首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Large blooms of opportunistic green macroalgae such as Enteromorpha intestinalis are of ecological concern in estuaries worldwide. Macroalgae derive their nutrients from the water column but estuarine sediments may also be an important nutrient source. We hypothesized that the importance of these nutrient sources to E. intestinalis varies along a nutrient-resource gradient within an estuary. We tested this in experimental units constructed with water and sediments collected from 3 sites in Upper Newport Bay estuary, California, US, that varied greatly in water column nutrient concentrations. For each site there were three treatments: sediments + water; sediments + water + Enteromorpha intestinalis (algae); inert sand + water + algae. Water in units was exchanged weekly simulating low turnover characteristic of poorly flushed estuaries. The importance of the water column versus sediments as a source of nutrients to E. intestinalis varied with the magnitude of the different sources. When initial water column levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) were low, estuarine sediments increased E. intestinalis growth and tissue nutrient content. In experimental units from sites where initial water column DIN was high, there was no effect of estuarine sediments on E. intestinalis growth or tissue N content. Salinity, however, was low in these units and may have inhibited growth. E. intestinalis growth and tissue P content were highest in units from the site with highest initial sediment nutrient content. Water column DIN was depleted each week of the experiment. Thus, the water column was a primary source of nutrients to the algae when water column nutrient supply was high, and the sediments supplemented nutrient supply to the algae when water column nutrient sources were low. Depletion of water column DIN in sediment + water units indicated that the sediments may have acted as a nutrient sink in the absence of macroalgae. Our data provide direct experimental evidence that macroalgae utilize and ecologically benefit from nutrients stored in estuarine sediments.  相似文献   

2.
Niche partitioning by time, space and chemical forms has been suggested as an important mechanism to maintain species coexistence. Climate warming is assumed to increase soil nutrient availability through enhancing mineralization of soil organic matter in a variety of terrestrial ecosystems. However, few studies have yet examined how dominant plant species contribute to species coexistence when nutrient enrichment occurs in native ecosystems. We studied a single fairy ring (5 m diameter) in a Kobresia meadow in the Tibetan Plateau. This kind of rings is caused by a basidiomycete fungus Agaricus campestris, and is evidenced by dark-green vegetation boundaries. Nutrient enrichment occurs due to enhanced decomposition of soil organic matter (SOM) in the fungus growth zone of these rings. We conducted a short-term 15N labelling experiment and found that dominant plant species shifted their N uptake patterns and preferred N form (NO 3 ? , NH 4 + , and amino acid N) in response to nutrient enrichment in an N-limited alpine meadow. The legume Gueldenstaedtia diversifolia had the lowest aboveground biomass among the five plant species studied at low available N level, although it mainly utilized ammonium (the most abundant N form). The two graminoids (Elymus nutans and Stipa aliena) demonstrated similar aboveground biomass at low and high available N levels, showing a similar pattern switching from NH 4 + /NO 3 ? uptake outside the ring to glycine uptake in the annulus zone of the ring. The biomass of the forb Gentiana straminea differed significantly at low and high available N levels, but its N uptake pattern almost remained unchanged. Species therefore differed in their response to nutrient enrichment, most species showing chemical niche shifts instead of niche conservatism. This finding has important implications with regard to understanding the mechanisms responsible for species coexistence when natural nutrient enrichment is induced by climate warming in terrestrial ecosystems.  相似文献   

3.
Background and AimsPhosphorus (P) and nitrogen (N) are essential nutrients that frequently limit primary productivity in terrestrial ecosystems. Efficient use of these nutrients is important for plants growing in nutrient-poor environments. Plants generally reduce foliar P concentration in response to low soil P availability. We aimed to assess ecophysiological mechanisms and adaptive strategies for efficient use of P in Banksia attenuata (Proteaceae), naturally occurring on deep sand, and B. sessilis, occurring on shallow sand over laterite or limestone, by comparing the allocation of P among foliar P fractions.MethodsWe carried out pot experiments with slow-growing B. attenuata, which resprouts after fire, and faster growing opportunistic B. sessilis, which is killed by fire, on substrates with different P availability using a randomized complete block design. We measured leaf P and N concentrations, photosynthesis, leaf mass per area, relative growth rate and P allocated to major biochemical fractions in B. attenuata and B. sessilis.Key ResultsThe two species had similarly low foliar total P concentrations, but distinct patterns of P allocation to P-containing fractions. The foliar total N concentration of B. sessilis was greater than that of B. attenuata on all substrates. The foliar total P and N concentrations in both species decreased with decreasing P availability. The relative growth rate of both species was positively correlated with concentrations of both foliar nucleic acid P and total N, but there was no correlation with other P fractions. Faster growing B. sessilis allocated more P to nucleic acids than B. attenuata did, but other fractions were similar.ConclusionsThe nutrient allocation patterns in faster growing opportunistic B. sessilis and slower growing B. attenuata revealed different strategies in response to soil P availability which matched their contrasting growth strategy.  相似文献   

4.

