首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
O Malek  V Knoop 《RNA (New York, N.Y.)》1998,4(12):1599-1609
The fragmentation of group II introns without concomitant loss of splicing competence is illustrated by extraordinary gene arrangements in plant mitochondrial genomes. The mitochondrial genes nad1, nad2, and nad5, all encoding subunits of the NADH dehydrogenase, require trans-splicing for functional assembly of their mRNAs in flowering plants. Tracing the origins of trans-splicing group II introns shows that they have evolved from formerly cis-arranged homologs whose descendants can still be identified in lineages of early branching land plants. In this contribution we present the full set of ancestor introns for all five conserved mitochondrial trans-splicing positions. These introns are strikingly small in the quillwort Isoetes lacustris, the continuous nad2 gene intron in this species representing the smallest (389 nt) land plant group II intron yet identified. cDNA analysis shows correct splicing of the introns in vivo and also identifies frequent RNA editing events in the flanking nad gene exons. Other representatives of the ancestral cis-arranged introns are identified in the fern Osmunda regalis, the horsetail Equisetum telmateia, and the hornwort Anthoceros crispulus. Only the now identified intron in Osmunda carries significant traces of a former maturase reading frame. The identification of a continuous homolog in Anthoceros demonstrates that intron invasion into the affected genes in some cases predated the split of vascular and nonvascular plants more than 400 million years ago. As an alternative to disruption after size increase, the respective introns can get secondarily lost in certain lineages.  相似文献   

2.
Liverworts occupy a pivotal position in land plant (embryophyte) phylogeny as the presumed earliest-branching major clade, sister to all other land plants, including the mosses, hornworts, lycophytes, monilophytes and seed plants. Molecular support for this earliest dichotomy in land plant phylogeny comes from strikingly different occurrences of introns in mitochondrial genes distinguishing liverworts from all other embryophytes. Exceptionally, however, the nad5 gene--the mitochondrial locus hitherto used most widely to elucidate early land plant phylogeny--carries a group I type intron that is shared between liverworts and mosses. We here explored whether a group II intron, the other major type of organellar intron, would similarly be conserved in position across the entire diversity of extant liverworts and could be of use for phylogenetic analyses in this supposedly most ancient embryophyte clade. To this end, we investigated the nad4 gene as a candidate locus possibly featuring different introns in liverworts as opposed to the non-liverwort embryophyte (NLE) lineage. We indeed found group II intron nad4i548 universally conserved in a wide phylogenetic sampling of 55 liverwort taxa, confirming clade specificity and surprising evolutionary stability of plant mitochondrial introns. As expected, intron nad4i548g2 carries phylogenetic information in its variable sequences, which confirms and extends previous cladistic insights on liverwort evolution. We integrate the new nad4 data with those of the previously established mitochondrial nad5 and the chloroplast rbcL and rps4 genes and present a phylogeny based on the fused datasets. Notably, the phylogenetic analyses suggest a reconsideration of previous phylogenetic and taxonomic assignments for the genera Calycularia and Mylia and resolve a sister group relationship of Ptilidiales and Porellales.  相似文献   

3.
Extant bryophytes are regarded as the closest living relatives of the first land plants, but relationships among the bryophyte classes (mosses, liverworts and hornworts) and between them and other embryophytes have remained unclear. We have recently found that plant mitochondrial genes with positionally stable introns are well suited for addressing questions of plant phylogeny at a deep level. To explore further data sets we have chosen to investigate the mitochondrial genes nad4 and nad7, which are particularly rich in intron sequences. Surprisingly, we find that in these genes mosses share three group II introns with flowering plants, but none with the liverwort Marchantia polymorpha or other liverworts investigated here. In mitochondria of Marchantia, nad7 is a pseudogene containing stop codons, but nad7 appears as a functional mitochondrial gene in mosses, including the isolated genus Takakia. We observe the necessity for strikingly frequent C-to-U RNA editing to reconstitute conserved codons in Takakia when compared to other mosses. The findings underline the great evolutionary distances among the bryophytes as the presumptive oldest division of land plants. A scenario involving differential intron gains from fungal sources in what are perhaps the two earliest diverging land plant lineages, liverworts and other embryophytes, is discussed. With their positionally stable introns, nad4 and nad7 represent novel marker genes that may permit a detailed phylogenetic resolution of early clades of land plants.  相似文献   

