首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The material behaviour and antimicrobial effect of konjac glucomannan edible film incorporating chitosan and nisin at various ratio or concentrations is discussed. This activity was tested against food pathogenic bacteria namely Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. Mechanical and physical properties were determined and the results indicated that the blend film KC2 (mixing ratio konjac glucomannan 80/chitosan 20) showed the maximum tensile strength (102.8 ± 3.8 MPa) and a good transparency, water solubility, water vapor transmission ratio. The differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), etc. were used to characterize the structural change of the blend films. The results showed that the strong intermolecular hydrogen bonds took place between chitosan and konjac glucomannan. Incorporation of nisin at 42,000 IU/g of film for the selected blend film KC2 was found to have antimicrobial activity against S. aureus, L. monocytogenes, and B. cereus. The antimicrobial effect of chitosan or KC2 incorporating nisin was much better than that of konjac glucomannan incorporating nisin at each corresponding concentration and existed significant difference (p < 0.05), however, there was no significant difference on the antimicrobial effect between chitosan and KC2 both incorporating nisin. At all these levels, the ternary blend film KC2-nisin had a satisfactory mechanical, physical properties and antimicrobial activity, and could be applied as a potential ‘active’ packaging material.  相似文献   

2.

A common goal of active packaging is to improve the shelf life, safety, or quality of packaged foods. The integrity of an active package must be remained in order to prevent the growth of microorganisms on the surface of food. Therefore, active polyvinyl alcohol-Alyssum homolocarpum seed gum (PVA-AHSG) composite films with different nisin concentrations (3000, 5000 and 10,000 IU) were prepared and their physico-chemical and antimicrobial properties were determined. Addition of nisin to the composite films increased their water vapor permeability (WVP), elongation at break (EB) and opacity, whereas their total color difference (ΔE), glass transition temperature (Tg), melting temperature (Tm), tensile strength (TS) and young modulus (YM) were decreased. Increasing the nisin concentration remarkably increased the chain mobility, interactions between polymers and water molecules and also the free volume of polymer matrix. The antimicrobial potential of film against L. monocytogene, S. aureus and E. coli as well as the release of nisin into phosphate buffer solution (pH 7.2) were investigated. Films containing nisin had inhibition effect against gram positive pathogens among which L. monocytogenes was the most sensitive bacterium. In liquid media, all films containing nisin prevented the growth of L. monocytogenes and S. aureus, but it was only the film with 10,000 IU nisin content which was able to control 100% of the microbial population during incubation time. Nisin release and diffusion coefficient (D) increased as its concentration increased in the film matrix due to the interaction of nisin with film polymer chains. Therefore, the resultant film had appropriate controlled release property and suitable microbial inhibitory against gram positive bacteria.

Composite bioactive films based on polyvinyl alcohol-Alyssum homolocarpum seed gum blend and Nisin: Physiochemical characterization and antimicrobial properties. Monjazeb et al. (2017).

  相似文献   

3.
AIMS: The goal of this study was to determine whether nisin and lactoferrin would act synergistically to inhibit the growth of Listeria monocytogenes and Escherichia coli O157:H7. METHODS AND RESULTS: Lactoferrin and nisin separately or in combination were suspended in peptone yeast glucose broth and following inoculation with L. monocytogenes or E. coli O157:H7 growth inhibition of each pathogen was determined. At 1000 microg ml(-1) lactoferrin L. monocytogenes was effectively inhibited. However, E. coli O157:H7 initially was inhibited and then grew to cell density similar to the control. A combination of 500 microg ml(-1) of lactoferrin and 250 IU ml(-1) of nisin effectively inhibited the growth of E. coli O157:H7, whereas, 250 microg ml(-1) of lactoferrin and 10 IU ml(-1) of nisin were inhibitory to L. monocytogenes. CONCLUSIONS: The results suggest that lactoferrin and nisin act synergistically to inhibit the growth of L. monocytogenes and E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: Natural preservatives that are active against gram-positive and gram-negative pathogens are desirable to the food industry and consumers. This study demonstrates that lactoferrin and nisin work synergistically reducing the levels required independently inhibiting growth of two major foodborne pathogens. Previous reported results indicated a low level of antimicrobial activity; however, this work was not performed in low divalent cation concentration media. It has been suggested that nondivalent cation-limiting medium such as trypticase soy broth (TSB), can reduce or completely eliminate the inhibitory activity. Further knowledge of these interactions can increase the understanding of the antimicrobial activity of lactoferrin. This should make the use of these compounds by industry more attractive.  相似文献   

