首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Statins, the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors with cholesterol-lowering properties, were recently shown to exhibit anti-cancer effects. However, the molecular mechanism underlying statin-induced cancer cell death remains to be elucidated. Elevated level of survivin is often found over-expressed in human cancers and has been implicated in the progression of tumorigenesis. Given its central role in cell division and action as an apoptosis suppressor, survivin represents a potential molecular target in cancer management.

Methods

In this study, we explored the underlying mechanisms in simvastatin-induced HCT116 colorectal cancer cell apoptosis.

Results

Simvastatin decreased cell viability and induced cell apoptosis in HCT116 cells. These results are associated with the modulation of p21cip/Waf1 and survivin. Survivin knockdown using survivin siRNAs also decreased cell viability and induced cell apoptosis. Simvastatin's actions on p21cip/Waf1, survivin and apoptosis were reduced in p53 null HCT116 cells. Simvastatin caused an increase in p53 phosphorylation and acetylation. In addition, simvastatin activated p38 mitogen-activated protein kinase (p38MAPK), whereas an inhibitor of p38MAPK signaling abrogated simvastatin's effects of increasing p53 and p21cip/Waf1 promoter luciferase activity. Cell viability and survivin promoter luciferase activity in the presence of simvastatin were also restored by p38MAPK inhibitor. Furthermore, Sp1 binding to the survivin promoter region decreased while p53 and p63 binding to the promoter region increased after simvastatin exposure.

Conclusions

Simvastatin activates the p38MAPK-p53-survivin cascade to cause HCT116 colorectal cancer cell apoptosis.

General significance

This study delineates, in part, the underlying mechanisms of simvastatin in decreasing survivin and subsequent colorectal cancer cell apoptosis.  相似文献   

2.
Yadav D  Chandra R  Saxena R  Agarwal D  Agarwal M  Ghosh T  Agrawal D 《Gene》2011,487(2):166-169

Background

Difference in the capacity of xenobiotic metabolising enzymes might be an important factor in genetic susceptibility to cancer.

Methods

A case control study involving forty one gastric cancer patients and one hundred and thirty controls was carried out to determine the frequency of GSTM1 and GSTT1 null genotypes. The frequency of GSTM1 and GSTT1 null genotype was observed by carrying out multiplex PCR.

Results

There was no difference in the frequencies of the GSTM1 and GSTT1 null and the combined GSTM1 and GSTT1 null genotype between patients and control.

Conclusions

Our data suggest that GSTM1 and GSTT1 status may not influence the risk of developing gastric cancer.  相似文献   

3.

Objective

VEGF and BMP play important roles in angiogenesis and osteogenesis. Combining these two factors may be a promising therapeutic strategy for avascular necrosis of the femoral head (ANFH).

Methods

Rabbit bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and purified by density gradient centrifugation combined with attachment culture methods. The purity and characteristics of the BMSCs were detected by cell surface antigen identification. The best MOI of BMSCs transfected with rAAV was detected by fluorescent cell counting, and cell viability was determined by MTT assay. Expression of the genes of interest was detected by GFP gene expression, RT-PCR assay, and ELISA assay. The biological activities of VEGF and BMP were detected by angiogenic and osteogenic assays.

Results

The best MOI of BMSCs transfected with rAAV was 5 × 104 v.g./cell. Cell growth curves showed vigorous cell viability. Expressions of the GFP, VEGF165, and BMP7 genes were detected 1 day post-transfection and peaked 14 days post-transfection. Expression of the genes of interest was sustained over 1 month. VEGF and BMP proteins secreted from BMSCs transfected with rAAV-hVEGF165-IRES-hBMP7 enhanced angiogenesis and osteogenesis in vitro.

Conclusion

Recombinant adeno-associated viral vectors co-expressing the hVEGF165 and hBMP7 genes showed efficient gene expression ability. The VEGF165 and BMP7 proteins expressed from the vector have efficient biological activity in vitro.  相似文献   

4.

