首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membrane-anchored heparin-binding EGF-like growth factor precursor (proHB-EGF)/diphtheria toxin receptor (DTR) belongs to a class of transmembrane growth factors and physically associates with CD9/DRAP27 which is also a transmembrane protein. To evaluate the biological activities of proHB-EGF/DTR as a juxtacrine growth factor and the biological significance of its association with CD9/DRAP27, the mitogenic activity of proHB-EGF/DTR was analyzed using stable transfectants of mouse L cells expressing both human proHB-EGF/DTR and monkey CD9/DRAP27, or either one alone. Juxtacrine activity was assayed by measuring the ability of cells in co-culture to stimulate DNA synthesis in an EGF receptor ligand dependent cell line, EP170.7. LH-2 cells expressing human proHB-EGF/DTR stimulated EP170.7 cell growth moderately. However, LCH-1 cells, a stable co-transfectant expressing both human proHB-EGF/DTR and monkey CD9/DRAP27 cDNAs, dramatically unregulated the juxtacrine growth factor activity of proHB-EGF/DTR approximately 25 times over that of LH-2 cells even though both cell types expressed similar levels of proHB-EGF/DTR on the cell surface. Anti-CD9/DRAP27 antibodies which were not able to neutralize the mitogenic activity of soluble HB-EGF suppressed LCH-1 cell juxtacrine growth activity to the same extent as did anti-HB-EGF neutralizing antibodies and CRM 197, specific inhibitors of human HG-EGF. These findings suggest that optimal expression of the juxtacrine growth activity of proHB-EGF/DTR requires co-expression of CD9/DRAP27. These studies also indicate that growth factor potentiation effects which have been observed previously for soluble growth factors also occurs at the level of cell surface associated growth factors.  相似文献   

2.
Diphtheria toxin (DT) receptor associates with a 27-kD membrane protein (DRAP27) in monkey Vero cells. A cDNA encoding DRAP27 was isolated, and its nucleotide sequence was determined. The deduced amino acid sequence revealed that DRAP27 is the monkey homologue of human CD9 antigen. DRAP27 is recognized by CD9 antibodies. A human-mouse hybrid cell line (3279-10) possessing human chromosome 5, sensitive to DT, but not expressing CD9 antigen, was used for transfection experiments with DRAP27. When the cloned cDNA encoding DRAP27 was transiently expressed in 3279-10 cells, the total DT binding capacity was three to four times higher than that of untransfected controls. Transfectants stably expressing DRAP27 have an increased number of DT binding sites on the cell surface. Furthermore, the transfectants are 3-25 times more sensitive to DT than untransfected cells, and the sensitivity of these cells to DT is correlated with the number of DRAP27 molecules on the surface. However, when the cloned cDNA was introduced into mouse cell lines that do not express DT receptors, neither an increased DT binding nor enhancement of DT sensitivity was observed. Hence, we conclude that DRAP27 itself does not bind DT, but serves to increase DT binding and consequently enhances DT sensitivity of cells that have DT receptors. 12 proteins related to DRAP27/CD9 antigen were found through homology search analysis. These proteins appear to belong to a new family of transmembrane proteins.  相似文献   

3.
A monoclonal antibody that blocks the binding of diphtheria toxin to Vero cells was isolated by immunizing mice with Vero cell membrane. The antibody inhibits the binding of diphtheria toxin and also CRM197, a mutant form of diphtheria toxin, to Vero cells, and consequently inhibits the cytotoxicity of diphtheria toxin. This antibody does not directly react with the receptor molecule of diphtheria toxin (DTR14.5). Immunoprecipitation and immunoblotting studies revealed that this antibody binds to a novel membrane protein of 27 kDa (DRAP27). When diphtheria toxin receptor was passed through an affinity column made with this antibody, the receptor was trapped only in the presence of DRAP27. These results indicate that DRAP27 and DTR14.5 closely associate in Vero cell membrane and that the inhibition of the binding of diphtheria toxin to the receptor is due to the binding of the antibody to the DRAP27 molecule. Binding studies using 125I-labeled antibody showed that there are many more molecules of DRAP27 on the cell surface than diphtheria toxin-binding sites. However, there is a correlation between the sensitivity of a cell line to diphtheria toxin and the number of DRAP27 molecules on the cell surface, suggesting that DRAP27 is involved in the entry of diphtheria toxin into the target cell.  相似文献   

