclonal antibody (2A4) against AIF, but AIFIA was not inactivated by another monoclonal antibody against AIF (1C5), by a monoclonal antibody (3A5) against basic isoferritins, or by a heteroantiserum (LFT) against basic isoferritins. Monoclonal 2A4 also inactivated the inhibitory activity against colony formation by granulocyte-macrophage (CFU-GM) progenitor cells that was constitutively released by human monocytes or induced by human monocytes in the presence of OKT4+ lymphocytes. In addition to OKT4+ lymphocytes, the release of AIFIA from human monocytes was modulated by iron-saturated human LF and OKT8+ lymphocytes, both of which suppressed the release of AIFIA. Evidence for the physiologic relevance of AIF as a regulator of myelopoiesis was presented, in that human AIF suppressed the numbers of CFU-GM, BFU-E, and CFU-GEMM per femur and the cycling status of these cells in mice recovering from a sublethal dosage of Cytoxan. Abnormalities in LF and AIF interactions were found with cells from a pediatric patient with neutrophilia of unknown etiology that were consistent with the disease manifestations of neutrophilia. Polymorphonuclear neutrophils (PMN) from the patient contained low levels (1%-10% of control) of immunologically reactive LF and the LF found was ineffective as a suppressor molecule for the release of GM-CSF from normal mononuclear blood cells. In addition, the patient's GM-CSF releasing mononuclear blood cells were insensitive to the suppressive effects of purified LF, and colony formation by the patient's CFU-GM, but not BFU-E or CFU-GEMM, were insensitive to the suppressive effects of purified AIF. When the activity of purified AIF was assessed against mouse bone marrow cells under serum-free conditions, it was apparent that serum was not needed for the suppressive activity of AIF and that in some cases, serum actually masked the effects of AIF. Human monoblast cell line U937 was found to be a good model in vitro for the actions of LF and AIF; U937 cells induced for Ia-antigens by human gamma interferon were separated into populations of Ia-antigen+ and Ia-antigen- cells by fluorescence activated cell sorting (FACS), and LF and AIF suppressed colony formation only by the Ia-antigen+ U937 cells. A comparative analysis of bovine and human LF against release of GM-CSF from human mononuclear cells demonstrated that both were active in their iron-saturated form.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Transferrin and ferritin endocytosis and exocytosis by guinea-pig reticulocytes were studied using incubation with pronase at 4 degrees C to distinguish internalized and membrane-bound protein. Internalization of both transferrin and ferritin occurred in a time- and temperature-dependent fashion. Transferrin endocytosis was more rapid than that of ferritin. Transferrin binding to receptors was not altered, but transferrin endocytosis was decreased in the presence of ferritin. Iron accumulation from transferrin was inhibited by ferritin to a greater extent than could be accounted for by the decreased rate of endocytosis. In pulse-chase experiments, almost all of the transferrin was released intact from reticulocytes, but only about 50% of the total internalized ferritin was released, of which 85% was intact. The endocytosis of transferrin by rabbit reticulocytes was 2- to 2.5-times faster than guinea-pig reticulocytes. These data suggest that ferritin and transferrin are internalized by receptor-mediated endocytosis, possibly involving the same coated pits and vesicles, but that the proteins are recycled only partly in common.  相似文献   

6.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

7.
The uptake of glutamate in rat glioma C-6 cells and cultured astrocytes derived from rat cerebral hemispheres was found to be mediated by a Na(+)-dependent and a Na(+)-independent system. The Na(+)-dependent system was inhibited by aspartate and was consistent with the commonly occurring system designated system X-AG. The Na(+)-independent system was inhibited by cystine and was consistent with system x-c described in various types of cells in the periphery. It was also found that quisqualate selectively and competitively interfered with the Na(+)-independent glutamate uptake. In C-6 cells, the glutamate uptake via systems X-AG and x-c accounted for approximately 35% and 55% of the total uptake, respectively, at 0.05 mM glutamate. In cultured astrocytes, the glutamate uptake via system X-AG was very potent, whereas the uptake via system xc- was relatively weak and its contribution to the total uptake of glutamate seemed almost negligible. However, in both C-6 cells and astrocytes, system xc- was necessary for the uptake of cystine, another substrate of system xc-. Cystine in the culture medium was an essential precursor of glutathione, and the inhibition of the cystine uptake by excess glutamate as a competitor led to a severe deficiency in glutathione, followed by cell degeneration.  相似文献   