Background

Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug.

Methods

The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice.

Results

AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index.

Conclusions and general significance

These data support development of AD-1 as a potential agent for lung cancer therapy.  相似文献   

5.
6.
7.
8.

Aims

Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells.

Method

Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 μg/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT1) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively.

Results

Ang II (1 μmol/L) induced HUVECs arrested at G0/G1, enhanced the expression level of AT1 mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT1 mRNA. L-NAME significantly counteracted these effects of IGF-1.

Conclusions

Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G0/G1 and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.  相似文献   

9.
10.
11.
12.

Background

The p38α MAP kinase pathway is involved in inflammation, cell differentiation, growth, apoptosis and production of pro-inflammatory cytokines TNF-α and IL-1β. The overproduction of these cytokines plays an important role in cancer. The aim of this work was to design a peptide inhibitor on the basis of structural information of the active site of p38α.

Methods

A tetrapeptide, VWCS as p38α inhibitor was designed on the basis of structural information of the ATP binding site by molecular modeling. The inhibition study of peptide with p38α was performed by ELISA, binding study by Surface Plasmon Resonance and anti-proliferative assays by MTT and flow cytometry.

Results

The percentage inhibition of designed VWCS against pure p38α protein and serum of HNSCC patients was 70.30 and 71.5%, respectively. The biochemical assay demonstrated the KD and IC50 of the selective peptide as 7.22 × 10− 9 M and 20.08 nM, respectively. The VWCS as inhibitor significantly reduced viability of oral cancer KB cell line with an IC50 value of 10 μM and induced apoptosis by activating Caspase 3 and 7.

Conclusions

VWCS efficiently interacted at the ATP binding pocket of p38α with high potency and can be used as a potent inhibitor in case of HNSCC.

General significance

VWCS can act as an anticancer agent as it potentially inhibits the cell growth and induces apoptosis in oral cancer cell-line in a dose as well as time dependent manner. Hence, p38α MAP kinase inhibitor can be a potential therapeutic agent for human oral cancer.  相似文献   

13.

Background and aims

B-cell lymphoma/leukemia (BCL)-10 and reactive oxygen species mediate two pathways of NF-κB (RelA) activation by lipopolysaccharide (LPS) in human colonic epithelial cells. The pathway for LPS activation of RelB by the non-canonical pathway (RelB) in non-myeloid cells was not yet reported, but important for understanding the range of potential microbial LPS-induced effects in inflammatory bowel disease.

Methods

Experiments were performed in human colonic epithelial cells and in mouse embryonic fibroblasts deficient in components of the IkappaB kinase (IKK) signalosome, in order to detect mediators of the non-canonical pathway of NF-κB activation, including nuclear RelB and p52 and phospho- and total NF-κB inducing kinase (NIK). BCL10 was silenced by siRNA and effects of mutations of specific phosphorylation sites of BCL10 (Ser138Gly and Ser218Gly) were determined.

Results

By the non-canonical pathway, LPS exposure increased nuclear RelB and p52, and phospho-NIK, with no change in total NIK. Phosphorylation of BCL10 serine 138 was required for NIK phosphorylation, since mutation of this residue eliminated the increases in phospho-NIK and nuclear RelB and p52. Mutations of either serine 138 or serine 218 reduced RelA, p50, and phospho-IκBα of the canonical pathway. Effects of LPS stimulation and BCL10 silencing on NIK phosphorylation were demonstrated in confocal images.

Conclusions

LPS induces activation of both canonical and non-canonical pathways of NF-κB in human colonic epithelial cells, and the non-canonical pathway requires phosphorylations of BCL10 (serine 138) and NIK. These findings demonstrate the important role of BCL10 in mediating LPS-induced inflammation in human colonic epithelial cells and may open new avenues for therapeutic interventions.  相似文献   

14.
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death.  相似文献   

15.
16.