4.
A new system for lineage ablation is based on transgenic expression of a diphtheria toxin receptor (DTR) in mouse cells and application of diphtheria toxin (DT). To streamline this approach, we generated Cre-inducible DTR transgenic mice (iDTR) in which Cre-mediated excision of a STOP cassette renders cells sensitive to DT. We tested the iDTR strain by crossing to the T cell- and B cell-specific CD4-Cre and CD19-Cre strains, respectively, and observed efficient ablation of T and B cells after exposure to DT. In MOGi-Cre/iDTR double transgenic mice expressing Cre recombinase in oligodendrocytes, we observed myelin loss after intraperitoneal DT injections. Thus, DT crosses the blood-brain barrier and promotes cell ablation in the central nervous system. Notably, we show that the developing DT-specific antibody response is weak and not neutralizing, and thus does not impede the efficacy of DT. Our results validate the use of iDTR mice as a tool for cell ablation in vivo.  相似文献   

5.
《The Journal of cell biology》1995,129(6):1691-1705
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family of growth factors, which interact with EGF receptor to exert mitogenic activity. The membrane-anchored form of HB- EGF, proHB-EGF, is biologically active, providing mitogenic stimulation to neighboring cells in a juxtacrine mode. ProHB-EGF forms a complex with diphtheria toxin receptor-associated protein (DRAP27)/CD9, a tetra membrane-spanning protein that upregulates the juxtacrine mitogenic activity of proHB-EGF. We explored whether other proteins associate with DRAP27/CD9 and proHB-EGF. Immunoprecipitation with anti-DRAP27/CD9 resulted in preferential coprecipitation of integrin alpha 3 beta 1 from Vero cell, A431 cell and MG63 cell lysates. Anti-integrin alpha 3 or anti-integrin beta 1 coprecipitated DRAP27/CD9 from the same cell lysates. Chemical cross-linking confirmed the physical association of DRAP27/CD9 and integrin alpha 3 beta 1. Using Vero-H cells, which overexpress HB-EGF, we also demonstrated the association of proHB-EGF with DRAP27/CD9 and integrin alpha 3 beta 1. Moreover, colocalization of proHB-EGF, DRAP27/CD9, and integrin alpha 3 beta 1 at cell-cell contact sites was observed by double-immunofluorescence staining. At cell-cell contact sites, DRAP27/CD9 was highly coincident with alpha- catenin and vinculin, suggesting that DRAP27/CD9, proHB-EGF, and integrin alpha 3 beta 1 are colocalized with adherence junction- locating proteins. These results indicate that direct interaction of growth factors and cell adhesion molecules may control cell proliferation during the cell-cell adhesion process.  相似文献   

6.
M Lanzrein  O Sand    S Olsnes 《The EMBO journal》1996,15(4):725-734
We have investigated the role of the transmembrane and cytoplasmic domains of the diphtheria toxin (DT) receptor [heparin-binding epidermal growth factor (HB-EGF) precursor] in the intoxication pathway. Two mutants were constructed in which these domains were replaced by either a 37 amino acid sequence signalling membrane attachment via a glycosylphosphatidylinositol (GPI) anchor (DTR-GPI) or by the transmembrane and cytoplasmic domains of the human EGF receptor (DTR-EGFR). Similar amounts of DTA fragment were translocated through the plasma membrane of NIH 3T3 cells transfected with the wild-type receptor (DTR), DTR-GPI and DTR-EGFR, but translocation was about six times less efficient in the case of DTR-GPI and DTR-EGFR when taking into account the number of receptors expressed. Interestingly, DT-induced 22Na+ influx was weak in DTR-EGFR cells and not detectable in DTR-GPI cells. Whole cell patch-clamp analysis showed the DT at low pH induced depolarization and decreased input resistance in DTR cells (and to a lesser extent also in DTR-EGFR cells) but not in DTR-GPI cells. These results suggest that the transmembrane and cytoplasmic part of the receptor might be involved in channel activity and that translocation of the A fragment is independent of toxin-induced cation channel activity.  相似文献   

