首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 20,000-D protein called purpurin has recently been isolated from the growth-conditioned medium of cultured embryonic chick neural retina cells (Schubert, D., and M. LaCorbiere, 1985, J. Cell Biol., 101:1071-1077). Purpurin is a constituent of adherons and promotes cell-adheron adhesion by interacting with a cell surface heparan sulfate proteoglycan. It also prolongs the survival of cultured neural retina cells. This paper shows that purpurin is a secretory protein that has sequence homology with a human protein synthesized in the liver that transports retinol in the blood, the serum retinol-binding protein (RBP). Purpurin binds [3H]retinol, and both purpurin and chick serum RBP stimulate the adhesion of neural retina cells, although the serum protein is less active than purpurin. Purpurin and the serum RBP are, however, different molecules, for the serum protein is approximately 3,000 D larger than purpurin and has different silver-staining characteristics. Finally, purpurin supports the survival of dissociated ciliary ganglion cells, indicating that RBPs can act as ciliary neurotrophic factors.  相似文献   

2.
3.
Adherons are high molecular weight glycoprotein complexes which are released into the growth medium of cultured cells. They mediate the adhesive interactions of many cell types, including those of embryonic chick neural retina. The cell surface receptor for chick neural retina adherons has been purified, and shown to be a heparan sulfate proteoglycan (Schubert, D., and M. LaCorbiere, 1985, J. Cell Biol., 100:56-63). This paper describes the isolation and characterization of a protein in neural retina adherons which interacts specifically with the cell surface receptor. The 20,000-mol-wt protein, called retinal purpurin (RP), stimulates neural retina cell-substratum adhesion and prolongs the survival of neural retina cells in culture. The RP protein interacts with heparin and heparan sulfate, but not with other glycosaminoglycans. Monovalent antibodies against RP inhibit RP-cell adhesion as well as adheron-cell interactions. The RP protein is found in neural retina, but not in other tissues such as brain and muscle. These data suggest that RP plays a role in both the survival and adhesive interactions of neural retina cells.  相似文献   

4.
Purpurin (1,2,4-trihydroxy-9,10-anthraquinone) is a naturally occurring anthraquinone pigment found in species of madder root. We have found that the presence of purpurin in bacterial mutagenicity assays is responsible for a marked inhibition of mutagenicity induced by food-derived heterocyclic amines. Purpurin was found to be a better inhibitor of Trp-P-2-dependent mutagenicity than either epigallocatechin gallate or chlorophyllin both of which are well-established anti-mutagenic components of diet. Inhibition of Trp-P-2(NHOH) mutagenicity by purpurin was dependent upon pH. It was a better inhibitor in neutral than acidic conditions. Purpurin was protective against the direct mutagen Trp-P-2(NHOH) in both the presence and the absence of hepatic S9 but required pre-incubation. Finally, purpurin was responsible for the inhibition of human CYP1A2 and human NADPH-cytochrome P450 reductase and a decrease in the bioactivation of Trp-P-2 by these enzymes when they were expressed in Salmonella typhimurium TA1538ARO. However, inhibition of Trp-P-2(NHOH)-dependent mutations suggests purpurin also has a direct effect on this mutagen in addition to inhibiting its formation by CYP1A2.  相似文献   

5.
To establish a suitable experimental system for studies of the interaction of retinol-binding protein (RBP) with transthyretin (TTR) we have expressed the corresponding cDNAs in HeLa cells. To investigate whether complex formation might occur already in the endoplasmic reticulum (ER), the C-terminal ER retention signal, KDEL, was attached to TTR. The tetrameric TTR-KDEL fusion protein was retained in the ER of HeLa cells. When RBP was co-expressed with TTR-KDEL, RBP was retained intracellularly. A cDNA-encoding purpurin, a protein which is 50% identical to RBP, was then expressed together with TTR-KDEL. Purpurin was not retained intracellularly and did not bind to TTR coupled to Sepharose. The effect of the vitamin A status on the secretion of TTR and RBP was examined. While TTR expressed alone was not retained intracellularly, TTR was retained in vitamin A-deficient cells when co-expressed with RBP. Addition of retinol stimulated rapid secretion of both proteins. These results demonstrate that TTR can form a complex with RBP in the ER. The data suggest that RBP and TTR are secreted as a complex.  相似文献   