8.
The turnover rate of glucose, the irreversible disposal rate of lactate, and the rate of gluconeogenesis from lactate were calculated by tracer methods in four normal and four alloxan-diabetic dogs under control conditions as well as in chronic, stable metabolic acidosis and alkalosis. Acidosis was produced by feeding dogs 0.8-1 g.kg-1.day-1NH4Cl over 1 week, alkalosis was produced by feeding dogs a chloride-free diet and injections of furosemide. Mean plasma pH in the three states were 7.28 +/- 0.013, 7.40 +/- 0.024, and 7.51 +/- 0.015 in normal dogs, and 7.22 +/- 0.025, 7.42 +/- 0.009, and 7.49 +/- 0.002 in the diabetic dogs. Respective mean plasma bicarbonate levels were 14.6 +/- 0.88, 22.0 +/- 0.80, and 32.4 +/- 1.88 mequiv. in normal dogs, and 12.3 +/- 1.30, 22.6 +/- 0.66, and 35.0 +/- 1.14 mequiv. in diabetic animals. In normal dogs shifts in acid-base balance had no effect on the level of plasma glucose or the turnover rate of glucose. In diabetic dogs plasma glucose level was significantly elevated by alkalosis. Plasma lactate was positively correlated with plasma pH (r = 0.69, p less than 0.01) and was in general higher in diabetic than in normal animals. The increment in concentration was due to a decreased clearance of lactate from the plasma. The irreversible disposal rate was not changed by the acid-base status. Whereas a larger fraction of lactate removed from the plasma appeared in glucose in diabetic animals, this fraction was not changed significantly by shifts in the acid-base status.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Because of the known role of collagen in chick skeletal muscle differentiation the collagen synthesized by embryonic chick muscle was studied. The major collagen synthesized by this muscle was found to be type I collagen. In addition, the effectiveness of types I, II, III and IV collagens in promoting myoblast fusion in vitro was compared. These collagens were found to be equally effective as in vitro substrates.  相似文献   

10.
Glucose-1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, was markedly decreased in liver of adult rats (2 months of age) as compared to young rats (1-2 weeks of age). This regulator was found to be present in both the mitochondrial and soluble fractions of liver. Its concentration in both these fractions was decreased with age. Concomitant to the decrease in Glc-1,6-P2, which is a potent inhibitor of 6-phosphogluconate dehydrogenase, the activity of this enzyme was markedly increased with age in both the mitochondrial and soluble fractions. However, the increase in this enzyme's activity was more pronounced in the mitochondrial fraction. The mitochondrial enzyme was more susceptible to inhibition by Glc-1,6-P2 as compared to the soluble enzyme, and this may explain the greater enhancement in its activity with age in this fraction. The tibialis anterior muscle exhibited changes with age opposite to those found in liver; Glc-1,6-P2 concentration, in both the mitochondrial and soluble fractions of muscle increased with age, and this increase was accompanied by a concomitant reduction in the activity of the mitochondrial and soluble 6-phosphogluconate dehydrogenase. Similar to liver, the mitochondrial enzyme was more affected by age, as it also exhibited a greater susceptibility to inhibition by Glc-1,6-P2.  相似文献   

11.
This study was undertaken to determine the effect of the implanting cat blastocyst on endometrial morphology and protein synthesis. Placental and endometrial tissues were obtained from pregnant and pseudopregnant cats and then cultured with L-[35S]methionine and analyzed for protein synthesis by 2-dimensional polyacrylamide gel electrophoresis followed by fluorography, and also processed for light microscopy. The progesterone-dependent protein (PDP), described previously by Boomsma and Verhage (Biol Reprod 1987; 37:117-126) and Verhage et al. (Biol Reprod 1989; 41:347-354), was identified by immunocytochemical and immunoblot analysis. Attachment began after 12 days, and the deep glands contained large deposits of PDP. By 20 days the placenta was well developed, and the deep endometrial glands under the placenta had regressed and lacked deposits of PDP. The placenta continued to develop and thicken as pregnancy progressed. The surface epithelium in the non-implantation site regions developed extreme convolutions, while the well-developed deep glands with large deposits of PDP began to regress by 4 weeks, becoming similar to those in the implantation site. The endometrial glands in the pseudopregnant animals maintained deposits of PDP even though apoptotic bodies were observed between 20 and 35 days. PDP synthesis was not detected in the implantation site after 16 days, but it continued in the nonimplantation site through 5 weeks. The synthesis of nine other proteins was significantly altered by the end of implantation such that the pattern in the non-site endometrium was different from the implantation site but similar to the pattern found in the pseudopregnant endometrium. As pregnancy progressed, protein synthesis was altered in the placental/junctional zone and the non-site endometrium, but in the deep endometrial portion of the implantation site it was largely unchanged and similar to the deep portion of the non-site. Thus, the implanting cat blastocyst has a significant effect on the morphology of the implantation site and non-site endometrium, and alters the protein synthetic activity of the implantation site endometrium but apparently not the non-site region. The morphology and protein synthetic patterns of the pregnant cat uterus show regional differentiation and continue to change as pregnancy progresses.  相似文献   

