首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human induced pluripotent stem cell (hiPSC)-derived neurons may be effectively used for drug discovery and cell-based therapy. However, the immaturity of cultured human iPSC-derived neurons and the lack of established functional evaluation methods are problematic. We here used a multi-electrode array (MEA) system to investigate the effects of the co-culture of rat astrocytes with hiPSC-derived neurons on the long-term culture, spontaneous firing activity, and drug responsiveness effects. The co-culture facilitated the long-term culture of hiPSC-derived neurons for >3 months and long-term spontaneous firing activity was also observed. After >3 months of culture, we observed synchronous burst firing activity due to synapse transmission within neuronal networks. Compared with rat neurons, hiPSC-derived neurons required longer time to mature functionally. Furthermore, addition of the synapse antagonists bicuculline and 6-cyano-7-nitroquinoxaline-2,3-dione induced significant changes in the firing rate. In conclusion, we used a MEA system to demonstrate that the co-culture of hiPSC-derived neurons with rat astrocytes is an effective method for studying the function of human neuronal cells, which could be used for drug screening.  相似文献   

2.
A key objective of stem cell biology is to create physiologically relevant cells suitable for modeling disease pathologies in vitro. Much progress towards this goal has been made in the area of motor neuron (MN) disease through the development of methods to direct spinal MN formation from both embryonic and induced pluripotent stem cells. Previous studies have characterized these neurons with respect to their molecular and intrinsic functional properties. However, the synaptic activity of stem cell-derived MNs remains less well defined. In this study, we report the development of low-density co-culture conditions that encourage the formation of active neuromuscular synapses between stem cell-derived MNs and muscle cells in vitro. Fluorescence microscopy reveals the expression of numerous synaptic proteins at these contacts, while dual patch clamp recording detects both spontaneous and multi-quantal evoked synaptic responses similar to those observed in vivo. Together, these findings demonstrate that stem cell-derived MNs innervate muscle cells in a functionally relevant manner. This dual recording approach further offers a sensitive and quantitative assay platform to probe disorders of synaptic dysfunction associated with MN disease.  相似文献   

3.
Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson''s disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D2 autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.  相似文献   

4.
Here we describe a protocol to generate a co-culture consisting of 2 different neuronal populations. Induced pluripotent stem cells (iPSCs) are reprogrammed from human fibroblasts using episomal vectors. Colonies of iPSCs can be observed 30 days after initiation of fibroblast reprogramming. Pluripotent colonies are manually picked and grown in neural induction medium to permit differentiation into neural progenitor cells (NPCs). iPSCs rapidly convert into neuroepithelial cells within 1 week and retain the capability to self-renew when maintained at a high culture density. Primary mouse NPCs are differentiated into astrocytes by exposure to a serum-containing medium for 7 days and form a monolayer upon which embryonic day 18 (E18) rat cortical neurons (transfected with channelrhodopsin-2 (ChR2)) are added. Human NPCs tagged with the fluorescent protein, tandem dimer Tomato (tdTomato), are then seeded onto the astrocyte/cortical neuron culture the following day and allowed to differentiate for 28 to 35 days. We demonstrate that this system forms synaptic connections between iPSC-derived neurons and cortical neurons, evident from an increase in the frequency of synaptic currents upon photostimulation of the cortical neurons. This co-culture system provides a novel platform for evaluating the ability of iPSC-derived neurons to create synaptic connections with other neuronal populations.  相似文献   

5.
Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues, which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases, appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study, we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS) cell derived peripheral nervous system (PNS) and central nervous system (CNS), or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally, calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next, we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs, and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions.  相似文献   