4.
AIMS: The effect of combinations of nisin and ethanol on the survival of Listeria monocytogenes was investigated. METHODS AND RESULTS: Killing by nisin was enhanced during simultaneous exposure to ethanol (2-7% v/v). For example, while 10 IU ml(-1) nisin reduced viability by 1 log unit in 20 min, a combination of this antimicrobial peptide and 5% ethanol, reduced numbers of surviving cells by 3 log units. Increasing the concentrations of either ethanol (2-7%) or nisin (10-50 IU ml(-1)) led to increased cell death with synergy being demonstrated for all combinations tested and at a range of temperatures from 5 to 37 degrees C. CONCLUSIONS: Ethanol can act synergistically with nisin to reduce the survival of L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: Combinations of ethanol and nisin may be feasible as an effective way of controlling this pathogen in the food processing environment.  相似文献   

5.
Nisin is an antimicrobial peptide proven to be an effective inhibitor of gram-positive bacteria. It is known that nisin can adsorb to various surfaces and still retain much of its original activity (M. A. Daeschel, J. McGuire, and H. Al-Makhlafi, J. Food Prot. 55:731-735, 1992). In this study, nisin films were allowed to form on silanized silica surfaces and then exposed to medium containing Listeria monocytogenes. Representative areas were selected from each surface, and images of resident listeriae were obtained at 4-h intervals for 12 h. During this time, cells on surfaces that had been in contact with a high concentration of nisin (1.0 mg/ml) exhibited no signs of growth and many displayed evidence of cellular deterioration. Surfaces treated with a lower concentration of nisin (0.1 mg/ml) had a smaller degree of inhibition. In contrast, both protein-free surfaces and those with films of heat-inactivated nisin allowed attached L. monocytogenes cells to grow and reproduce. These studies, when repeated with a nisin-resistant strain of L. monocytogenes, resulted in no inhibition of growth on surfaces with adsorbed nisin. The bactericidal effect of adsorbed nisin was also studied with iodonitrotetrazolium violet, a tetrazolium salt, which is reduced to a red formazan crystal by viable bacteria. Crystals were visible in 95% of the cells adhered to control surfaces but were present in less than 20% of the cells on surfaces with adsorbed nisin. These data indicate that adsorbed nisin may have potential for use as a food grade antimicrobial agent on food contact surfaces.  相似文献   

6.
Nisin is an antimicrobial peptide that is widely used for food preservation. Although it has potent activity against a number of food pathogens, suggesting potential therapeutic applications, its potential for clinical use is limited by proteolytic susceptibility and poor oral bioavailability. Derivatization of nisin could overcome these issues; however, many nisin analogues, prepared by modification at the N-terminal and C-terminal have previously been shown to be inactive. A method for the C-terminal modification was developed using biotinylation as a model derivative. Purification of the modified nisin was carried out using reverse phase chromatography. Confirmation of nisin modification was confirmed by Mass Spectroscopy. The C-terminal modification of nisin resulted in only a twofold reduction in antimicrobial activity of the conjugate against the indicator organism, Kocuria rhizophila. The C-terminal modification could be used to increase the therapeutic potential of nisin by creating more favourable physicochemical characteristics. This is the first study that showed that nisin modification can be carried out successfully without destroying its antimicrobial activity.  相似文献   

