首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Autoregulation of GLD-2 cytoplasmic poly(A) polymerase   总被引:1,自引:0,他引:1  
Cytoplasmic polyadenylation regulates mRNA stability and translation and is required for early development and synaptic plasticity. The GLD-2 poly(A) polymerase catalyzes cytoplasmic polyadenylation in the germline of metazoa. Among vertebrates, the enzyme is encoded by two isoforms of mRNA that differ only in the length of their 3'-UTRs. Here we focus on regulation of vertebrate GLD-2 mRNA. We show that the 3'-UTR of GLD-2 mRNA elicits its own polyadenylation and translational activation during frog oocyte maturation. We identify the sequence elements responsible for repression and activation, and demonstrate that CPEB and PUF proteins likely mediate repression in the resting oocyte. Regulated polyadenylation of GLD-2 mRNA is conserved, as are the key regulatory elements. Poly(A) tails of GLD-2 mRNA increase in length in the brain in response to neuronal stimulation, suggesting that a comparable system exists in that tissue. We propose a positive feedback circuit in which translation of GLD-2 mRNA is stimulated by its polyadenylation, thereby reinforcing the switch to polyadenylate and activate batteries of mRNAs.  相似文献   

3.
Barnard DC  Ryan K  Manley JL  Richter JD 《Cell》2004,119(5):641-651
Cytoplasmic polyadenylation-induced mRNA translation is a hallmark of early animal development. In Xenopus oocytes, where the molecular mechanism has been defined, the core factors that control this process include CPEB, an RNA binding protein whose association with the CPE specifies which mRNAs undergo polyadenylation; CPSF, a multifactor complex that interacts with the near-ubiquitous polyadenylation hexanucleotide AAUAAA; and maskin, a CPEB and eIF4E binding protein whose regulation of initiation is governed by poly(A) tail length. Here, we define two new factors that are essential for polyadenylation. The first is symplekin, a CPEB and CPSF binding protein that serves as a scaffold upon which regulatory factors are assembled. The second is xGLD-2, an unusual poly(A) polymerase that is anchored to CPEB and CPSF even before polyadenylation begins. The identification of these factors has broad implications for biological process that employ polyadenylation-regulated translation, such as gametogenesis, cell cycle progression, and synaptic plasticity.  相似文献   

4.
Cui J  Sackton KL  Horner VL  Kumar KE  Wolfner MF 《Genetics》2008,178(4):2017-2029
Egg activation is the process that modifies mature, arrested oocytes so that embryo development can proceed. One key aspect of egg activation is the cytoplasmic polyadenylation of certain maternal mRNAs to permit or enhance their translation. wispy (wisp) maternal-effect mutations in Drosophila block development during the egg-to-embryo transition. We show here that the wisp gene encodes a member of the GLD-2 family of cytoplasmic poly(A) polymerases (PAPs). The WISP protein is required for poly(A) tail elongation of bicoid, Toll, and torso mRNAs upon egg activation. In Drosophila, WISP and Smaug (SMG) have previously been reported to be required to trigger the destabilization of maternal mRNAs during egg activation. SMG is the major regulator of this activity. We report here that SMG is still translated in activated eggs from wisp mutant mothers, indicating that WISP does not regulate mRNA stability by controlling the translation of smg mRNA. We have also analyzed in detail the very early developmental arrest associated with wisp mutations. Pronuclear migration does not occur in activated eggs laid by wisp mutant females. Finally, we find that WISP function is also needed during oogenesis to regulate the poly(A) tail length of dmos during oocyte maturation and to maintain a high level of active (phospho-) mitogen-activated protein kinases (MAPKs).  相似文献   