Background and aims

Accurate predictions of nutrient acquisition by plant roots and mycorrhizas are critical in modelling plant responses to climate change.

Methods

We conducted a field experiment with the aim to investigate root nutrient uptake in a future climate and studied root production by ingrowth cores, mycorrhizal colonization, and fine root N and P uptake by root assay of Deschampsia flexuosa and Calluna vulgaris.

Results

Net root growth increased under elevated CO2, warming and drought, with additive effects among the factors. Arbuscular mycorrhizal colonization increased in response to elevated CO2, while ericoid mycorrhizal colonization was unchanged. The uptake of N and P was not increased proportionally with root growth after 5 years of treatment.

Conclusions

While aboveground biomass was unchanged, the root growth was increased under elevated CO2. The results suggest that plant production may be limited by N (but not P) when exposed to elevated CO2. The species-specific response to the treatments suggests different sensitivity to global change factors, which could result in changed plant competitive interactions and belowground nutrient pool sizes in response to future climate change.  相似文献   

5.
《Acta Oecologica》1999,20(4):259-265
The excessive growth of opportunistic macroalgae in estuaries and other coastal areas, characterised by enormous values of vegetal biomass in the form of dense mats, is a common and widespread picture nowadays. In such conditions, macroalgae completely dominate the nutrient dynamics in the ecosystem and function as high quality food for the microbial, meio- and macrofaunal communities. Due to their important role in the nutrient pathways of the ecosystems, it becomes essential to obtain new information on variables and processes that regulate the bloom formation of these primary producers. The Mondego estuary (west Portugal) is a eutrophic estuary, where usually macroalgae of the genera Enteromorpha seasonally bloom. Nevertheless, in years with high precipitation characterised by a significant increase of the freshwater runoff to the system, no Enteromorpha blooms are observed. Possible explanations for this are related to the reduction of light in the water column, high water speed, high sediment turbulence and low salinity values. Thus, because the decrease in salinity seemed an important feature during such periods, a set of experiments were conducted, to evaluate to what extent the growth of Enteromorpha intestinalis (the most abundant species in the Mondego estuary) is affected by fluctuations in salinity and, particularly, by low salinity values. In the laboratory, the growth rate of E. intestinalis was tested against a range of salinity, from 0 to 32 psu. E. intestinalis showed the lowest growth rates at extreme low salinity values (≤ 3 psu) and for salinity ≤ 1 psu, the algae died. Growth rates at salinity lower than 5 psu and higher than 25 psu were also low, when compared with growth between salinity of 15 and 20 psu, where E. intestinalis showed the highest growth rates. These results agree with the field observations and suggest that, in the Mondego estuary, salinity is an important external parameter to control the growth of E. intestinalis, which has important ecological implications for the system.  相似文献   

6.
Bifurcaria bifurcata, a temperate brown macroalga, is known to show spatial fluctuations in its diterpene content along the northwestern coasts of France (Brittany). In the aim to identify environmental factors which could influence the occurrence of a particular chemical type, several populations of B. bifurcata were collected in summer 2009 and winter 2010. Their chemical composition was studied through thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analyses. Results showed that specific diterpenes are biosynthesized depending on seasons and abiotic factors, such as hydrodynamism or substratum. Exposed sites were characterized by thalli of B. bifurcata producing two main diterpenoids, bifurcane, and eleganediol, whereas thalli from sheltered sites showed crude extracts containing a major diterpene, eleganolone. On these last sites, another diterpene (bifurcanone) is only expressed in winter and was thus considered as a seasonal chemomarker. The term “chemotype” applied to a population is proposed and discussed.  相似文献   