12.
Al adjuvants are used in vaccines to increase the immune response. NTPDase and AChE play a pivotal role and act in the regulation of the immune system. The effect of Al exposure in vitro and in vivo on NTPDase and AChE activities in the lymphocytes of rats was determined. In vitro, ATP hydrolysis was decreased by 20.4% and 17.3% and ADP hydrolysis was decreased by 36.5% and 34.8%, in groups D and E, respectively, when compared to the control. AChE activity was increased by 157.3%, 152.5%, 74.7% and 90.8% in groups B, C, D, and E, respectively, when compared to the control. In vivo, ATP hydrolysis was increased by 85% and 86% and ADP hydrolysis was increased by 104.2% and 74%, in Al plus citrate and Al groups, respectively, when compared to the control. AChE activity was increased by 50.7% in Al plus citrate and by 28.6% in Al groups, when compared to the control. Our results show that Al exposure both in vitro and in vivo altered NTPDase and AChE activities in lymphocytes. These results may demonstrate the ability of Al to elicit the immune system, where NTPDase and AChE activities can act as purinergic and cholinergic markers in lymphocytes.  相似文献   

13.
Purpurogallin is a plant phenol that is sometimes added as an oxidation retardant to fats-oils or to certain fuels or lubricants. However, it was unknown if purpurogallin is cytoprotective. Here we examined this issue, both in isolated hepatocytes and in vivo. From 0.5 to 2.0 mM, purpurogallin prolongs survival of rat hepatocytes substantially against oxyradicals generated with xanthine oxidase and hypoxanthine. The protection was dose dependent and surpassed that given by such antioxidants as ascorbate, mannitol, superoxide dismutase, catalase, and Trolox, when each was examined at or near its optimal concentration in the same system. When 1.5, 3, and 6 mumol of purpurogallin in saline were infused into rats with postischemic livers shortly before reperfusion, the mean hepatic salvages were 42, 76, and 86%, respectively. Such salvage effects would rank purpurogallin highly among the hepatoprotectors known. Over the range of 31 to 500 microM, purpurogallin inhibited the rate of O2 consumption in the xanthine oxidase reaction by approximately 90%, which was 2- to several-fold higher than the inhibition elicited by allopurinol over the same concentrations. Thus, purpurogallin is an effective natural hepatoprotector that may operate partly or principally as an inhibitor of xanthine oxidase.  相似文献   

14.
Embryo transfer in the rhesus monkey has been historically limited to transfer of cleavage stage embryos. In order to allow genetic manipulation of rhesus embryos in vitro, without using invasive surgical techniques, it is important to explore the transfer of morula and blastocyst stage embryos. Embryos were produced by in vitro fertilization from gonadotropin-stimulated monkeys, or were obtained by nonsurgical uterine flushing of naturally mated or artificially inseminated females. Nonsurgical transfer was accomplished by inserting a metal guide through the cervix into the uterus, after which a hollow cell sampler was inserted over the guide. The guide was removed and a catheter was inserted containing one to five embryos. Several pregnancies resulted from in vitro- and in vivo-derived blastocysts, and two pregnancies were carried to term resulting in one live birth. Blood samples were collected regularly to monitor plasma levels of chorionic gonadotropin, luteinizing hormone, and progesterone. The recipients received progesterone as a subcutaneous implant or daily injections from the day of transfer. The approach described in this study provides the opportunity to explore transgenic and chimeric models in the monkey by the development of noninvasive methods to transfer late-stage embryos that have been manipulated in vitro.  相似文献   

15.
The intracellular accumulation of free [3H] adenosine was measured by rapid kinetic techniques in P388 murine leukemia cells in which adenosine metabolism (phosphorylation and deamination) was completely prevented by depletion of cellular ATP and by treatment with deoxycoformycin. Nonlinear regression of integrated rate equations on the data demonstrate that the time courses of labeled adenosine accumulation at various extracellular adenosine concentrations in zero-trans and equilibrium exchange protocols are well described by a simple, completely symmetrical, transport model with a carrier:substrate affinity constant of about 150 μM. Adenosine transport was not affected by 1 mM deoxycoformycin indicating that this analog has a low affinity for the nucleoside transport system. The transport capacity of dog thymocytes and peripheral leukocytes was similar to that of P388 cells. Transport was not inhibited by deoxycoformycin and remained constant during the first two hours after mitogenic stimulation with concanavalin A. In untreated, metabolizing P388 cells transport was found to be the major determinant of the rate of intracellular metabolism, regardless of the extracellular adenosine concentration (up to at least 160 μM), but the long-term accumulation (longer than 30–60 seconds) of radioactivity from extracellular adenosine strictly reflected the rate of formation of nucleotides (mainly ATP). The metabolism of adenosine by whole cells was entirely consistent with the kinetic properties of the transport system and those of the metabolic enzymes. At low exogenous adenosine concentrations (1 μM and below) transport was slow enough to allow direct phosphorylation of most of the entering adenosine. The remainder was deaminated and rapidly converted to nucleotides via inosine, hypoxanthine, and IMP. At concentrations of 100 μM or higher, on the other hand, influx exceeded the maximum velocity of adenosine kinase about 100 times so that most of the entering adenosine was deaminated. But since the maximum velocity of adenosine deaminase exceeded those of nucleoside phosphorylase and hypoxanthine/guanine phosphoribosyltransferase about 5 and 100 times, respectively, hypoxanthine and inosine rapidly exited from the cells and accumulated in the medium. A 98% reduction of adenosine transport (at 100 μM), caused by the transport inhibitor Persantin, inhibited adenosine deamination by whole cells to about the same extent as transport, whereas adenosine phosphorylation was relatively little affected; thus in the presence of Persantin, transport and metabolism resembled that occurring at the low adenosine concentration. These and other results indicate that adenosine deamination is an event distinct from transport, which occurs only subsequent to adenosine's transport into the cell.  相似文献   