5.
Poly(A) polymerase (PAP) has a role in two processes, polyadenylation of mRNA precursors in the nucleus and translational control of certain mRNAs by cytoplasmic elongation of their poly(A) tails, particularly during early development. It was found recently that at least three different PAP genes exist in mammals, encoding several PAP isoforms. The in vivo specificity of function of each PAP isoform currently is unknown. Here, we analyse PAP function in Drosophila: We show that a single PAP isoform exists in Drosophila that is encoded by the hiiragi gene. This single Drosophila PAP is active in specific polyadenylation in vitro and is involved in both nuclear and cytoplasmic polyadenylation in vivo. Therefore, the same PAP can be responsible for both processes. In addition, in vivo overexpression of PAP does not affect poly(A) tail length during nuclear polyadenylation, but leads to a dramatic elongation of poly(A) tails and a loss of specificity during cytoplasmic polyadenylation, resulting in embryonic lethality. This demonstrates that regulation of the PAP level is essential for controlled cytoplasmic polyadenylation and early development.  相似文献   

6.
7.
The XMAP215/TOG family of proteins is a closely related set of MAPs (microtubule-associated proteins) found in animals, yeast, and plants . In yeast and animal cells, the XMAP215/TOG proteins are required for both mitosis and meiosis. Although effects of XMAP215/TOG proteins on cytoplasmic microtubules have not previously been shown in animal cells, in plants the Arabidopsis family member MOR1 is required for the organization of cortical microtubule arrays . The Drosophila family member, encoded by the mini spindles (msps) gene, is maternally expressed and loaded into the egg, where it is an essential component of meiotic and mitotic spindles . Here we show that msps is also required during oogenesis for the structure and function of cytoplasmic microtubules. Localization of bicoid (bcd) mRNA in the oocyte is a microtubule-mediated event . We show that bcd RNA localization is defective in msps mutants. We also identify defects in cytoplasmic microtubules in both the germ and follicle cells of mutant ovaries and determine the expression pattern of msps mRNA and protein in developing egg chambers. Our findings reveal a new role for msps in cell patterning and raise the possibility that other family members may perform similar functions.  相似文献   

8.
Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2–GLD-3, we report here the 2.5 Å resolution structure and biochemical characterization of a GLD-2–RNP-8 core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes.  相似文献   

9.
Polyadenylation of mitochondrial RNAs in higher eukaryotic organisms have diverse effects on their function and metabolism. Polyadenylation completes the UAA stop codon of a majority of mitochondrial mRNAs in mammals, regulates the translation of the mRNAs, and has diverse effects on their stability. In contrast, polyadenylation of most mitochondrial mRNAs in plants leads to their degradation, consistent with the bacterial origin of this organelle. PAPD1 (mtPAP, TUTase1), a noncanonical poly(A) polymerase (ncPAP), is responsible for producing the poly(A) tails in mammalian mitochondria. The crystal structure of human PAPD1 was reported recently, offering molecular insights into its catalysis. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.  相似文献   

10.
11.
Three DNA polymerases that use poly(rA).oligo(dT) were partially purified from cytoplasmic extracts of cultured mouse cells (after removal of mitochondria), and characterized. One is similar to, and may be the same as, the mitochondrial DNA polymerase gamma. The other two enzymes, one 7.5 S and the other 3.6 S, share some properties with DNA polymerases beta and gamma, e.g. their responses to certain inhibitors; however, they are not clearly identified with any previously well-characterized mammalian DNA polymerases. It is also demonstrated that the response of DNA polymerase gamma to N-ethylmaleimide is template dependent, and that DNA polymerase alpha has an authentic (albeit small) activity with poly(rA).oligo(dT).  相似文献   

