首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.  相似文献   

2.
Maize centromeres are composed of CentC tandem repeat arrays, centromeric retrotransposons (CRs), and a variety of other repeats. One particularly well-conserved CR element, CRM, occurs primarily as complete and uninterrupted elements and is interspersed thoroughly with CentC at the light microscopic level. To determine if these major centromeric DNAs are part of the functional centromere/kinetochore complex, we generated antiserum to maize centromeric histone H3 (CENH3). CENH3, a highly conserved protein that replaces histone H3 in centromeres, is thought to recruit many of the proteins required for chromosome movement. CENH3 is present throughout the cell cycle and colocalizes with the kinetochore protein CENPC in meiotic cells. Chromatin immunoprecipitation demonstrates that CentC and CRM interact specifically with CENH3, whereas knob repeats and Tekay retroelements do not. Approximately 38 and 33% of CentC and CRM are precipitated in the chromatin immunoprecipitation assay, consistent with data showing that much, but not all, of CENH3 colocalizes with CentC.  相似文献   

3.
Jin W  Lamb JC  Vega JM  Dawe RK  Birchler JA  Jiang J 《The Plant cell》2005,17(5):1412-1423
The centromere of the maize (Zea mays) B chromosome contains several megabases of a B-specific repeat (ZmBs), a 156-bp satellite repeat (CentC), and centromere-specific retrotransposons (CRM elements). Here, we demonstrate that only a small fraction of the ZmBs repeats interacts with CENH3, the histone H3 variant specific to centromeres. CentC, which marks the CENH3-associated chromatin in maize A centromeres, is restricted to an approximately 700-kb domain within the larger context of the ZmBs repeats. The breakpoints of five B centromere misdivision derivatives are mapped within this domain. In addition, the fraction of this domain remaining after misdivision correlates well with the quantity of CENH3 on the centromere. Thus, the functional boundaries of the B centromere are mapped to a relatively small CentC- and CRM-rich region that is embedded within multimegabase arrays of the ZmBs repeat. Our results demonstrate that the amount of CENH3 at the B centromere can be varied, but with decreasing amounts, the function of the centromere becomes impaired.  相似文献   

4.
Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.  相似文献   

5.
We sequenced two maize bacterial artificial chromosome (BAC) clones anchored by the centromere-specific satellite repeat CentC. The two BACs, consisting of approximately 200 kb of cytologically defined centromeric DNA, are composed exclusively of satellite sequences and retrotransposons that can be classified as centromere specific or noncentromere specific on the basis of their distribution in the maize genome. Sequence analysis suggests that the original maize sequences were composed of CentC arrays that were expanded by retrotransposon invasions. Seven centromere-specific retrotransposons of maize (CRM) were found in BAC 16H10. The CRM elements inserted randomly into either CentC monomers or other retrotransposons. Sequence comparisons of the long terminal repeats (LTRs) of individual CRM elements indicated that these elements transposed within the last 1.22 million years. We observed that all of the previously reported centromere-specific retrotransposons in rice and barley, which belong to the same family as the CRM elements, also recently transposed with the oldest element having transposed approximately 3.8 million years ago. Highly conserved sequence motifs were found in the LTRs of the centromere-specific retrotransposons in the grass species, suggesting that the LTRs may be important for the centromere specificity of this retrotransposon family.  相似文献   

6.
The maize (Zea mays) B centromere is composed of B centromere–specific repeats (ZmBs), centromere-specific satellite repeats (CentC), and centromeric retrotransposons of maize (CRM). Here we describe a newly formed B centromere in maize, which has lost CentC sequences and has dramatically reduced CRM and ZmBs sequences, but still retains the molecular features of functional centromeres, such as CENH3, H2A phosphorylation at Thr-133, H3 phosphorylation at Ser-10, and Thr-3 immunostaining signals. This new centromere is stable and can be transmitted to offspring through meiosis. Anti-CENH3 chromatin immunoprecipitation sequencing revealed that a 723-kb region from the short arm of chromosome 9 (9S) was involved in the formation of the new centromere. The 723-kb region, which is gene poor and enriched for transposons, contains two abundant DNA motifs. Genes in the new centromere region are still transcribed. The original 723-kb region showed a higher DNA methylation level compared with native centromeres but was not significantly changed when it was involved in new centromere formation. Our results indicate that functional centromeres may be formed without the known centromere-specific sequences, yet the maintenance of a high DNA methylation level seems to be crucial for the proper function of a new centromere.  相似文献   