7.
The food-borne pathogenic bacterium Listeria is known for relatively low morbidity and high mortality rates, reaching up to 25 to 30%. Listeria is a hardy organism, and its control in foods represents a significant challenge. Many naturally occurring compounds, including the bacteriocin nisin and a number of plant essential oils, have been widely studied and are reported to be effective as antimicrobial agents against spoilage and pathogenic microorganisms. The aim of this study was to investigate the ability of semipurified preparations (SPP) containing either nisin A or an enhanced bioengineered derivative, nisin V, alone and in combination with low concentrations of the essential oils thymol, carvacrol, and trans-cinnamaldehyde, to control Listeria monocytogenes in both laboratory media and model food systems. Combinations of nisin V-containing SPP (25 μg/ml) with thymol (0.02%), carvacrol (0.02%), or cinnamaldehyde (0.02%) produced a significantly longer lag phase than any of the essential oil-nisin A combinations. In addition, the log reduction in cell counts achieved by the nisin V-carvacrol or nisin V-cinnamaldehyde combinations was twice that of the equivalent nisin A-essential oil treatment. Significantly, this enhanced activity was validated in model food systems against L. monocytogenes strains of food origin. We conclude that the fermentate form of nisin V in combination with carvacrol and cinnamaldehyde offers significant advantages as a novel, natural, and effective means to enhance food safety by inhibiting food-borne pathogens such as L. monocytogenes.  相似文献   

8.
An effective antimicrobial packaging or food contact surface should be able to kill or inhibit micro-organisms that cause food-borne illnesses. Setting up such systems, by nisin adsorption on hydrophilic and hydrophobic surfaces, is still a matter of debate. For this purpose, nisin was adsorbed on two types of low-density polyethylene: the hydrophobic native film and the hydrophilic acrylic acid-treated surface. The antibacterial activity was compared for those two films and it was highly dependent on the nature of the surface and the nisin-adsorbed amount. The hydrophilic surfaces presented higher antibacterial activity and higher amount of nisin than the hydrophobic surfaces. The effectiveness of the activated surfaces was assessed against Listeria innocua and the food pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. S. aureus was more sensitive than the three other test bacteria toward both nisin-functionalized films. Simulation tests to mimic refrigerated temperature showed that the films were effective at 20 and 4 °C with no significant difference between the two temperatures after 30 min of exposure to culture media.  相似文献   

9.
AIMS: To determine the effectiveness of a packaging film coated with nisin to inhibit Micrococcus luteus ATCC 10240 in tryptone soya broth (TSB) and the microbiota of raw milk during storage. A further aim was to examine the release of nisin from the activated film. METHODS AND RESULTS: An active package, obtained from nisin-treated film, was filled with 1 l of M. luteus ATCC 10240 (ML) suspension in TSB and stored at 4 and 25 degrees C for 2 days. After 24 h at 25 degrees C there was a remarkable reduction of M. luteus ATCC 10240 compared with the control, while at 4 degrees C a slight reduction was observed. Moreover, microbial growth was controlled when 1 l of three different kinds of milk was poured into the active package and stored at 4 degrees C for 7 days. The most significant results were observed in raw milk and pasteurized milk with a reduction of 0.9 log and 1.3 log, respectively. The release experiments showed that nisin release from the film was unpredictable, but it was favoured by low pH and high temperature. CONCLUSIONS: It appears that nisin-coated films were effective in inhibiting M. luteus ATCC 10240 in TSB and the bacterial flora in milk, and the release of nisin was pH and temperature dependent. SIGNIFICANCE AND IMPACT OF THE STUDY: Nisin-activated film may control bacterial growth, maintaining food quality, safety and extending the shelf-life of food products.  相似文献   

10.
AIMS: The objective of this study was to evaluate the inhibitory activity of several natural organic compounds alone or in combination with nisin against Escherichia coli and Salmonella Typhimurium. METHODS AND RESULTS: The minimum inhibitory concentration (MIC) of five natural organic compounds were determined, and the effect of their combinations with nisin was evaluated by the checkerboard assay using the Bioscreen C. As expected, nisin by itself showed no inhibition against either of the Gram-negative bacteria. Thymol was found to be the most effective with the lowest MIC values of 1.0 and 1.2 mmol 1-1 against Salm. Typhimurium and E. coli, respectively. After thymol, the antimicrobial order of the natural organic compounds was carvacrol > eugenol > cinnamic acid > diacetyl. However, the combination of nisin with the natural organic compounds did not result in the enhancement of their antimicrobial activities. On the contrary, combination of nisin with diacetyl against Salm. Typhimurium resulted in an antagonism of diacetyl activity. CONCLUSIONS: While the individual natural organic compounds showed inhibitory activity against the two Gram-negatives, their combinations with nisin showed no improvement of antimicrobial activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the potential of the natural organic compounds to control E. coli and Salm. Typhimurium.  相似文献   