16.
The oxidation of protoporphyrinogen to protoporphyrin was demonstrated in greening plastids and mitochondria from greening barley shoots. The plastids, purified by sucrose gradient centrifugation, were essentially free of a mitochondrial marker enzyme. The plastid activity was destroyed by mild heating and was proportional to plastid concentration suggesting, an enzymatic reaction. Uroporphyrinogen I was not oxidized at an appreciable rate. Activity was also demonstrated in etioplasts and mitochondria from dark-grown barley, and in chloroplasts from commercial spinach leaves. The chelating agent 1,10-phenanthroline partially decreased activity in plant organelles, but cyanide did not. The plastid activity, like the activity in liver mitochondria, was readily demonstrable at pH 8.4 in the presence of glutathione as reducing agent. However, the plastid activity was markedly enhanced by assay at pH 7.0 and the absence of reducing agents. These properties distinguish the activity in plants from that previously described in mammalian mitochondria and photosynthetic bacteria.  相似文献   

17.
The in vivo rate of the reaction catalyzed by the pyruvate dehydrogenase complex in Dictyostelium discoideum was measured by exposing cells to [1-14C]alanine and relating the rate of 14CO2 evolution to the specific radioactivity of the isolated [1-14C]pyruvate. The rate obtained, 0.33 mumol/min per ml packed cell volume, was very similar to that determined by independent calculations based upon the rate of utilization of endogenous protein as an energy source in this system.  相似文献   

18.
19.
IGA in human bile and liver   总被引:12,自引:0,他引:12  
Hepatic bile IgA from 6 patients was measured by radioimmunoassay and characterized immunochemically. The concentration of IgA was 0.14 to 0.88 mg/ml. IgA associated with secretory component (SC) as well as unassociated with SC was demonstrated in all 6 samples; The proportion associated with SC (secretory IgA) was 72% to 95%. IgA and SC were localized immunocytochemically in liver and bile duct tissues by the peroxidase-labeled antibody method. Evidence favoring endocytic, SC-mediated transfer of IgA by intrahepatic and extrahepatic biliary epithelium, but not by hepatocytes, was found.  相似文献   

20.
Studies were conducted to compare the modulation of β-nicotinamide adenine dinucleotide (NADH): nitrate reductase (NR; EC 1.6.6.1) and sucrose-phosphate synthase (SPS: EC 2.4.1.14) with respect to regulation by the inorganic anions, phosphate (P1), sulfate and tungstate. Following inactivation of both enzymes in vivo by transferring spinach plants ( Spinacia oleracea L. cv. Bloomsdale) to a darkened growth chamber, spontaneous reactivation occurred in vitro when desalted leaf extracts were preincubated at 25°C prior to assay. All three inorganic anions inhibited SPS activation in vitro and also reduced the light activation of SPS in situ when they were fed to excised leaves via the transpiration stream. As expected, feeding tungstate to excised leaves prevented the light-dependent increase in extractable NR activity. However, in contrast to SPS, the light activation of NR in situ was relatively unaffected by Pi, and sulfate, and in vitro, both anions stimulated (rather than inhibited) the reactivation of NR. Part of the stimulation by Pi and sulfate was the result of increased ionic strength, and stimulation could also be demonstrated with other inorganic and organic salts. In the presence of high ionic strength (0.1 to 0.2 M KCl) the rate of NR activation in vitro was relatively constant when the pH of the preincubation medium was varied from pH 6.5 to 8.0, whereas in the absence of added salt the rate of activation was nearly zero at pH 6.5 but increased progressively as pH was raised. The stimulation by salts could be reversed, in part, by glycerol and ethylene glycol suggesting that hydrophobic interactions might play some role in the activation of NR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号