7.
植物着丝粒结构和功能的研究进展   总被引:1,自引:0,他引:1  
佘朝文  宋运淳 《遗传》2006,28(12):1597-1606
着丝粒是真核生物有丝分裂和减数分裂染色体正确分离和传递所必需的染色体区域。十多年来, 已对包括拟南芥、水稻、玉米在内的一些植物的着丝粒进行了较深入的分子生物学研究。在不同的植物间, 着丝粒DNA的保守性很低, 呈现快速进化, 但着丝粒的DNA序列类型和组织方式基本相似, 一般是由夹杂排列着的卫星DNA串联重复阵列和着丝粒专一的反转录转座子构成。与着丝粒DNA相反, 着丝粒/着丝点的结构性和瞬时蛋白质在包括植物在内的真核生物中保守。与其他真核生物的情况一样, 拥有含着丝粒组蛋白H3(CENH3)的核小体是植物功能着丝粒染色质最基本的特征, CENH3在着丝粒染色质的识别和保持中起着关键作用。  相似文献   

8.
佘朝文  蒋向辉  宋运淳  刘伟 《遗传》2010,32(3):264-270
为分析玉米着丝粒卫星DNA(CentC)和着丝粒反转录转座子(CRM)在玉米种的亚种及近缘种中的保守性,采用双色荧光原位杂交检测了这两种重复序列在墨西哥玉米、二倍体多年生类玉米、多年生类玉米、摩擦禾、薏苡、高粱中的存在和分布。CentC、CRM探针在墨西哥玉米、二倍体多年生类玉米和多年生类玉米的所有染色体的着丝粒区产生了强或较强的杂交信号, 而且不同染色体的杂交信号的强度存在差异, 表明两种玉米着丝粒重复序列在不同着丝粒中的数量不同; 此外, 部分着丝粒中的CentC和CRM信号的强度存在差异, 不完全重叠。CentC、CRM探针仅在摩擦禾的多数染色体的着丝粒区产生了弱的杂交信号。在薏苡和高粱中仅测检到主要分布在着丝粒区的较强或强的CRM信号。这些结果表明, CentC在玉米种的亚种间及玉蜀黍属的物种间高度保守, 在与玉蜀黍属亲缘关系最近的摩擦禾属物种中也具有较高的保守性; CRM在与玉蜀黍属亲缘关系较近和较远的禾本科种属中都具有保守性。  相似文献   

9.
The centromere is a multi-functional complex comprising centromeric DNA and a number of proteins. To isolate unidentified centromeric DNA sequences, centromere-specific histone H3 variants (CENH3) and chromatin immunoprecipitation (ChIP) have been utilized in some plant species. However, anti-CENH3 antibody for ChIP must be raised in each species because of its species specificity. Production of the antibodies is time-consuming and costly, and it is not easy to produce ChIP-grade antibodies. In this study, we applied a HaloTag7-based chromatin affinity purification system to isolate centromeric DNA sequences in tobacco. This system required no specific antibody, and made it possible to apply a highly stringent wash to remove contaminated DNA. As a result, we succeeded in isolating five tandem repetitive DNA sequences in addition to the centromeric retrotransposons that were previously identified by ChIP. Three of the tandem repeats were centromere-specific sequences located on different chromosomes. These results confirm the validity of the HaloTag7-based chromatin affinity purification system as an alternative method to ChIP for isolating unknown centromeric DNA sequences. The discovery of more than two chromosome-specific centromeric DNA sequences indicates the mosaic structure of tobacco centromeres.  相似文献   

10.
11.
Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.  相似文献   

12.
The chromosomal location of centromere-specific histone H3 (CENH3) is the assembly site for the kinetochore complex of active centromeres. Chromatin immunoprecipitation data indicated that CENH3 interacts in barley with cereba, a centromeric retroelement (CR)-like element conserved among cereal centromeres and barley-specific GC-rich centromeric satellite sequences. Anti-CENH3 signals on extended chromatin fibers always colocalized with the centromeric sequences but did not encompass the entire area covered by such centromeric repeats. This indicates that the CENH3 protein is bound only to a fraction of the centromeric repeats. At mitotic metaphase, CENH3, histone H3, and serine 10 phosphorylated histone H3 predominated within distinct structural subdomains of the centromere, as demonstrated by immunogold labeling for high resolution scanning electron microscopy.  相似文献   

13.
The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of individual maize chromosomes via the isolation and characterization of chromosome-specific cosmid clones. Restriction fragment fingerprinting, sequencing, and in situ hybridization were applied to discover a new family of knob associated tandem repeats, the TR1, which are capable of forming fold-back DNA segments, as well as a new family of centromeric tandem repeats, CentC. Analysis of knob and centromeric DNA segments revealed a complex organization in which blocks of tandemly arranged repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration/association of certain retrotransposable elements into knobs or centromere regions as well as for integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. DNA hybridization to a blot panel of eight individual maize chromosome addition lines revealed that CentC, TR1, and 180-bp tandem repeats are found in each of these maize chromosomes, but the copy number of each can vary significantly from about 100 to 25,000. In situ hybridization revealed variation among the maize chromosomes in the size of centromeric tandem repeats as well as in the size and composition of knob regions. It was found that knobs may be composed of either 180-bp or TR1, or both repeats, and in addition to large knobs these repeated elements may form micro clusters which are detectable only with the help of in situ hybridization. The association of the fold-back elements with knobs, knob polymorphism and complex structure suggest that maize knob may be consider as megatransposable elements. The discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes.  相似文献   