11.
The emergence and dissemination of antibiotic resistant bacteria is a major medical challenge. Lantibiotics are highly modified bacterially produced antimicrobial peptides that have attracted considerable interest as alternatives or adjuncts to existing antibiotics. Nisin, the most widely studied and commercially exploited lantibiotic, exhibits high efficacy against many pathogens. However, some clinically relevant bacteria express highly specific membrane‐associated nisin resistance proteins. One notable example is the nisin resistance protein that acts by cleaving the peptide bond between ring E and the adjacent serine 29, resulting in a truncated peptide with significantly less activity. We utilised a complete bank of bioengineered nisin (nisin A) producers in which the serine 29 residue has been replaced with every alternative amino acid. The nisin A S29P derivative was found to be as active as nisin A against a variety of bacterial targets but, crucially, exhibited a 20‐fold increase in specific activity against a strain expressing the nisin resistance protein. Another derivative, nisin PV, exhibited similar properties but was much less prone to oxidation. This version of nisin with enhanced resistance to specific resistance mechanisms could prove useful in the fight against antibiotic resistant pathogens.  相似文献   

12.
AIMS: The following polymers were developed: polyethylene (PE), a PE and polyethylene oxide (70% PE and 30% PEO; PE + PEO) blend, PE and nisin (PE + nisin), PE, nisin, and EDTA (PE + nisin + EDTA), and PE + PEO with nisin (PE + PEO + nisin). METHODS AND RESULTS: Of the polymers tested, PE and PE + PEO did not exhibit any antimicrobial activity against Brochothrix thermosphacta (BT); however, PE + nisin, PE + nisin + EDTA, and PE + PEO + nisin did. Beef surfaces were experimentally inoculated with 3.50 log10 cfu/cm2 of BT, vacuum packaged with each of the five polymers, and held at 4 degrees C for 21 d. After 3 d at 4 degrees C, BT was reduced > 1.70 log(10) by PE + nisin and > 3.50 log(10) with PE + nisin + EDTA or PE + PEO + nisin. By 21 d at 4 degrees C, BT was reduced to 0.30 log(10) cfu/cm(2) when treated with PE + PEO + nisin. CONCLUSION: It appears that PE + PEO + nisin or PE + nisin + EDTA were more effective for reducing BT, as compared to polymers composed of PE + nisin. SIGNIFICANCE AND IMPACT OF THE STUDY: Nisin-incorporated polymers may control the growth of undesirable bacteria, thereby extending the shelf life and possibly enhancing the microbial safety of meats.  相似文献   

13.
In the present work, we studied the combined effects of pressure (300.0-700.0 MPa), temperature (30-70 degrees C) and the presence of nisin (0-333 IU/ml) on the inactivation of Clostridium botulinum 33A spores at various pressure holding times (7.5-17.5 min). Moreover, response surface methodology (RSM) was employed and a quadratic equation for HPP and nisin-induced inactivation was built with RSM. By analyzing the response surface plots and their corresponding contour plots as well as solving the quadratic equation, the experimental values were shown to be significantly in good agreement with predicted values because the adjusted determination coefficient (R(Adj)(2)) was 0.9261 and the level of significance was P<0.0001. The optimum process parameters for a six-log cycle reduction of C. botulinum spores were obtained as: pressure, 545.0 MPa; temperature, 51 degrees C; pressure holding time, 13.3 min; and nisin concentration, 129 IU/ml. The adequacy of the model equation for predicting the optimum response values was verified effectively for 10 test points. Compared to conventional high pressure processing (HPP) techniques, the main process advantages of HPP-nisin combination sterilization in the UHT milk are, lower pressure, natural preservative (nisin), and temperature in a shorter treatment time.  相似文献   