12.
Translational activation in oocytes and embryos is often regulated via increases in poly(A) length. Cleavage and polyadenylation specificity factor (CPSF), cytoplasmic polyadenylation element binding protein (CPEB), and poly(A) polymerase (PAP) have each been implicated in cytoplasmic polyadenylation in Xenopus laevis oocytes. Cytoplasmic polyadenylation activity first appears in vertebrate oocytes during meiotic maturation. Data presented here shows that complexes containing both CPSF and CPEB are present in extracts of X. laevis oocytes prepared before or after meiotic maturation. Assessment of a variety of RNA sequences as polyadenylation substrates indicates that the sequence specificity of polyadenylation in egg extracts is comparable to that observed with highly purified mammalian CPSF and recombinant PAP. The two in vitro systems exhibit a sequence specificity that is similar, but not identical, to that observed in vivo, as assessed by injection of the same RNAs into the oocyte. These findings imply that CPSFs intrinsic RNA sequence preferences are sufficient to account for the specificity of cytoplasmic polyadenylation of some mRNAs. We discuss the hypothesis that CPSF is required for all polyadenylation reactions, but that the polyadenylation of some mRNAs may require additional factors such as CPEB. To test the consequences of PAP binding to mRNAs in vivo, PAP was tethered to a reporter mRNA in resting oocytes using MS2 coat protein. Tethered PAP catalyzed polyadenylation and stimulated translation approximately 40-fold; stimulation was exclusively cis-acting, but was independent of a CPE and AAUAAA. Both polyadenylation and translational stimulation required PAPs catalytic core, but did not require the putative CPSF interaction domain of PAP. These results demonstrate that premature recruitment of PAP can cause precocious polyadenylation and translational stimulation in the resting oocyte, and can be interpreted to suggest that the role of other factors is to deliver PAP to the mRNA.  相似文献   

13.
Early embryonic development in Xenopus laevis is programmed in part by maternally derived mRNAs, many of which are translated at the completion of meiosis (oocyte maturation). Polysomal recruitment of at least one of these mRNAs, G10, is regulated by cytoplasmic poly(A) elongation which, in turn, is dependent upon the cytoplasmic polyadenylation element (CPE) UUUUUUAUAAAG and the hexanucleotide AAUAAA (L. L. McGrew, E. Dworkin-Rastl, M. B. Dworkin, and J. D. Richter, Genes Dev. 3:803-815, 1989). We have investigated whether sequences similar to the G10 RNA CPE that are present in other RNAs could also be responsible for maturation-specific polyadenylation. B4 RNA, which encodes a histone H1-like protein, requires a CPE of the sequence UUUUUAAU as well as the polyadenylation hexanucleotide. The 3' untranslated regions of Xenopus c-mos RNA and mouse HPRT RNA also contain U-rich CPEs since they confer maturation-specific polyadenylation when fused to Xenopus B-globin RNA. Polyadenylation of B4 RNA, which occurs very early during maturation, is limited to 150 residues, and it is this number that is required for polysomal recruitment. To investigate the possible diversity of factors and/or affinities that might control polyadenylation, egg extracts that faithfully adenylate exogenously added RNA were used in competition experiments. At least one factor is shared by B4 and G10 RNAs, although it has a much greater affinity for B4 RNA. Additional experiments demonstrate that an intact CPE and hexanucleotide are both required to compete for the polyadenylation apparatus. Gel mobility shift assays show that two polyadenylation complexes are formed on B4 RNA. Optimal complex formation requires an intact CPE and hexanucleotide but not ongoing adenylation. These data, plus additional RNA competition studies, suggest that stable complex formation is enhanced by an interaction of the trans-acting factors that bind the CPE and polyadenylation hexanucleotide.  相似文献   

14.
A family of poly(U) polymerases   总被引:5,自引:2,他引:3       下载免费PDF全文
The GLD-2 family of poly(A) polymerases add successive AMP monomers to the 3' end of specific RNAs, forming a poly(A) tail. Here, we identify a new group of GLD-2-related nucleotidyl transferases from Arabidopsis, Schizosaccharomyces pombe, Caenorhabditis elegans, and humans. Like GLD-2, these enzymes are template independent and add nucleotides to the 3' end of an RNA substrate. However, these new enzymes, which we refer to as poly(U) polymerases, add poly(U) rather than poly(A) to their RNA substrates.  相似文献   