6.
A minigene encoding rat retinol-binding protein (RBP) was transfected into HeLa cells, which do not express endogenous RBP, transthyretin, or cellular retinol-binding protein. The HeLa cells manufactured and secreted the transfected gene product, demonstrating that RBP-transthyretin assembly is not a requirement for the secretion of RBP. When HeLa cells were grown under vitamin A-deficient conditions, RBP accumulated in the endoplasmic reticulum. Both serum and retinol stimulated secretion of RBP in a concentration-dependent manner. The retinol-regulated secretion occurred also after protein synthesis had been blocked by cycloheximide. Addition of holo-RBP or retinal, but not retinoic acid, stimulated secretion of RBP. Thus, an in vitro model system that resembles the rat hepatocyte in vivo with regard to the known regulation of RBP secretion has been established in a human cell line of extrahepatic origin. It can be concluded that cellular retinol-binding protein is not required for the transfer of retinol to RBP and that the mechanism whereby retinol controls the intracellular transport of RBP is neither specific for tissues synthesizing RBP nor species-specific. To investigate the structural properties responsible for the endoplasmic reticulum retention of RBP in the absence of its ligand, a cDNA encoding chicken purpurin, a protein that is 50% identical to RBP and that binds retinol, was expressed in HeLa cells. In contrast to RBP, purpurin was not retained in vitamin A-deficient HeLa cells.  相似文献   

7.
The interphotoreceptor matrix (IPM) occupies the extracellular space between the apical surface of the retinal pigmented epithelium and the external limiting membrane of the neural retina. This space contains two chondroitin sulfate proteoglycans, designated IPM 150 and IPM 200, which are likely to effect retinal adhesion and photoreceptor survival. In an effort to characterize human IPM 150, several cDNA clones encoding its core protein have been isolated from a human retinal cDNA library. Translation of overlapping cDNA sequences yields a novel core protein with a predicted molecular mass of 89.3 kDa. Northern and dot-blot analyses as well as the isolation of expressed sequence tags demonstrate that IPM 150 mRNA is expressed not only in the neural retina but also in several other non-ocular tissues. In situ hybridization analyses indicate that, in the eye, IPM 150 mRNA is expressed specifically by cone and rod photoreceptor cells. Characterization of IPM 150 proteoglycan core protein and identification of its site of synthesis are important steps towards understanding the architecture and biology of the IPM.  相似文献   

8.
Interstitial retinol-binding protein (IRBP) is a soluble glycoprotein in the interphotoreceptor matrix of bovine, human, monkey, and rat eyes. It may transport retinol between the retinal pigment epithelium and the neural retina. In light-reared Royal College of Surgeons (RCS) and RCS retinal dystrophy gene (rdy)+ rats, the amount of IRBP in the interphotoreceptor matrix increased in corresponding proportion to the amount of total rhodopsin through postnatal day 22 (P22). In the RCS-rdy+ rats, the amount increased slightly after P23. However, in the RCS rats there was a rapid fall in the quantity of IRBP as the photoreceptors degenerated between P23 and P29. No IRBP was detected by immunocytochemistry in rats at P28. The amount of rhodopsin fell more slowly. Although retinas from young RCS and RCS-rdy+ rats were able to synthesize and secrete IRBP, this ability was lost in retinas from older RCS rats (P51, P88) but not their congenic controls. The photoreceptor cells have degenerated at these ages in the RCS animals, and may therefore be the retinal cells responsible for IRBP synthesis. The putative function of IRBP in the extracellular transport of retinoids during the visual cycle is consistent with a defect in retinol transport in the RCS rat reported by others.  相似文献   