14.
Herein, we report firstly the development of sustained antimicrobial and antioxidant gelatin-lysozyme films crosslinked by the oligomeric proanthocyanidins (OPCs), a duel-functional agent. Lysozyme release kinetic studies were performed at neutral and acidic pH, and they could be described as a biphasic process. OPCs crosslinking retarded lysozyme release at pH 7.0, in a dose dependent manner, and the inhibition zone tests confirmed that the sustained release of lysozyme was realized upon weak crosslinking with OPCs. OPCs crosslinking enhanced thermal stability of the gelatin films, and gave them the ability to barrier ultraviolet light. OPCs loadings endowed the films excellent antioxidant activities, the DPPH radical scavenging activity of the films increased linearly to 93.97% upon increasing OPCs loadings from 0 to 2.0%. Concomitantly, the reducing powder of the films increased linearly from 6.08 ± 0.09 to 45.53 ± 2.74 μmol Asc Acid/g film. Additionally, the antioxidant properties of gelatin films against lipid oxidation in edible oils were evaluated. Lipid hydroperoxides of algal oils in the gelatin bags were approximately a quarter of that in low-density polyethylene (LDPE)-based bags, and the malondialdehyde (MDA) values of algal oils were lower than that in LDPE-based bags by 1–2 orders of magnitude. Regrettably, the incorporation of OPCs did not enhance the antioxidant capability of gelatin films against lipid oxidation in wrapped edible oils, possibly due to the limited release toward algal oils in term of its oil-soluble attribute. This study opens a promising pathway for producing sustained antimicrobial and antioxidant gelatin films using a bi-functional agent.  相似文献   

15.
Nisin is an antimicrobial polypeptide inhibitory toward Gram-positive bacterial pathogens, including Listeria monocytogenes. Encapsulating nisin in lipid nanocapsules (i.e., liposomes) has been shown to protect antimicrobial functionality in complex food matrices. The capacity of liposomes to encapsulate a fluorescent reporter was determined via spectroscopy. Survival and growth of L. monocytogenes incubated in fluid milk containing 50 IU/ml free or liposome-entrapped nisin was assayed via periodic enumeration of survivors. Liposomes were formulated from phosphatidylcholine (PC) and phosphatidyl-DL-glycerol (PG) and prepared as PC, PC/PG 7/3 or PC/PG 6/4 (mol. fraction). Antilisterial activity of nisin-loaded liposomes was determined in ultra-high temperature processed fluid milk containing approximately 4.0 log10 CFU/ml L. monocytogenes Scott A plus liposomal or free nisin at 50 IU/mL. Samples were aerobically held at 5 or 20°C; L. monocytogenes were enumerated via plating after 0, 1, 3, 6, 12, 24, 48, and 72 incubation hours. Liposome entrapment did not enhance pathogen inhibition when compared to free nisin as a function of storage temperature or incubation duration.  相似文献   

16.
研究采用湿法制粒流化床包衣工艺, 分别以明胶、乙基纤维素、玉米醇溶蛋白为壁材制备微胶囊饲料, 比较其对黄姑鱼稚鱼生长和消化酶活力的影响. 粒径(178-590) m的3种微胶囊饲料质量均大于50%. 扫描电镜观察微胶囊饲料的表面均有一层较为致密的包衣薄膜. 壁材明胶、乙基纤维素、玉米醇溶蛋白微胶囊饲料的包含率分别为95.4%、95.6%和95.8%; 脂类包埋率分别为72.6%、76.5%和64.3%; 氮保留率分别为53.5%、62.3%和54.6%. 将3种微胶囊饲料分别饲喂15日龄黄姑鱼稚鱼30d. 明胶组和玉米醇溶蛋白组稚鱼的体重、全长均显著高于乙基纤维素组(P0.05), 但成活率差异不显著(P0.05); 明胶组稚鱼的体重、全长和成活率均高于玉米醇溶蛋白组, 但差异均不显著(P0.05). 明胶组稚鱼的胰蛋白酶活力显著高于乙基纤维素组和玉米醇溶蛋白组(P0.05), 但淀粉酶和碱性磷酸酶活力的差异均不显著(P0.05). 与乙基纤维素、玉米醇溶蛋白相比, 明胶更适合作为黄姑鱼稚鱼微胶囊饲料壁材.    相似文献   