6.
Loss of cortical neurons may lead to sever and sometimes irreversible deficits in motor function in a number of neuropathological conditions. Absence of spontaneous axonal regeneration following trauma in the adult central nervous system (CNS) is attributed to inhibitory factors associated to the CNS white matter and to the non-permissive environment provided by reactive astrocytes that form a physical and biochemical barrier scar. Neural transplantation of embryonic neurons has been widely assessed as a potential approach to overcome the generally limited capacity of the mature CNS to regenerate axons or to generate new neurons in response to cell loss. We have recently shown that embryonic (E14) mouse motor cortical tissue transplanted into the damaged motor cortex of adult mice developed efferent projections to appropriate cortical and subcortical host targets including distant areas such as the spinal cord, with a topographical organization similar to that of intact motor cortex. Several parameters might account for the outgrowth of axonal projections from embryonic neurons within a presumably non-permissive adult brain, among which are astroglial reactions and myelin formation. In the present study, we have examined the role of astrocytes and myelin in the axonal outgrowth of transplanted neurons.Key Words: motor cortex, neuronal transplantation, embryonic cells, GFP, GFAP, PLP  相似文献   

7.
Epidermal growth factor (EGF)-responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self-renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF-responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF-generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain-derived neurotrophic factor (BDNF) (5 ng in 0.5 microL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF-responsive stem cell-derived neurons possess limited intrinsic capability for long-distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF-responsive stem cell-derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF.  相似文献   

8.
Neural stem cells proliferate in vitro and form neurospheres in the presence of epidermal growth factor (EGF), and are capable of differentiating into both neurons and glia when exposed to a substrate. We hypothesize that specific neurotrophic factors induce differentiation of stem cells from different central nervous system (CNS) regions into particular fates. We investigated differentiation of stem cells from the postnatal mouse hippocampus in culture using the following trophic factors (20 ng/mL): brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and glial-derived neurotrophic factor (GDNF). Without trophic factors, 32% of stem cells differentiated into neurons by 4 days in vitro (DIV), decreasing to 10% by 14 DIV. Addition of BDNF (starting at either day 0 or day 3) significantly increased neuron survival (31–43% by 14 DIV) and differentiation. Morphologically, many well-differentiated neurons resembled hippocampal pyramidal neurons. 5′-Bromodeoxyuridine labeling demonstrated that the pyramidal-like neurons originated from stem cells which had proliferated in EGF-containing cultures. However, similar application of NT-3 and GDNF did not exert such a differentiating effect. Addition of BDNF to stem cells from the postnatal cerebellum, midbrain, and striatum did not induce these neuronal phenotypes, though similar application to cortical stem cells yielded pyramidal-like neurons. Thus, BDNF supports survival of hippocampal stem cell-derived neurons and also can induce differentiation of these cells into pyramidal-like neurons. The presence of pyramidal neurons in BDNF-treated hippocampal and cortical stem cell cultures, but not in striatal, cerebellar, and midbrain stem cell cultures, suggests that stem cells from different CNS regions differentiate into region-specific phenotypic neurons when stimulated with an appropriate neurotrophic factor. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 395–425, 1998  相似文献   

9.
Loss of cortical neurons may lead to sever and sometimes irreversible deficits in motor function in a number of neuropathological conditions. Absence of spontaneous axonal regeneration following trauma in the adult central nervous system (CNS) is attributed to inhibitory factors associated to the CNS white matter and to the non-permissive environment provided by reactive astrocytes that form a physical and biochemical barrier scar. Neural transplantation of embryonic neurons has been widely assessed as a potential approach to overcome the generally limited capacity of the mature CNS to regenerate axons or to generate new neurons in response to cell loss. We have recently shown that embryonic (E14) mouse motor cortical tissue transplanted into the damaged motor cortex of adult mice developed efferent projections to appropriate cortical and subcortical host targets including distant areas such as the spinal cord, with a topographical organization similar to that of intact motor cortex. Several parameters might account for the outgrowth of axonal projections from embryonic neurons within a presumably non-permissive adult brain, among which are astroglial reactions and myelin formation. In the present study, we have examined the role of astrocytes and myelin in the axonal outgrowth of transplanted neurons.  相似文献   