9.
Light and electron microscopic techniques show that the eye of the marine prosobranch gastropod, Ilyanassa obsoleta, is composed of an optic cavity, lens, cornea, retina, and neuropile, and is surrounded by a connective tissue capsule. The adult retina is a columnar epithelium containing three morphologically distinct cell types: photoreceptor, pigmented, and ciliated cells. The retina is continuous anteriorly with a cuboidal corneal epithelium. The neuropile, located immediately behind the retina, is composed of photoreceptor cell axons, accessory neurons, and their neurites. The embryonic eye is formed from surface ectoderm, which sinks inward as a pigmented cellular mass. At this time, the eye primordium already contains presumptive photoreceptor cells, pigmented retinal cells, and corneal cells. Several days later, just before hatching, the embryonic eye remains in intimate contact with the cerebral ganglion. It has no ciliated retinal cells, neuropile, optic nerve, or connective tissue capsule and its photoreceptor cells lack the electron-lucent vesicles and multivesicular bodies of adult photoreceptor cells. As the eye and the cerebral ganglion grow apart, the optic nerve, neuropile, and connective tissue capsule develop.  相似文献   

10.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellular retinol binding protein (CRBP), cellular retinoic acid binding protein (CRABP), cellular retinaldehyde binding protein (CRALBP), retinaldehyde dehydrogenase (RALDH), and retinoic acid receptors (RAR and RXR), we localized these proteins to cells in the retina, retinal pigmented epithelium, choroid and sclera of the chick eye. IRBP was detected in the photoreceptor layer and pigmented epithelium; CRBP was in the pigmented epithelium; CRABP was in amacrine and bipolar cells in the retina; CRALBP was in Müller cells, pigmented epithelium, choroid, and fibrous sclera; RALDH was in retinal amacrine cells, pigmented epithelium, and choroid; RAR was in amacrine cells, choroid, and chondrocytes and fibroblasts in the sclera; and RXR was in amacrine and ganglion cells, bipolar cell nuclei, choroid, and chondrocytes. We also found that the growth-modulating toxins colchicine and quisqualate destroyed selectively different subsets of CRABP-containing amacrine cells. We conclude that the distribution of proteins involved in retinoid metabolism is consistent with a role of retinoids not only in phototransduction, but also in maintenance of cellular phenotype and visual guidance of ocular growth.  相似文献   

11.
Diffusible rod-promoting signals in the developing rat retina.   总被引:2,自引:0,他引:2  
We previously developed a reaggregate cell culture system in which embryonic rat retinal neuroepithelial cells proliferate and give rise to opsin-expressing rod photoreceptor cells (rods) on the same schedule in vitro as they do in vivo. We showed that the proportion of neuroepithelial cells in the embryonic day 15 (E15) retina that differentiated into opsin+ rods after 5-6 days in such cultures increased by approximately 40-fold when the E15 cells were cultured in the presence of an excess of postnatal day 1 (P1) neural retinal cells. In the present study, we have further analyzed this rod-promoting activity of neonatal neural retinal cells. We show that the activity is mediated by a diffusible signal(s) that seems to act over a relatively short distance. Whereas neonatal (P1-P3) neural retina has rod-promoting activity, E15 and adult neural retina, neonatal thymus, cerebrum and cerebellum do not. Finally, we show that neonatal neural retina promotes rod but not amacrine cell development.  相似文献   

12.
13.
Na,K-ATPase plays a central role in the visual sensitivity of photoreceptors by driving the dark current of vision. The alpha 3 and beta 2 isoforms of Na,K-ATPase were previously shown to be the major alpha and beta subunit mRNAs expressed in photoreceptors. Here we compared the distribution of beta-subunits of the enzyme in the retina and kidney, using electron microscopic immunocytochemistry with specific antibodies against alpha 3, beta 1, and beta 2 isoforms as well as with an antibody (Ax2) that binds to alpha 2 and/or alpha 3 isoforms. Both the alpha 3 and beta 2 isoforms were localized to photoreceptor inner segments at highest labeling density between the base of the connecting cilium and the outer limiting membrane (OLM). Quantitative analysis of Ax2 antibody binding to alpha 3 revealed a significant decrease in labeling density below the OLM and above the base of the connecting cilium. Although the beta 2-subunit has been reported to have adhesive functions in glial cells in cerebellum, we detected beta 2 in the photoreceptor, a cell of neural origin, but not in the Mueller cell, the glial cell of the retina. Moreover, anti-beta 2 antibodies bound maximally to portions of photoreceptor cells not involved in cell-cell contact.  相似文献   