7.
Diphtheria toxin (DT) binds to the EGF-like domain of the DT receptor (DTR), followed by internalization and translocation of the enzymatically active fragment A into the cytosol. The juxtamembrane domain (JM) of the DTR is the linker domain connecting the transmembrane and EGF-like domains. We constructed mutants of DTRs with altered JMs and studied their abilities for DT intoxication. Although DTR mutants with extended JMs showed normal DT binding activity, the cells expressing the mutants showed both reduced translocation of DT fragment A into the cytosol and reduced sensitivity to DT, when compared with cells expressing wild-type DTR. These results indicate that the JM contributes to DT intoxication by providing a space appropriate for the interaction of DT with the cell membrane. The present study also indicates that consideration of epitopes of an immunotoxins would be an important factor in the design of potent immunotoxins.  相似文献   

8.
Monkey (Mk) CD9 antigen has been shown previously to increase the diphtheria toxin (DT) sensitivity of cells when co-expressed with Mk proHB-EGF (DT receptor). We have elucidated here the mechanism whereby Mk CD9 influences Mk proHB-EGF and present evidence that Mk CD9 is a coreceptor for DT. We observed that Mk CD9 not only increased the DT sensitivity but also increased the DT receptor affinity of cells. Furthermore, the higher the Mk CD9/Mk proHB-EGF ratio, the higher the affinity. In contrast, mouse (Ms) CD9 did not increase the toxin sensitivity or receptor affinity of cells when co-expressed with Mk proHB-EGF. Using Mk/Ms chimeric CD9 molecules, we determined that the second extracellular domain of Mk CD9 is responsible for both increased sensitivity and receptor affinity. This domain of Mk CD9 also interacts with Mk proHB-EGF in a yeast two-hybrid system. Our findings thus suggest that Mk CD9 has a direct physical interaction with Mk proHB-EGF to form a DT receptor complex and that this contact may change the conformation of the receptor to increase DT binding affinity and consequently increase toxin sensitivity. We thus propose that Mk CD9 is a coreceptor for DT.  相似文献   

9.
CD9 and CD63 belong to a tetramembrane-spanning glycoprotein family called tetraspanin, and are involved in a wide variety of cellular processes, but the structure-function relationship of this family of proteins has yet to be clarified. CD9 associates with diphtheria toxin receptor (DTR), which is identical to the membrane-anchored form of heparin-binding EGF-like growth factor (proHB-EGF). CD9 upregulates the diphtheria toxin (DT) binding activity of DTR/proHB-EGF, while CD63 does not upregulate the DT binding activity in spite of the fact that this protein also associates with DTR/proHB-EGF on the cell surface. CD9 molecules localize on the cell surface, while those of CD63 localize predominantly at lysosomes and intracellular compartments. We made CD9/CD63 chimeric molecules and then studied their intracellular localization and upregulation activities. The C-terminal regions of CD63, which includes the lysosome sorting motif, showed a strong inhibitory effect on the expression of the chimeric proteins at the cell surface, while mutants lacking the lysosome sorting motif delivered more efficiently on the cell surface, indicating that the lysosome sorting motif contributes to the inhibitory effect of the C-terminal region. However, the N-terminal half of this family of proteins containing the 1st to 3rd transmembrane domains also seems to influence the cell surface expression. For the upregulation of DT binding activity the large extracellular loop (EC2) of CD9 was essential, while the remaining regions influenced the upregulation activity by changing the efficiency of cell surface expression. From these results we discussed the structure-function relationship of this family of proteins.  相似文献   