Background

It is well-known that tumor exerts nonmetastatic systemic effect on organism caused the development of paraneoplastic syndrome (PNS). Recent findings point to relationships between development of PNS and tumor-derived vascular endothelial growth factor (VEGF).

Aim

Comparative study of PNS manifestations in mice with transplanted two variants of Lewis lung carcinoma with different angiogenic potential.

Methods

Plasma VEGF level was determined by immunoenzyme method, hematological indices were estimated with the use of hematological analyzer, the weight and cellularity of spleen and thymus were registered and histological analysis of tissue section of these organs was performed.

Results

Manifestations of anemia, extramedullary hemopoiesis and tumor-associated inflammatory disease was observed in animals with high angiogenic LLC/R9 variant and was not registered in low angiogenic LLC. The emergence of PNS symptoms correlated with elevated level of circulating VEGF at the early stages of LLC/R9 growth.

Conclusion

Manifestation of the paraneoplastic hematological syndrome most likely is conditioned on the ability of cancer cell to secrete VEGF in a high rate.  相似文献   

17.

Background

The relevance of discrete localization of hepatobiliary transporters in specific membrane microdomains is not well known.

Aim

To determine whether the Na+/taurocholate cotransporting polypeptide (Ntcp), the main hepatic sinusoidal bile salt transporter, is localized in specific membrane microdomains.

Methods

Presence of Ntcp in membrane rafts obtained from mouse liver was studied by immunoblotting and immunofluorescence. HEK-293 cells stably transfected with rat Ntcp were used for in vitro studies. Expression, localization and function of Ntcp in these cells were assessed by immunoblotting, immunofluorescence and biotinylation studies and Na+-dependent taurocholate uptake assays, respectively. The effect of cholesterol depletion/repletion assays on Ntcp function was also investigated.

Results

Ntcp localized primarily to membrane rafts in in vivo studies and localized partially in membrane rafts in transfected HEK-293 cells. In these cells, membrane cholesterol depletion resulted in a shift of Ntcp localization into non-membrane rafts, which correlated with a 2.5-fold increase in taurocholate transport. Cholesterol repletion shifted back part of Ntcp into membrane rafts, and normalized taurocholate transport to values similar to control cells.

Conclusion

Ntcp localizes in membrane rafts and its localization and function are regulated by membrane cholesterol content. This may serve as a novel regulatory mechanism of bile salt transport in liver.  相似文献   

18.

Background

AMP-dependent protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α facilitate fatty acid oxidation. We have shown that treatment of hepatoma cells with ethanol or feeding ethanol-containing diets to mice inhibited both PPARα and AMPK activity. Importantly, WY-14,643 reversed the development of fatty liver in alcohol-fed mice. Whether WY-14,643, a PPARα agonist, has any effects on AMPK is not known. The aim of this study was to investigate the effect of WY-14,643 on AMPK activity.

Methods

The effect of WY-14,643 on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3). The effect of WY-14,643 on upstream kinases of AMPK, PKC-ζ/LKB1, intracellular AMP:ATP ratio, oxidative stress, and AMPK gene expression were studied.

Results

Treatment of the H4IIEC3 cells with WY-14,643 for 24 h led to 60% increase in the phosphorylation of AMPK. The effect of WY-14,643 on AMPK phosphorylation is PKC-ζ/LKB1 independent. WY-14,643 did not alter the levels of intracellular AMP:ATP ratio and it did not increase the levels of reactive oxygen species at 24-h of treatment. WY-14,643-induced AMPK α subunit expression by 2- to 2.5-fold, but there was no change in AMPKα subunit protein at 24 h. The effect of WY-14,643 on AMPK phosphorylation did not altered by the presence of an NADPH oxidase inhibitor.

Conclusions

WY-14,643 induced AMPKα subunit phosphorylation and the activity of the enzyme. This was associated with induction of AMPKα1 and α2 mRNA, but the mechanism for this activation is uncertain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号