7.
Variations of cellular total lipid, total carbohydrate and total protein content of two dominant bloom-forming species (Skeletonema costatum and Prorocentrum donghaiense) isolated from the Yangtze River Estuary were examined under six different nutrient conditions in batch cultures. Daily samples were collected to estimate the cell growth, nutrient concentration and three biochemical compositions content during 7 days for S. costatum and the same sampling procedure was done every other day during 10 days for P. donghaiense. Results showed that for S. costatum, cellular total lipid content increased under phosphorus (P) limitation, but not for nitrogen (N) limitation; cellular carbohydrate were accumulated under both N and P limitation; cellular total protein content of low nutrient concentration treatments were significantly lower than that of high nutrient concentration treatments. For P. donghaiense, both cellular total lipid content and total carbohydrate content were greatly elevated as a result of N and P exhaustion, but cellular total protein content had no significant changes under nutrient limitation. In addition, the capability of accumulation of three biochemical constituents of P. donghaiense was much stronger than that of S. costatum. Pearson correlation showed that for both species, the biochemical composition of three constituents (lipid, carbohydrate and protein) had no significant relationship with extracellular N concentration, but had positive correlation with extracellular and intracellular P concentration. The capability of two species to accumulate cellular total lipid and carbohydrate under nutrient limitation may help them accommodate the fluctuating nutrient condition of the Yangtze River Estuary. The different responses of two species of cellular biochemical compositions content under different nutrient conditions may provide some evidence to explain the temporal characteristic of blooms caused by two species in the Yangtze River Estuary.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) regulate soil nutrient cycling, directly supplying a host plant with nitrogen (N). AMF can also affect the outcome of interspecific interactions, but a mechanistic understanding of how soil N availability affects AMF-mediated interspecific relationships is currently lacking. We selected one dominant (Bothriochloa ischaemum; C4 grass) and one subordinate (Lespedeza davurica; legume) species in a natural grassland climax community to investigate the mechanism by which AMF influence interspecific interaction (mixed and monoculture) under three levels of N addition (0, low, and high N addition). Under the non-N addition treatment, AMF preferentially supplied N to the roots of B. ischaemum at the expense of N uptake by L. davurica, resulting in inhibited AMF benefits for L. davurica shoot growth. Under the low N addition treatment, interspecific interaction via AMF promoted L. davurica growth. Compared to the non-N addition treatment, N addition largely mitigated the effects, both positive (for B. ischaemum) and negative (for L. davurica), of AMF-mediated interspecific interaction on plant N uptake via AMF. When soil N availability severely limited plant growth, preferential N supply to the C4 grass by AMF was important for maintaining the abundance of the dominant species. When the N limitation for plant growth was alleviated by N addition, the interaction between AMF and soil microorganisms improved nutrient availability for the legume by stimulating activity of the enzyme responsible for soil organic matter mineralization, which is important for maintaining the abundance of the subordinate species. These data could influence strategies for maintaining biodiversity.  相似文献   

9.
Using ruthenium red as a macromolecule, endocytosis was demonstrated in the plerocercoid of Ligula intestinalis and adult Schistocephalus solidus. Uptake, transport across the tegument, and exocytosis across the basal plasma membrane occurred within 6 min. The types of vesicles in the tegument of L. intestinalis are redescribed and their former classification is modified. The vertical and longitudinal distribution of pinosomes in the tegument of adult S. solidus and L. intestinalis plerocercoids were determined. The possible role of macromolecular uptake in the economy of pseudophyllidean tapeworms is discussed with particular reference to growth and defence of an unencysted larval stage in the tissues of the intermediate host.  相似文献   

10.
Arbuscular mycorrhizal (AM) fungi are known to promote plant growth and nutrient uptake, but their role in nitrogen (N) uptake still remains unclear. Therefore, a pot experiment was set up to evaluate the impacts of N addition and AM inoculation (Diversispora eburnea, Claroideoglomus etunicatum, Paraglomus occultum, and their mixture) on AM root colonization, plant biomass, N and P nutrition in Elymus nutans. Our results showed that AM root colonization was unaffected by N addition but was significantly affected by different AM fungal species. D. eburnea and C. etunicatum showed significant higher root colonization than P. occultum. The E. nutans exhibited the highest biomass when inoculated with D. eburnea and significantly higher than non-mycorrhizal (the control) regardless of N addition. Under N addition treatment, D. eburnea significantly enhanced P content of roots, N content of shoots and roots, while AM mixture significantly enhanced shoot P content compared with non-mycorrhizal. However, N and P content in shoots and roots did not significantly vary among treatments when no N was added. In addition, inoculation with C. etunicatum and P. occultum showed no significant effect on plant biomass, N and P content regardless of N addition. In conclusion, this study revealed that the plant response to N addition depends on AM fungal species and also confirmed that significant functional diversity exists among AM fungal species.  相似文献   