10.
A monkey cDNA (pDTS) encoding a diphtheria toxin (DT) sensitivity determinant was isolated by expression cloning in mouse L-M cells. Mouse cells are naturally resistant to DT, because they lack functional cell surface receptors for the toxin. Unlike wild-type L-M cells, pDTS-transfected mouse cells are extremely toxin sensitive and specifically bind radioiodinated DT. Intoxication of the transfected cells requires receptor-mediated endocytosis of the bound toxin. The cDNA is predicted to encode an integral membrane protein that is identical to the precursor of a heparin-binding EGF-like growth factor. The DT sensitivity protein is thus a growth factor precursor that DT exploits as a receptor.  相似文献   

11.
CD9 associates with a diphtheria toxin receptor (DTR) that is identical to the membrane-anchored form of heparin-binding EGF-like growth factor. We determined the region of CD9 important for upregulation activity. Human and monkey CD9 upregulates DT binding activity of DTR, while mouse CD9 has no upregulation activity. Transfection of chimeric constructs comprising monkey and mouse CD9s showed that the human sequence between Ala156 and Asp183 is essential for the upregulation activity. Studies of mutants, replacing a single amino acid within the region between Ala156 and Asp183 of monkey CD9 with the corresponding amino acid residue in mouse CD9, revealed that substitution of Gly158 is critical for the reduction of the upregulation activity and secondly for the substitution of Val159 and Thr175. These three amino acid residues were deduced to be located on the head domain of the second extracellular loop, suggesting that interactions of CD9 with DTR or DT at the domain containing these three amino acids were important for the upregulation of DT binding.  相似文献   

12.
Targeted cell ablation in animals is a powerful method for analyzing the physiological function of cell populations and generating various animal models of organ dysfunction. To achieve more specific and conditional ablation of target cells, we have developed a method termed Toxin Receptor mediated Cell Knockout (TRECK). A potential shortcoming of this method, however, is that overexpression of human heparin-binding epidermal growth factor-like growth factor (hHB-EGF) as a diphtheria toxin (DT) receptor in target cells or tissues may cause abnormalities in transgenic mice, since hHB-EGF is a member of the EGF growth factor family. To create novel DT receptors that are defective in growth factor activity and resistant to metalloprotease-cleavage, we mutated five amino acids in the extracellular EGF-like domain of hHB-EGF, which contains both DT-binding and protease-cleavage sites. Two of the resultant hHB-EGF mutants, I117A/L148V and I117V/L148V, possessed little growth factor activity but retained DT receptor activity. Furthermore, these mutants were resistant to metalloprotease-cleavage by 12-O-tetradecanoylphorbol-13-acetate stimulation, which is expected to enhance DT receptor activity. These novel DT receptors should be useful for the generation of transgenic mice by TRECK.  相似文献   

13.
Two substances possessing the ability to bind to diphtheria toxin (DT) were found to be present in a membrane fraction from DT-sensitive Vero cells. One of these substances was found on the basis of its ability to bind DT and inhibit its cytotoxic effect. This inhibitory substance competitively inhibited the binding of DT to Vero cells. However this inhibitor could not bind to CRM197, the product of a missense mutation in the DT gene, and did not inhibit the binding of CRM197 to Vero cells. Moreover, similar levels of the inhibitory activity were observed in membrane fractions from DT-insensitive mouse cells, suggesting the inhibitor is not the DT receptor which is specifically present in DT-sensitive cells. The second DT-binding substance was found in the same Vero cell membrane preparation by assaying the binding of 125I-labeled CRM197. Such DT-binding activity could not be observed in membrane preparation from mouse L cells. From competition studies using labeled DT and CRM proteins, we conclude that this binding activity is due to the surface receptor for DT. Treatment of these substances with several enzymes revealed that the inhibitor was sensitive to certain RNases but resistant to proteases, whereas the DT receptor was resistant to RNase but sensitive to proteases. The receptor was solubilized and partially purified by chromatography on CM-Sepharose column. Immunoprecipitation and Western blotting analysis of the partially purified receptor revealed that a 14.5-kD protein is the DT receptor, or at least a component of it.  相似文献   