4.
Liverworts are well supported as the sister group to all other land plants (embryophytes) by molecular data. Observations strongly supporting this earliest dichotomy in embryophyte evolution are the strikingly different introns occurring in the mitochondrial DNAs of liverworts versus non-liverwort embryophytes (NLE), including the mosses. A final conclusion on the most basal lineages of mosses, for which genera such as Sphagnum and Takakia are the most likely candidates, is lacking. We have now investigated cox1i624, a mitochondrial group I intron conserved between the moss Physcomitrella patens and the liverwort Marchantia polymorpha. Focusing on a sampling of liverwort and moss genera, which had previously been identified as early branching taxa in their respective clades, we find that group I intron cox1i624 is universally conserved in all 33 mosses and 11 liverworts investigated. The group I intron core secondary structure is well conserved between the two ancient land plant clades. However, whereas dramatic size reductions are seen in the moss phylogeny, exactly the opposite is observed for liverworts. The cox1i624g1 locus was used for phylogenetic tree reconstruction also in combination with data sets of nad5i753g1 as well as chloroplast loci rbcL and rps4. The phylogenetic analyses revealed (i) very good support for the Treubiopsida as sister clade to all other liverworts, (ii) a sister group relationship of the nematodontous Tetraphidopsida and Polytrichopsida and (iii) two rivalling hypotheses about the basal-most moss genus with mitochondrial loci suggesting an isolated Takakia as sister to all other mosses and chloroplast loci indicating a TakakiaSphagnum clade.  相似文献   

5.
Gene transfer from the mitochondrion into the nucleus is a corollary of the endosymbiont hypothesis. The frequent and independent transfer of genes for mitochondrial ribosomal proteins is well documented with many examples in angiosperms, whereas transfer of genes for components of the respiratory chain is a rarity. A notable exception is the nad7 gene, encoding subunit 7 of complex I, in the liverwort Marchantia polymorpha, which resides as a full-length, intron-carrying and transcribed, but nonspliced pseudogene in the chondriome, whereas its functional counterpart is nuclear encoded. To elucidate the patterns of pseudogene degeneration, we have investigated the mitochondrial nad7 locus in 12 other liverworts of broad phylogenetic distribution. We find that the mitochondrial nad7 gene is nonfunctional in 11 of them. However, the modes of pseudogene degeneration vary: whereas point mutations, accompanied by single-nucleotide indels, predominantly introduce stop codons into the reading frame in marchantiid liverworts, larger indels introduce frameshifts in the simple thalloid and leafy jungermanniid taxa. Most notably, however, the mitochondrial nad7 reading frame appears to be intact in the isolated liverwort genus Haplomitrium. Its functional expression is shown by cDNA analysis identifying typical RNA-editing events to reconstitute conserved codon identities and also confirming functional splicing of the 2 liverwort-specific group II introns. We interpret our results 1) to indicate the presence of a functional mitochondrial nad7 gene in the earliest land plants and strongly supporting a basal placement of Haplomitrium among the liverworts, 2) to indicate different modes of pseudogene degeneration and chondriome evolution in the later branching liverwort clades, 3) to suggest a surprisingly long maintenance of a nonfunctional gene in the presumed oldest group of land plants, and 4) to support the model of a secondary loss of RNA-editing activity in marchantiid liverworts.  相似文献   