14.
We report that the hindsight (hnt) gene, which encodes a nuclear zinc-finger protein, regulates cell morphology, cell fate specification, planar cell polarity and epithelial integrity during Drosophila retinal development. In the third instar larval eye imaginal disc, HNT protein expression begins in the morphogenetic furrow and is refined to cells in the developing photoreceptor cell clusters just before their determination as neurons. In hnt mutant larval eye tissue, furrow markers persist abnormally posterior to the furrow, there is a delay in specification of preclusters as cells exit the furrow, there are morphological defects in the preclusters and recruitment of cells into specific R cell fates often does not occur. Additionally, genetically mosaic ommatidia with one or more hnt mutant outer photoreceptor cells, have planar polarity defects that include achirality, reversed chirality and misrotation. Mutants in the JNK pathway act as dominant suppressors of the hnt planar polarity phenotype, suggesting that HNT functions to downregulate JUN kinase (JNK) signaling during the establishment of ommatidial planar polarity. HNT expression continues in the photoreceptor cells of the pupal retina. When an ommatidium contains four or more hnt mutant photoreceptor cells, both genetically mutant and genetically wild-type photoreceptor cells fall out of the retinal epithelium, indicating a role for HNT in maintenance of epithelial integrity. In the late pupal stages, HNT regulates the morphogenesis of rhabdomeres within individual photoreceptor cells and the separation of the rhabdomeres of adjacent photoreceptor cells. Apical F-actin is depleted in hnt mutant photoreceptor cells before the observed defects in cellular morphogenesis and epithelial integrity. The analyses presented here, together with our previous studies in the embryonic amnioserosa and tracheal system, show that HNT has a general role in regulation of the F-actin-based cytoskeleton, JNK signaling, cell morphology and epithelial integrity during development.  相似文献   

15.
The spatial width of photoreceptor receptive fields affects the processing of signals in neural networks of the retina. This effect has been examined using the simple recurrent and non-recurrent network models, where lateral interaction strength was adjusted to approximate a prescribed receptive field profile. The results indicate that the optimal performance of the networks is obtained with photoreceptor receptive fields wider than the ganglion cell separation. It is thus concluded that while electrical coupling of photoreceptors in the retina reduces the intrinsic noise in the system, it also improves the sampling efficiency of the laterally coupled neural network of the retina.  相似文献   

16.
In order to study cell differentiation and morphogenesis of neural retina, ultracytochemical examination for acetylcholine esterase (AChE) was carried out on neural retinal cells from 6-day-old chick embryos cultured in monolayer for 20 days. AChE is a suitable marker for identifying cell specificity and structure of cultured neural retinal cells, because its specific localization in the intact chick neural retina has been established. After about 2 weeks of culturing a number of cell aggregates formed on the monolayer sheet of glial cells, in which cell bodies were generally located on the periphery regions while their cellular processes were in the center, forming neuropil structures. Among such peripherally located cells presumptive ganglion, amacrine, bipolar, and photoreceptor cells could be distinguished. In the neuropil structures, some cellular processes had typical ribbon synapses indicating that these structures correspond to the plexiform layers of the retina. We could also classify the neuropils into two types of both from the AChE activity and from the structure of the nerve terminals. These findings indicate that our cell culture system can be used for the study of cell differentiation and histogenesis of retinal cells.  相似文献   