14.
Zhang W  Yi C  Bao W  Liu B  Cui J  Yu H  Cao X  Gu M  Liu M  Cheng Z 《Plant physiology》2005,139(1):306-315
Centromeres are required for faithful segregation of chromosomes in cell division. It is not clear what kind of sequences act as functional centromeres and how centromere sequences are organized in Oryza punctata, a BB genome species. In this study, we found that the CentO centromeric satellites in O. punctata share high homology with the CentO satellites in O. sativa. The O. punctata centromeres are characterized by megabase tandem arrays that are flanked by centromere-specific retrotransposons. Immunostaining with an antibody specific to CENH3 indicates that the 165-bp CentO satellites are the major component for functional centromeres. Moreover, both strands of CentO satellites are highly methylated and transcribed and produce small interfering RNA, which may be important for the maintenance of centromeric heterochromatin and centromere function.  相似文献   

15.
Lamb JC  Kato A  Birchler JA 《Chromosoma》2005,113(7):337-349
Maize chromosome spreads containing the supernumerary B chromosome were hybridized with probes from various repetitive elements including CentC, CRM, and CentA, which have been localized to centromeric regions on the A chromosomes. Repetitive elements that are enriched or found exclusively near the centromeres of A chromosomes hybridized to many sites distinct from the centromere on the B chromosome. To examine whether these elements recruit kinetochore proteins at locations other than the canonical B centromere, cells were labeled with antibodies against CENH3, a key kinetochore protein. No labeling was detected outside the normal centromere and no evidence of B chromosome holocentromeric activity was observed. This finding suggests that, as in other higher eukaryotes, DNA sequence alone is insufficient to dictate kinetochore location in plants. Additionally, examination of the B centromere region in pachytene chromosomes revealed that the B-specific element ZmBs hybridizes to a much larger region than the site of hybridization of CentC, CRM, and CentA and the labeling by anti-CENH3 antibodies.This revised version was published online in December 2004 with corrections to Table 1.  相似文献   

16.
17.
Centromeres play an important role in segregating chromosomes into daughter cells, and centromeric DNA assembles specific proteins to form a complex referred to as the kinetochore. Among these proteins, centromere-specific histone H3 (CENH3) is one of the most characterized and found to be located only on active centromeres. We isolated four different CENH3-coding complementary DNAs (cDNAs), two from Nicotiana tabaccum and one each from the ancestral diploid species, Nicotiana sylvestris and Nicotiana tomentosiformis and raised an antibody against N-terminal amino acid sequences deduced from the cDNAs. Immunostaining with the antibody revealed the preferential centromere localization, indicating that the cDNAs cloned in this study encode authentic tobacco CENH3. A tobacco centromeric DNA sequence (Nt2-7) was also identified by chromatin immunoprecipitation cloning using the antibody. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.  相似文献   

19.
While the approximate chromosomal position of centromeres has been identified in many species, little is known about the dynamics and diversity of centromere positions within species. Multiple lines of evidence indicate that DNA sequence has little or no impact in specifying centromeres in maize and in most multicellular organisms. Given that epigenetically defined boundaries are expected to be dynamic, we hypothesized that centromere positions would change rapidly over time, which would result in a diversity of centromere positions in isolated populations. To test this hypothesis, we used CENP-A/cenH3 (CENH3 in maize) chromatin immunoprecipitation to define centromeres in breeding pedigrees that included the B73 inbred as a common parent. While we found a diversity of CENH3 profiles for centromeres with divergent sequences that were not inherited from B73, the CENH3 profiles from centromeres that were inherited from B73 were indistinguishable from each other. We propose that specific genetic elements in centromeric regions favor or inhibit CENH3 accumulation, leading to reproducible patterns of CENH3 occupancy. These data also indicate that dramatic shifts in centromere position normally originate from accumulated or large-scale genetic changes rather than from epigenetic positional drift.  相似文献   

20.
In plants, as in all eukaryotes, centromeres are chromatin domains that govern the transmission of nuclear chromosomes to the next generation of cells/individuals. The DNA composition and sequence organization of centromeres has recently been elucidated for a few plant species. Although there is little sequence conservation among centromeres, they usually contain tandem repeats and retroelements. The occurrence of neocentromeres reinforces the idea that the positions of centromeres are determined epigenetically. In contrast to centromeric DNA, structural and transient kinetochoric proteins are highly conserved among eukaryotes. Candidate sequences have been identified for a dozen putative kinetochore protein homologues, and some have been localized to plant centromeres. The kinetochore protein CENH3, which substitutes histone H3 within centromeric nucleosomes, co-immunoprecipitates preferentially with centromeric sequences. The mechanism(s) of centromere assembly and the functional implication of (peri-)centromeric modifications of chromatin remain to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号