6.
7.
Forty-six species of diverse land plants were investigated by sequencing for their intron content in the mitochondrial gene nad1. A total of seven introns, all belonging to group II, were found, and two were newly discovered in this study. All 13 liverworts examined contain no intron, the same condition as in green algae. Mosses and hornworts, however, share one intron by themselves and another one with vascular plants. These intron distribution patterns are consistent with the hypothesis that liverworts represent the basal-most land plants and that the two introns were gained in the common ancestor of mosses-hornworts-vascular plants after liverworts had diverged. Hornworts also possess a unique intron of their own. A fourth intron was found only in Equisetum L., Marattiaceae, Ophioglossum L., Osmunda L., Asplenium L., and Adiantum L., and was likely acquired in their common ancestor, which supports the monophyly of moniliformopses. Three introns that were previously characterized in angiosperms and a few pteridophytes are now all extended to lycopods, and were likely gained in the common ancestor of vascular plants. Phylogenetic analyses of the intron sequences recovered topologies mirroring those of the plants, suggesting that the introns have all been vertically inherited. All seven nad1 group II introns show broad phylogenetic distribution patterns, with the narrowest being in moniliformopses and hornworts, lineages that date back to at least the Devonian (345 million years ago) and Silurian (435 million years ago), respectively. Hence, these introns must have invaded the genes via ancient transpositional events during the early stage of land plant evolution. Potentially heavy RNA editing was observed in nad1 of Haplomitrium Dedecek, Takakia Hatt. & Inoue, hornworts, Isoetes L., Ophioglossum, and Asplenium. A new nomenclature is proposed for group II introns.  相似文献   

8.
The slow-evolving mitochondrial DNAs of plants have potentially conserved information on the phylogenetic branching of the earliest land plants. We present the nad2 gene structures in hornworts and liverworts and in the presumptive earliest-branching vascular land plant clade, the Lycopodiopsida. Taken together with the recently obtained nad2 data for mosses, each class of bryophytes presents another pattern of angiosperm-type introns conserved in nad2: intron nad2i1 in mosses; intron nad2i3 in liverworts; and both introns, nad2i3 and nad2i4, in hornworts. The lycopods Isoetes and Lycopodium show diverging intron conservation and feature a unique novel intron, termed nad2i3b. Hence, mitochondrial introns in general are positionally stable in the bryophytes and provide significant intraclade phylogenetic information, but the nad2 introns, in particular, cannot resolve the interclade relationships of the bryophyte classes and to the tracheophytes. The necessity for RNA editing to reconstitute conserved codon entities in nad2 is obvious for all clades except the marchantiid liverworts. Finally, we find that particularly small group II introns appear as a general feature of the Isoetes chondriome. Plant mitochondrial peculiarities such as RNA editing frequency, U-to-C type of RNA editing, and small group II introns appear to be genus-specific rather than gene-specific features.  相似文献   

9.
10.
11.
The nad7 gene, encoding subunit 7 of NADH dehydrogenase, is mitochondrially encoded in seed plants. In the liverwort, Marchantia polymorpha, only a pseudogene is located in the mitochondrial genome. We have now identified the functional nad7 gene copy in the nuclear genome of Marchantia, coding for a polypeptide of 468 amino acids. The nuclear-encoded nad7 has lost the two group II introns present in the mitochondrial pseudogene copy. Instead, a typical nuclear intron is found to split an exon encoding the presumptive mitochondrial targeting signal peptide and the mature subunit 7 of NADH dehydrogenase. These results suggest that RNA-mediated gene transfer from the mitochondrial into the nuclear genome occurs not only in seed plants but also in bryophytes. Received: 11 March 1997 / Accepted: 20 August 1997  相似文献   

12.
The nad7 gene, encoding subunit 7 of NADH dehydrogenase, is mitochondrially encoded in seed plants. In the liverwort, Marchantia polymorpha, only a pseudogene is located in the mitochondrial genome. We have now identified the functional nad7 gene copy in the nuclear genome of Marchantia, coding for a polypeptide of 468 amino acids. The nuclear-encoded nad7 has lost the two group II introns present in the mitochondrial pseudogene copy. Instead, a typical nuclear intron is found to split an exon encoding the presumptive mitochondrial targeting signal peptide and the mature subunit 7 of NADH dehydrogenase. These results suggest that RNA-mediated gene transfer from the mitochondrial into the nuclear genome occurs not only in seed plants but also in bryophytes.  相似文献   