11.
We quantified the effects of initial macroalgal tissue nitrogen (N) status (depleted and enriched) and varying pulses of nitrate (NO3?) concentration on uptake and storage of nitrogen in Ulva intestinalis L. and Ulva expansa (Setch.) Setch. et N. L. Gardner using mesocosms modeling shallow coastal estuaries in Mediterranean climates. Uptake of NO3? (μmol · g dry weight [dwt]?1 · h?1) was measured as loss from the water after 1, 2, 4, 8, 12, and 24 h and storage as total tissue nitrogen (% dwt) and nitrate (ppm). Both species of algae exhibited a high affinity for NO3? across all N pulses and initial tissue contents. There was greater NO3? removal from the water for depleted than enriched algae across all time intervals. In the low‐N‐pulse treatment, U. intestinalis and U. expansa removed all measurable NO3? within 8 and 12 h, respectively, and in the medium and high treatments, removal was high and then decreased over time. Maximum mean uptake rates of nitrate were greater for U. expansa (~300 μmol · g dwt?1 · h?1) than U. intestinalis (~100 μmol · g dwt?1 · h?1); however, uptake rates were highly variable over time. Overall, U. expansa uptake rates were double those of U. intestinalis. Maximum tissue NO3? for U. expansa was >1,000 ppm, five times that of U. intestinalis, suggesting that U. expansa has a greater storage capacity in this cellular pool. These results showed that opportunistic green algae with differing tissue nutrient histories were able to efficiently remove nitrate from the water across a wide range of N pulses; thus, both are highly adapted to proliferate in estuarine environments with pulsed nutrient supplies.  相似文献   

12.
Seagrass meadows play an important role in marine ecosystems. A part of seagrass production is also exported to adjacent coastal terrestrial systems, possibly influencing their functioning. In this work we experimentally analyzed the effect of Posidonia oceanica beach-cast on plant germination, growth, and nutrient uptake of two plant species (Cakile maritima and Elymus farctus) that grow on upper beaches and fore dunes along the Mediterranean coasts. We compared plants growing in simple sand (control) with those growing in a substrate enriched with P. oceanica wrack (treatment) in laboratory. P. oceanica wrack doubled the N substrate pool and kept the substrate humid. Plants growing in the treated substrate grew faster, were twice as large as those growing in the control substrate, while tissues were enriched in N and P (Cakile by the 1.3 fold in N and 2.5 fold in P; Elymus by 1.5 fold in N and 2 fold in P). Our results suggest a positive effect of seagrass litter for the enhancing of dune species, highlighting its role for the conservation of coastal dune ecosystems.  相似文献   

13.
Pot and field experiments were conducted in the greenhouse and at three field sites (Marondera, Domboshawa and Makoholi) in Zimbabwe to examine the effects of soils and fertilizers on nutrient uptake and growth of 6 exotic tree species (Eucalyptus camaldulensis, E. grandis, E. tereticornis, Leucaena leucocephala, Casuarina cunninghamiana, and Acacia holosericea). Plant growth, N and P contents of all species were increased by the application of N, P, K and micronutrient fertilizers. The effect of individual nutrients (N, P, K and micronutrients) and their combination on Eucalyptus species was further investigated in a pot experiment using soil from Domboshawa. Eucalyptus species responded only to N application and no significant interactions were found between N and the other elements. Nutrient uptake results showed that E. camaldulensis and E. tereticornis removed more cations than the N-fixing trees but only in the fertilized treatments. L. leucocephala and C. cunninghamiana were higher in P, but no clear trends were observed for N. Plant growth and nutrient uptake by E. camaldulensis. C. cunninghamiana and A. holosericea were assessed in the field at the three sites. Plant species grown in the Marondera site had greater height and diameter at breast height (DBH) than those in the two other sites. These results followed trends in soil nutrient contents. The analysis of foliage revealed differences in the nutrient concentration of leaves from different trees, but no effect of site was found. The interrelationships between plant characteristics, soil and foliage nutrients were examined. In a pot experiment, mineral N was the only variable correlated with growth response and nutrient uptake, while in the field the only significant correlation was obtained with soil pH.  相似文献   