15.
16.
Vertebrate GLD2 poly(A) polymerases in the germline and the brain   总被引:6,自引:0,他引:6  
Cytoplasmic polyadenylation is important in the control of mRNA stability and translation, and for early animal development and synaptic plasticity. Here, we focus on vertebrate poly(A) polymerases that are members of the recently described GLD2 family. We identify and characterize two closely related GLD2 proteins in Xenopus oocytes, and show that they possess PAP activity in vivo and in vitro and that they bind known polyadenylation factors and mRNAs known to receive poly(A) during development. We propose that at least two distinct polyadenylation complexes exist in Xenopus oocytes, one of which contains GLD2; the other, maskin and Pumilio. GLD2 protein interacts with the polyadenylation factor, CPEB, in a conserved manner. mRNAs that encode GLD2 in mammals are expressed in many tissues. In the brain, mouse, and human GLD2 mRNAs are abundant in anatomical regions necessary for long-term cognitive and emotional learning. In the hippocampus, mouse GLD2 mRNA colocalizes with CPEB1 and Pumilio1 mRNAs, both of which are likely involved in synaptic plasticity. We suggest that mammalian GLD2 poly(A) polymerases are important in synaptic translation, and in polyadenylation throughout the soma.  相似文献   

17.
Carney GE  Bender M 《Genetics》2000,154(3):1203-1211
Oogenesis in Drosophila is regulated by the steroid hormone ecdysone and the sesquiterpenoid juvenile hormone. Response to ecdysone is mediated by a heteromeric receptor composed of the EcR and USP proteins. We have identified a temperature-sensitive EcR mutation, EcR(A483T), from a previously isolated collection of EcR mutations. EcR(A483T) is predicted to affect all EcR protein products (EcR-A, EcR-B1, and EcR-B2) since it maps to a common exon encoding the ligand-binding domain. In wild-type females, we find that both EcR-A and EcR-B1 are expressed in nurse cells and follicle cells throughout oogenesis. EcR mutant females raised at permissive temperature and then shifted to restrictive temperature exhibit severe reductions in fecundity. Oogenesis in EcR mutant females is defective, and the spectrum of oogenic defects includes the presence of abnormal egg chambers and loss of vitellogenic egg stages. Our results demonstrate a requirement for EcR during female reproduction and suggest that EcR is required for normal oogenesis.  相似文献   

18.
Clathrin interactor 1 [CLINT1] (also called enthoprotin/EpsinR) is an Epsin N-terminal homology (ENTH) domain-containing adaptor protein that functions in anterograde and retrograde clathrin-mediated trafficking between the trans-Golgi network and the endosome. Removal of both Saccharomyces cerevisiae homologs, Ent3p and Ent5p, result in yeast that are viable, but that display a cold-sensitive growth phenotype and mistrafficking of various vacuolar proteins. Similarly, either knock-down or overexpression of vertebrate CLINT1 in cell culture causes mistrafficking of proteins. Here, we have characterized Drosophila CLINT1, liquid-facets Related (lqfR). LqfR is ubiquitously expressed throughout development and is localized to the Golgi and endosome. Strong hypomorphic mutants generated by imprecise P-element excision exhibit extra macrochaetae, rough eyes and are female sterile. Although essentially no eggs are laid, the ovaries do contain late-stage egg chambers that exhibit abnormal morphology. Germline clones reveal that LqfR expression in the somatic follicle cells is sufficient to rescue the oogenesis defects. Clones of mutant lqfR follicle cells have a decreased cell size consistent with a downregulation of Akt1. We find that while total Akt1 levels are increased there is also a significant decrease in activated phosphorylated Akt1. Taken together, these results show that LqfR function is required to regulate follicle cell size and signaling during Drosophila oogenesis.  相似文献   

19.
20.
Translational control of maternal mRNA through regulation of poly(A) tail length is crucial during early development. The nuclear poly(A) binding protein, PABP2, was identified biochemically from its role in nuclear polyadenylation. Here, we analyze the in vivo function of PABP2 in Drosophila. PABP2 is required in vivo for polyadenylation, and Pabp2 function, including poly(A) polymerase stimulation, is essential for viability. We also demonstrate an unanticipated cytoplasmic function for PABP2 during early development. In contrast to its role in nuclear polyadenylation, cytoplasmic PABP2 acts to shorten the poly(A) tails of specific mRNAs. PABP2, together with the deadenylase CCR4, regulates the poly(A) tails of oskar and cyclin B mRNAs, both of which are also controlled by cytoplasmic polyadenylation. Both Cyclin B protein levels and embryonic development depend upon this regulation. These results identify a regulator of maternal mRNA poly(A) tail length and highlight the importance of this mode of translational control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号