13.
Mitochondrial genomes (mtDNAs) in angiosperms contain numerous group II-type introns that reside mainly within protein-coding genes that are required for organellar genome expression and respiration. While splicing of group II introns in non-plant systems is facilitated by proteins encoded within the introns themselves (maturases), the mitochondrial introns in plants have diverged and have lost the vast majority of their intron-encoded ORFs. Only a single maturase gene (matR) is retained in plant mtDNAs, but its role(s) in the splicing of mitochondrial introns is currently unknown. In addition to matR, plants also harbor four nuclear maturase genes (nMat 1 to 4) encoding mitochondrial proteins that are expected to act in the splicing of group II introns. Recently, we established the role of one of these proteins, nMAT2, in the splicing of several mitochondrial introns in Arabidopsis. Here, we show that nMAT1 is required for trans-splicing of nad1 intron 1 and also functions in cis-splicing of nad2 intron 1 and nad4 intron 2. Homozygous nMat1 plants show retarded growth and developmental phenotypes, modified respiration activities and altered stress responses that are tightly correlated with mitochondrial complex I defects.  相似文献   

14.
Three genes for the subunits of the NADH dehydrogenase (nad5, nad4, and nad2) are tandemly clustered on the liverwort mitochondrial genome. Their gene products showed high levels of amino acid sequence identity with the corresponding subunits from higher plant mitochondria (82.8–84.4%), and significant levels of identity with those from liverwort chloroplast (32.0–33.5%), Podospora anserina mitochondria (21.4–45.9%), and human mitochondria (18.4–27.9%). In addition, these three subunits from liverwort mitochondria have conserved amino acid residues in their central regions. The gene nad5 is interrupted by a 672 by group I intron, while genes nad4 and nad2 are interrupted by group II introns of 899 by and 1418 bp, respectively. Northern blot analysis using exon-intron specific probes indicated that these three genes are transcribed as a single precursor mRNA of 9.6 kb in length and are processed into mature mRNA molecules in liverwort mitochondria. Several regions of this nad gene cluster are repeated in the liverwort mitochondrial genome.Communicated by R.G. Herrmann  相似文献   

15.
The complete nucleotide sequence of the mitochondrial DNA (mtDNA) from a liverwort, Marchantia polymorpha, contains thirty-two introns. Twenty-five of these introns possess the characteristic secondary structures and consensus sequences of group II introns. The remaining seven are group I introns, six of which happen to interrupt the gene coding for subunit 1 of cytochrome oxidase (cox1). Interestingly, the insertion sites of one group II and four group I introns in the cox1 gene coincide with those of the respective fungal mitochondrial interns. Moreover, comparison of the four group I introns with their fungal counterparts shows that group I introns inserted at identical genomic sites in different organisms are indeed related to one another, in terms of the peptide sequences generated from the complete or fragmental ORFs encoded by these introns. At the same time, the liverwort introns turned out to be more divergent from their fungal cognates than the latter are from one another. We therefore conclude that vertical transmission from a common ancestor organism is the simplest explanation for the presence of cognate introns in liverwort and fungal mitochondrial genomes.  相似文献   

16.
Analysis of the mitochondrial DNA of a liverwort Marchantia polymorpha by electron microscopy and restriction endonuclease mapping indicated that the liverwort mitochondrial genome was a single circular molecule of about 184,400 base-pairs. We have determined the complete sequence of the liverwort mitochondrial DNA and detected 94 possible genes in the sequence of 186,608 base-pairs. These included genes for three species of ribosomal RNA, 29 genes for 27 species of transfer RNA and 30 open reading frames (ORFs) for functionally known proteins (16 ribosomal proteins, 3 subunits of H(+)-ATPase, 3 subunits of cytochrome c oxidase, apocytochrome b protein and 7 subunits of NADH ubiquinone oxidoreductase). Three ORFs showed similarity to ORFs of unknown function in the mitochondrial genomes of other organisms. Furthermore, 29 ORFs were predicted as possible genes by using the index of G + C content in first, second and third letters of codons (42.0 +/- 10.9%, 37.0 +/- 13.2% and 26.4 +/- 9.4%, respectively) obtained from the codon usages of identified liverwort genes. To date, 32 introns belonging to either group I or group II intron have been found in the coding regions of 17 genes including ribosomal RNA genes (rrn18 and rrn26), a transfer RNA gene (trnS) and a pseudogene (psi nad7). RNA editing was apparently lacking in liverwort mitochondria since the nucleotide sequences of the liverwort mitochondrial DNA were well-conserved at the DNA level.  相似文献   