14.
The change in phosphorus and nitrogen content in a common geophyte spring species, Allium ursinum, is studied in alluvial forests in relation to three flooding histories related to river regulation: (1) annually flooded, (2) unflooded for 30 years, and (3) unflooded for 200 years. Flood suppression leads to a reduction of available P soil content as well as decreasing the biomass and the amount of phosphorus in plants, but has no significant effect on N plant content. Plant N:P ratio increases with the suppression of floods and is primarily driven by soil N:P ratios, in turn markedly linked to the total nitrogen in the soil. We highlighted a lower nutrient accumulation in leaves during plant growth in unflooded forests. Overall, our results suggest that P was the main limiting factor in unflooded forests while nitrogen was the main limiting factor in annually flooded forests. Flood suppression strongly affects the morphology and nutrient uptake by Allium ursinum and thus nutrient cycling in riverine forests.  相似文献   

15.
Non-native ascidians are a dominant feature of many sessile marine communities throughout the world and may have negative effects on species diversity. We tested effects of the non-native Ciona intestinalis on the sessile invertebrate community in San Francisco Bay, where it occurs in dense aggregations. In particular, we compared species richness between PVC panels from which C. intestinalis were experimentally removed to panels with naturally dense C. intestinalis growth, using fouling panels of four sizes (between 49 cm2 and 1177 cm2) to measure the effect of C. intestinalis recruitment on species-area relationships. We initially deployed 120 fouling panels (30 of each size) at a site known to have dense populations of C. intestinalis, assigning these to three different treatments: (1) Experimental removal, whereby new recruits of C. intestinalis were removed on a weekly basis, pulling panels out of the water for a short time period to do so; (2) Manipulated control, whereby panels were removed from the water each week (as in the experimental removal) but without C. intestinalis removal; and (3) Unmanipulated control, which remained in the water throughout the experiment. After 4 months, all of the panels were collected and analyzed to estimate species richness and relative abundance (percent cover) of sessile invertebrates and of C. intestinalis. Across all panels, species richness was negatively correlated with C. intestinalis abundance. The removal of C. intestinalis produced communities with significantly higher species richness than the controls. The overall species composition of treated and control panels was also distinctly different, with many species occurring more often in the absence of C. intestinalis, while others occurred more often on C. intestinalis-dominated panels. These data suggest that C. intestinalis both depress local species diversity and alter community assembly processes to fundamentally change sessile community composition.  相似文献   

16.
Tissue N, P, K, Ca, and Mg content was estimated in traps and photosynthetic and carnivorous shoots in five aquatic carnivorous plant species from an outdoor culture: Aldrovanda vesiculosa, Utricularia vulgaris, U. reflexa, U. intermedia, and U. stygia, for the determination of the mineral cost of carnivory. In three species with monomorphic shoots (A. vesiculosa, U. vulgaris, U. reflexa), tissue P and K content in traps was significantly higher than that in their photosynthetic shoots, whereas N content was about the same. In U. stygia and U. intermedia with dimorphic shoots, tissue N and P content was markedly the highest in photosynthetic shoots followed by traps, while it was lowest in carnivorous shoots. In all five species, trap K content was significantly (2–4 times) higher than that in photosynthetic and carnivorous shoots. In all species, the values of the mineral cost of carnivory – the proportion of mineral nutrient amount contained in traps or carnivorous shoots to that in the total plant biomass – were within 19–61% for N, 33–76% P, 51–78% K, 26–70% Ca, and 34% for Mg. A new concept of the ecological cost-benefit relationships of plant carnivory, based on the mineral benefit of prey capture and mineral costs associated with trap production, is introduced for aquatic carnivorous plants. The evolution of this plant group is considered to show the optimization of these mineral cost-benefit relationships.  相似文献   

17.

Background and aims

Australian herbaceous native species have evolved in phosphorus (P) impoverished soils. Our objective was to explore shoot and root adaptations of two of these species with potential to be developed as pasture plants, at low, moderate and high P supply after 4 and 7?weeks of growth.

Methods

A glasshouse experiment examined the effect of 5, 20 and 80?mg?P?kg?1 air-dry soil on growth, rhizosphere carboxylate content, and mineral nutrition of two Australian native perennials, Kennedia nigricans (Fabaceae) and Ptilotus polystachyus (Amaranthaceae), and the exotic Medicago sativa (Fabaceae).