10.
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.  相似文献   

11.
Hypoxic-ischemic injury is a prototype for insults characterized by extensive tissue loss. Seeding neural stem cells (NSCs) onto a polymer scaffold that was subsequently implanted into the infarction cavities of mouse brains injured by hypoxia-ischemia allowed us to observe the multiple reciprocal interactions that spontaneously ensue between NSCs and the extensively damaged brain: parenchymal loss was dramatically reduced, an intricate meshwork of many highly arborized neurites of both host- and donor-derived neurons emerged, and some anatomical connections appeared to be reconstituted. The NSC-scaffold complex altered the trajectory and complexity of host cortical neurites. Reciprocally, donor-derived neurons were seemingly capable of directed, target-appropriate neurite outgrowth (extending axons to the opposite hemisphere) without specific external instruction, induction, or genetic manipulation of host brain or donor cells. These "biobridges" appeared to unveil or augment a constitutive reparative response by facilitating a series of reciprocal interactions between NSC and host, including promoting neuronal differentiation, enhancing the elaboration of neural processes, fostering the re-formation of cortical tissue, and promoting connectivity. Inflammation and scarring were also reduced, facilitating reconstitution.  相似文献   

12.
Liu Y  Wang L  Long Z  Zeng L  Wu Y 《PloS one》2012,7(5):e38243
Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific marker β-tubulin III, were dramatically increased at 7 days in the co-culture condition. Blocking the effects of brain-derived neurotrophic factor (BDNF) with an anti-BDNF antibody reduced the number of neurons differentiated from NSCs when co-cultured with protoplasmic astrocytes. In fact, the content of BDNF in the supernatant obtained from protoplasmic astrocytes and NSCs co-culture media was significantly greater than that from control media conditions. These results indicate that protoplasmic astrocytes promote neuronal differentiation of NSCs, which is driven, at least in part, by BDNF.  相似文献   

13.
Microelectrode arrays (MEAs) provide a means to investigate the electrophysiological behavior of neuronal systems through the measurements from neuronal culture preparations. Changes in activity patterns of neuronal networks are usually detected by applying neural chemicals. Because of the difficulties of fabricating the arrays, and the delicate and less reliable properties of cortical neurons, MEA-based systems with cortical neuronal networks for neurophamacological applications are technically difficult, therefore restricting their utility. Here, we report a new approach to the development of such MEA-based system with sensitive and durable MEAs conveniently fabricated and the culture conditions optimized. Upon growth differentiation, cortical neurons, cultured directly on MEAs, reach a developmentally stable and reliable activity state. With this system, we monitored the global spontaneous activities of neuronal networks and demonstrated the fine discrimination for specific substances and unique property of cortical neurons, which validated both the applicability and necessity of such system in pharmacological bioassay.  相似文献   

14.
探讨体外共培养环境中小鼠胚胎干细胞对小鼠黑色素瘤B16细胞的影响。建立C57BL/6小鼠胚胎干细胞系,通过小鼠胚胎干细胞与肿瘤细胞体外共培养模型观察小鼠胚胎干细胞对肿瘤细胞的形态及生长行为的影响,MTT法与transwell小室法分别检测共培养后肿瘤细胞粘附性、迁移性及侵袭性的变化。共培养中小鼠胚胎干细胞能够侵入并推开小鼠黑色素瘤细胞形成自己的生长空间,与对照组比较共培养后肿瘤细胞的粘附性、迁移性及侵袭性均显著降低(P<0.05,P<0.01)。结果表明体外共培养体系中小鼠胚胎干细胞能够侵袭肿瘤细胞,并降低细胞粘附、迁移及侵袭相关恶性生物学行为。  相似文献   

15.
Embryonic stem (ES) cells are multipotent progenitors with unlimited developmental potential, and in vitro differentiated ES cell-derived neuronal progenitors can develop into functional neurons when transplanted in the central nervous system. As the capacity of naive primary ES cells to integrate in the adult brain and the role of host neural tissue therein are yet largely unknown, we grafted low densities of undifferentiated mouse ES (mES) cells in adult mouse brain regions associated with neurodegenerative disorders; and we demonstrate that ES cell-derived neurons undergo gradual integration in recipient tissue and acquire morphological and electrophysiological properties indistinguishable from those of host neurons. Only some brain areas permitted survival of mES-derived neural progenitors and formed instructive environments for neuronal differentiation and functional integration of naive mES cells. Hence, region-specific presence of microenvironmental cues and their pivotal involvement in controlling ES cell integration in adult brain stress the importance of recipient tissue characteristics in formulating cell replacement strategies for neurodegenerative disorders.  相似文献   