17.
The evolution of the group II intron in the plastid gene encoding tRNA(Val)UAC (trnV) from seven plant taxa was studied by aligning secondary and other structural features. Levels of evolutionary divergence between six angiosperms and a liverwort, Marchantia polymorpha, were compared for the six domains commonly demonstrated for group II introns and were shown to be statistically heterogeneous. Evolutionary rates varied substantially among various domains and other features. Domain II showed the highest evolutionary rate, approaching the synonymous substitution rate reported for cpDNA-encoded genes, while domain VI and the helix and loop region bearing EBS1 evolved at rates similar to those for nonsynonymous substitutions of a number of cpDNA-encoded genes. The minimum free-energy structure of domain I varied among the seven taxa, suggesting that possible protein-RNA or tertiary interactions are important for intron processing.  相似文献   

18.
B Wissinger  W Schuster  A Brennicke 《Cell》1991,65(3):473-482
The complete NADH dehydrogenase subunit 1 (nad1) ORF in Oenothera mitochondria is encoded by five exons. These exons are located in three distant locations of the mitochondrial genome. One genomic region encodes exon a, the second encodes exons b and c, and the third specifies exons d and e. Cis-splicing group II introns separate exons b and c and d and e, while trans-splicing reactions are required to link exons a and b and c and d. The two parts of the group II intron sequences involved in these trans-splicing events can be aligned in domain IV. Exon sequences and the maturase-related ORF in intron d/e are edited by numerous C to U alterations in the mRNA. Two RNA editing events in the trans-splicing intron a/b improve conservation of the secondary structure in the stem of domain VI. RNA editing in intron sequences may thus be required for the trans-splicing reaction.  相似文献   

19.
The 3' regions of several group II introns within the mitochondrial genes nad1 and nad7 show unexpected sequence divergence among flowering plants, and the core domains 5 and 6 are predicted to have weaker helical structure than those in self-splicing group II introns. To assess whether RNA editing improves helical stability by the conversion of A-C mispairs to A-U pairs, we sequenced RT-PCR amplification products derived from excised intron RNAs or partially spliced precursors. Only in some cases was editing observed to strengthen the predicted helices. Moreover, the editing status within nad1 intron 1 and nad7 intron 4 was seen to differ among plant species, so that homologous intron sequences shared lower similarity at the RNA level than at the DNA level. Plant-specific variation was also seen in the length of the linker joining domains 5 and 6 of nad7 intron 3; it ranged from 4 nt in wheat to 11 nt in soybean, in contrast to the 2-4 nt length typical of classical group II introns. However, this intron is excised as a lariat structure with a domain 6 branchpoint adenosine. Our observations suggest that the core structures and sequences of these plant mitochondrial introns are subject to less stringent evolutionary constraints than conventional group II introns.  相似文献   

20.
In wheat mitochondria, the gene coding for subunit 2 of the NADH-ubiquinone oxidoreductase (nad2) is divided into five exons located in two distant genomic regions. The first two exons of the gene, a and b, lie 22?kb downstream of exons c, d, and e, on the same DNA strand. All introns of nad2 are group II introns. A trans-splicing event is required to join exons b and c. It involves base pairing of the two precursor RNAs in the stem of domain IV of the intron. A gene coding for tRNATyr is located upstream of exon c. In addition to splicing processes, mRNA editing is also required for the correct expression of nad2. The mature mRNA is edited at 36 positions, distributed over its five exons, resulting in 28 codon modifications. Editing increases protein hydrophobicity and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号