Key results

Leaf P concentrations at P80 were 6, 14 and 52?mg?P?g?1 leaf dry weight for M. sativa, K. nigricans and P. polystachyus, respectively. As soil P concentration increased, rhizosphere carboxylate content decreased for M. sativa, increased and then decreased for K. nigricans and was unchanged for P. polystachyus. For all species, the contribution of malic acid declined at the second harvest. For all species and P treatments, the amount of rhizosphere carboxylates per unit root length decreased as root length of a plant increased. Plant P content was determined more by P uptake rate per unit root length and time than by root length. Uptake of Mo for all species, and uptake of K, Mg and Mn for P. polystachyus, increased with soil P concentration. Uptake of Fe and S was higher when the content of carboxylates in the rhizosphere was higher.

Conclusion

Root physiological adaptations (i.e. rhizosphere carboxylate content and P-uptake rate) are more important than morphological adaptations (i.e. root length and diameter) to enhance the uptake of P and cations.  相似文献   

18.
Land application of pre-treated wastewater is increasingly practiced to achieve both treatment and beneficial reuse of applied effluent. Vegetation is an important component of these systems, affecting hydraulic loading and nutrient uptake and hence treatment efficiency. This work investigated the effect of plant species (Acacia cyanophylla, Eucalyptus camaldulensis, Populus nigra and Arundo donax), on water requirements, nutrient removal, water use efficiency (WUE) and biomass production in land treatment systems (LTS) in which pre-treated wastewater was applied at rates to meet crop evapotranspiration. Vegetation had a strong effect on all the parameters monitored during this trial. A. cyanophylla produced the greatest amount of biomass and showed the highest irrigation requirements and WUE, followed by E. camaldulensis, A. donax and P. nigra. In addition, A. cyanophylla and A. donax achieved a higher leaf-N content compared to other species. As a result of the differences in tissue nutrient content and biomass, A. cyanophylla accumulated 23, 20, and 70% more N in hypergeous biomass than E. camaldulensis, A. donax and P. nigra, respectively. A. cyanophylla and E. camaldulensis accumulated 57 and 53% respectively more P than did P. nigra and A. donax. Therefore substantial improvement of the performance of the LTS in terms of nutrient removal can be achieved through the selection of appropriate plant species. Despite the enhanced growth rates observed in the study nutrient recovery by vegetation did not exceed 31 and 35% of the applied N and P, respectively. The relatively low percentages of removal are attributed to increased concentration of nutrients in effluent and the high ET rates prevailing in the study area. These findings suggest that additional practices are required to mitigate environmental impacts arising from excessive nutrient loads when effluent is applied at rates to meet crop water requirements.  相似文献   

19.
Differences in resource acquisition between native and exotic plants is one hypothesis to explain invasive plant success. Mechanisms include greater resource acquisition rates and greater plasticity in resource acquisition by invasive exotic species compared to non-invasive natives. We assess the support for these mechanisms by comparing nitrate acquisition and growth of invasive annual and perennial grass seedlings in western North America. Two invasive exotic grasses (Bromus tectorum and Taeniatherum caput-medusae) and three perennial native and exotic grasses (Pseudoroegneria spicata, Elymus elymoides, and Agropyron cristatum) were grown at various temperatures typical of autumn and springtime when resource are abundant and dominance is determined by rapid growth and acquisition of resources. Bromus tectorum and perennial grasses had similar rates of nitrate acquisition at low temperature, but acquisition by B. tectorum significantly exceeded perennial grasses at higher temperature. Consequently, B. tectorum had the highest acquisition plasticity, showcasing its ability to take advantage of transient warm periods in autumn and spring. Nitrate acquisition by perennial grasses was limited either by root production or rate of acquisition per unit root mass, suggesting a trade-off between nutrient acquisition and allocation of growth to structural tissues. Our results indicate the importance of plasticity in resource acquisition when temperatures are warm such as following autumn emergence by B. tectorum. Highly flexible and opportunistic nitrate acquisition appears to be a mechanism whereby invasive annual grasses exploit soil nitrogen that perennials cannot use.  相似文献   

20.

Background and Aims

An updated version of a mechanistic structural–functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions.

Methods

The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow–Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root.

Key Results

Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0–30 and 30–60 cm) contained 75–88 % of the total root length and biomass, and accounted for 90–95 % of N taken up at harvest.

Conclusions

This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号