17.
The photoreceptors of the neural retina require retinol for synthesis of rhodopsin. In the plasma, retinol is bound to retinol binding protein which is carried by transthyretin (TTR; formerly called prealbumin). It is unknown whether, or how, retinol carrier proteins cross the endothelium of the choriocapillaris, the blood supply to the outer neural retina. This was examined in the present study with TTR-gold probes perfused into rats and localized by electron microscopic techniques. TTR-gold, often in clusters, was localized to diaphragmed fenestrae, parajunctional areas, coated pits, transendothelial channels, multivesicular bodies, and to vesicles close to the Golgi apparatus. The probe was also identified at the luminal and abluminal fronts and the interior of transendothelial channels in an apparent sequence of transit. TTR-gold was also found in a series of interconnected vesicles adjacent to the abluminal side of the endothelium. Localizations were not seen when rat albumin fraction V was substituted for TTR and when the rats were perfused with Pronase E before labeling with TTR-gold. These observations indicate that binding and receptor mediated-like transport of TTR by the endothelium of the choriocapillaris is present. This is similar to the processing of heparin-gold by this endothelium.  相似文献   

18.
Summary In common with other cyclostomata, the Japanese river lamprey (Lampetra japonica) has a retina consisting of distinct types of photoreceptor cells called long and short photoreceptor cells. After freeze-fracture, disc membranes of these photoreceptor cells were characterized in common by a homogeneous distribution of intramembrane particles on the protoplasmic fracture faces, in contrast to those of the myeloid bodies bearing scattering particles.Immunofluorescent examination was applied to the retina with monoclonal antibodies raised against bovine and chicken rhodopsins. Positive immunoreactivity was found to be limited to outer segments of the short cell, leaving the entire body of the long cell and all other components of the retina negative. The results suggest that the short cell is more closely related to a rod-type photoreceptor cell characterized by rhodopsin as its visual pigment.  相似文献   

19.
The 23 kDa protein was localized by immunocytochemistry to photoreceptor cells of the mouse retina, and bovine and mouse cDNA clones were isolated and sequenced. The deduced amino acid sequences showed that the mouse 23 kDa protein is 91% identical to the bovine protein, and is the same as S-modulin, the CAR (cancer-associated retinopathy) protein and recoverin, the Ca(2+)-dependent activator of photoreceptor guanylate cyclase. The amino acid sequence reveals two Ca2+ binding sites, no internal repeats, 59% homology to the chicken visinin protein and 40% homology to calmodulin while Northern analysis demonstrated a single 1.0 kb mRNA species in bovine and mouse retina.  相似文献   

20.
Vitamin A immunoreactive sites were studied in the retina and pineal organ of the frog, Rana esculenta, by the peroxidase antiperoxidase, avidin-biotinperoxidase and immunogold methods. In dark-adapted material, strong immunoreaction was found in the outer and inner segments of the photoreceptor cells of both retina and pineal organ, as well as in the pigment epithelium, retinal Müller cells and pineal ependymal cells. In light-adapted retina, cones and green (blue-sensitive) rods were immunopositive. At the electron microscopic level, immunogold particles were found on the membranes of the photoreceptor outer segments as well as on the membranes of the endoplasmic reticulum and mitochondria. Individual retinal photorecptor cells exhibited strong immunoreaction in the distal portion of the inner segment, the ciliary connecting piece and the electron-dense material covering the outer segment. In the pigment epithelium, the immunolabeling varied in intensity in the basal and apical cytoplasm and phagocytosed outer segments. The immunocytochemical results indicate that retinoids (retinal, retinol and possibly retinoic acid) are present not only in the photoreceptor cells of the retina but also in those of the pineal organ. The light-dependent differences in the immunoreactivity of vitamin A underlines its essential role in the visual cycle of the photopigments. Our results suggest that the pineal ependyma plays a role comparable to that of the Müller cells and pigment epithelium of the retina with regard to the transport and storage of vitamin A. The presence of a retinoid in nuclei, mitochondria and cytoplasmic membranes suggests an additional role of vitamin A in other metabolic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号