17.
The effects of nisin and ALTA 2341 on the growth of Listeria monocytogenes were assessed on smoked salmon packaged under vacuum or 100% CO2. Smoked salmon slices (pH 6.3) were inoculated with a cocktail of seven L. monocytogenes isolates at a level of approximately 2.5 log10 colony forming units (cfu) g-1. After inoculation, the surface of the smoked salmon slices was treated with either nisin (400 or 1250 IU g-1) or ALTA 2341 (0.1 or 1%). The smoked salmon was packaged and stored at 4 degrees C (28 d) or 10 degrees C (9 d). On untreated vacuum-packaged smoked salmon, L. monocytogenes grew by 3.8 log10 cfu g-1 at 4 degrees C and 5.1 log10 cfu g-1 at 10 degrees C. Growth was reduced on nisin- and ALTA 2341-treated vacuum-packaged smoked salmon. On the nisin-treated samples, L. monocytogenes increased by 2.5 (400 IU g-1) and 1.5 (1250 IU g-1) log10 cfu g-1 at 4 degrees C, and by 4.3 (400 IU g-1) and 2.7 (1250 IU g-1) log10 cfu g-1 at 10 degrees C. With the ALTA 2341-treated samples, L. monocytogenes increased by 2.8 (0.1%) or 1.6 (1.0%) log10 cfu g-1 at 4 degrees C, and 3.3 (0.1%) or 3.6 (1.0%) log10 cfu g-1 at 10 degrees C. The growth of L. monocytogenes was retarded by packaging the smoked salmon in 100% CO2. On untreated smoked salmon, only a 0.8 log10 cycle increase was observed at 10 degrees C. Under all the other conditions tested with 100% CO2, L. monocytogenes was detected but growth was prevented.  相似文献   

18.
Gradient plates were used to investigate the effects of varying temperature, pH, and sodium chloride (NaCl) concentration on nisin inhibition of Staphylococcus aureus and Listeria monocytogenes, Nisin was incorporated into the plates of 0, 50, 100, 250, and 500 IU ml -1. Gradients of pH (3.7 to 7.92) at right angles to NaCl concentration (2.1 to 7% [wt/vol]) were used for the plates, which were incubated at 20, 25, 30 and 35 degrees C. Growth on the plates were recorded by eye and by image analysis. The presence of viable but nongrowing cells was revealed by transfer to nongradient plates. Lower temperatures and greater NaCl concentrations increased the nisin inhibition of S. aureus synergistically. Increasing the NaCl concentration potentiated the nisin action against L. monocytogenes; the effect of temperature difference was not so apparent. Between pH 7.92 and ca. pH 5, a fall pH appeared to increase nisin's effectiveness against both organisms. At more acid pH values (ca. pH 4.5 to 5), the organisms showed resistance to both nisin and NaCl at 20 and 25 degrees C. Similar results were obtained with one-dimensional liquid cultures.  相似文献   

19.
The lantibiotic nisin, a special case or not?   总被引:13,自引:0,他引:13  
Nisin is a 34-residue-long peptide belonging to the group A lantibiotics with antimicrobial activity against Gram-positive bacteria. The presence of dehydrated residues and lanthionine rings (thioether bonds) in nisin, imposing structural restrains on the peptide, make it an interesting case for studying the mode of action. In addition, the relatively high activity (nM range) of nisin against Gram-positive bacteria indicates that nisin may be a special case in the large family of pore-forming peptides antibiotics. In this review, we attempted to dissect the mode of action of nisin concentrating on studies that used model membranes or biological membranes. The picture that emerges suggests that in model membrane systems, composed of only phospholipids, nisin behaves similar to the antimicrobial peptide magainin, albeit with an activity that is much lower as compared to its activity towards biological membranes. This difference can be contributed to a missing factor which nisin needs for its high activity. Novel results have identified the factor as Lipid II, a precursor in the bacterial cell wall synthesis. The special high affinity interaction of nisin with Lipid II resulting in high activity and the active role of Lipid II in the pore-formation process make nisin a special case.  相似文献   

20.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号