16.
Establishment of a Parkinson's disease (PD) neuron model was attempted with mouse embryonic stem (ES) cells. ES cell lines over-expressing mouse nuclear receptor-related 1 (Nurr1), together with human wild-type and alanine 30 --> proline (A30P) and alanine 53 --> threonine (A53T) mutant alpha-synuclein were established and subjected to differentiation into dopaminergic neurons. The ES cell-derived dopaminergic neurons expressing wild-type or mutant alpha-synuclein exhibited the fundamental characteristics consistent with dopaminergic neurons in the substantia nigra. The ES cell-derived PD model neurons exhibited increased susceptibility to oxidative stress, proteasome inhibition, and mitochondrial inhibition. Cell viability of PD model neurons and the control neurons was similar until 28 days after differentiation. Nonetheless, after that time, PD model neurons gradually began to undergo neuronal death over the course of 1 month, showing cytoplasmic aggregate formation and an increase of insoluble alpha-synuclein protein. Such delayed neuronal death was observed in a mutant alpha-synuclein protein level-dependent manner, which was slightly inhibited by a c-jun N-terminal kinase inhibitor and a caspase inhibitor. Such cell death was not observed when the same ES cell lines were differentiated into oligodendrocytes. The ES cell-derived PD model neurons are considered as prospective candidates for a new prototype modelling PD that would allow better investigation of the underlying neurodegenerative pathophysiology.  相似文献   

17.
A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.  相似文献   

18.
The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.  相似文献   

19.
Optimal use of patient-derived, induced pluripotent stem cells for modeling neuronal diseases is crucially dependent upon the proper physiological maturation of derived neurons. As a strategy to develop defined differentiation protocols that optimize electrophysiological function, we investigated the role of Ca2+ channel regulation by astrocyte conditioned medium in neuronal maturation, using whole-cell patch clamp and Ca2+ imaging. Standard control medium supported basic differentiation of induced pluripotent stem cell-derived neurons, as assayed by the ability to fire simple, single, induced action potentials. In contrast, treatment with astrocyte conditioned medium elicited complex and spontaneous neuronal activity, often with rhythmic and biphasic characteristics. Such augmented spontaneous activity correlated with astrocyte conditioned medium-evoked hyperpolarization and was dependent upon regulated function of L-, N- and R-type Ca2+ channels. The requirement for astrocyte conditioned medium could be substituted by simply supplementing control differentiation medium with high Ca2+ or γ-amino butyric acid (GABA). Importantly, even in the absence of GABA signalling, opening Ca2+ channels directly using Bay K8644 was able to hyperpolarise neurons and enhance excitability, producing fully functional neurons. These data provide mechanistic insight into how secreted astrocyte factors control differentiation and, importantly, suggest that pharmacological modulation of Ca2+ channel function leads to the development of a defined protocol for improved maturation of induced pluripotent stem cell-derived neurons.  相似文献   

20.
Several protocols have been developed for human induced pluripotent stem cell neuronal differentiation. We compare several methods for forebrain cortical neuronal differentiation by assessing cell morphology, immunostaining and gene expression. We evaluate embryoid aggregate vs. monolayer with dual SMAD inhibition differentiation protocols, manual vs. AggreWell aggregate formation, plating substrates, neural progenitor cell (NPC) isolation methods, NPC maintenance and expansion, and astrocyte co-culture. The embryoid aggregate protocol, using a Matrigel substrate, consistently generates a high yield and purity of neurons. NPC isolation by manual selection, enzymatic rosette selection, or FACS all are efficient, but exhibit some differences in resulting cell populations. Expansion of NPCs as neural aggregates yields higher cell purity than expansion in a monolayer. Finally, co-culture of iPSC-derived neurons with astrocytes increases neuronal maturity by day 40. This study directly compares commonly employed methods for neuronal differentiation of iPSCs, and can be used as a resource for choosing between various differentiation protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号