14.
Transgenic mice expressing the diphtheria toxin receptor (DTR) in specific cell types are key tools for functional studies in several biological systems. B6.FVB-Tg(Itgax-DTR/EGFP)57Lan/J (CD11c.DTR) and B6.Cg-Tg(Itgax-DTR/OVA/EGFP)1Gjh/Crl (CD11c.DOG) mice express the DTR in CD11c(+) cells, allowing conditional depletion of dendritic cells. We report that dendritic-cell depletion in these models caused polymorphonuclear neutrophil (PMN) release from the bone marrow, which caused chemokine-dependent neutrophilia after 6-24 h and increased bacterial clearance in a mouse pyelonephritis model. We present a transgenic mouse line, B6.Cg-Tg(Itgax-EGFP-CRE-DTR-LUC)2Gjh/Crl (CD11c.LuciDTR), which is unaffected by early neutrophilia. However, CD11c.LuciDTR and CD11c.DTR mice showed late neutrophilia 72 h after dendritic cell depletion, which was independent of PMN release and possibly resulted from increased granulopoiesis. Thus, the time point of dendritic cell depletion and the choice of DTR transgenic mouse line must be considered in experimental settings where neutrophils may be involved.  相似文献   

15.
The recombinant fluorescent derivative of diphtheria toxin (EGFP-SbB) obtained by the replacement of toxin A subunit by enhanced green fluorescent protein (EGFP) has been used for visualization of the interaction of diphtheria toxin (DT) with sensitive and insensitive cells. It was shown that EGFP-SbB could interact with cell surface of both toxin-sensitive monkey cells (Vero cell line) and toxin-resistant mouse cells (3T3 cell line). The affinity of this protein for receptors of Vero cells was three times higher as compared with 3T3 cells. It was demonstrated that fluorescent derivate was able to interact with receptors of both cell lines and to internalize into these cells. Internalization of EGFP-SbB into the cells was inhibited by endocytosis inhibitor phenyl arsine oxide. We suppose that diverse sensitivity to DT of monkey and mouse cells can be explained not only by differences in their receptor affinity for DT but also by the processes that occur after internalization of the toxin into the cells.  相似文献   

16.
We previously developed a method termed "toxin receptor-mediated cell knockout" (TRECK). By the TRECK method, a single or repeated shot(s) of diphtheria toxin (DT) conditionally ablates a specific cell population from transgenic mice expressing the DT receptor transgene under the control of a cell type-specific promoter. In some cases of TRECK, frequent and high-dose administration of DT is required, raising the concern that these frequent injections of DT could cause production of anti-DT antibody, which would neutralize further DT administration. To solve this problem, we aimed to generate transgenic mice genetically expressing a nontoxic DT mutant, with the expectation that they may naturally acquire immune tolerance to DT. Unexpectedly, the G52E DT mutant, which is well known as the nontoxic DT variant cross reacting material 197 (CRM197), exhibited cytotoxicity in yeast and mammalian cells. Cytotoxicity of CRM197 was abrogated in cells mutated for elongation factor 2 (EF-2), indicating that CRM197 exerts its toxic effects through EF-2, similar to wild-type DT. On the other hand, the K51E/E148K DT mutant exhibited no detectable cytotoxicity. This led us to successfully obtain DT gene transgenic mice, which exhibited no histological abnormalities, and indeed acquired immune tolerance to DT.  相似文献   

17.
The internalization of surface-bound diphtheria toxin (DT) in BS-C-1 cells correlated with its appearance in intracellular endosomal vesicles; essentially no toxin appeared within secondary lysosomal vesicles. In contrast, internalized epidermal growth factor (EGF) was localized within both endosomal and lysosomal vesicles. Upon preincubation of cells with leupeptin, a lysosomal protease inhibitor, a threefold increase in the accumulation of EGF into lysosomes was observed. Under identical conditions, essentially all of the diphtheria toxin remained within endosomes (less than 2% of the intracellular diphtheria toxin accumulated in the lysosomal fraction), indicating that the inability to detect diphtheria toxin in lysosomes was not due to its rapid turnover within this vesicle. Following internalization of EGF or DT, up to 40% of the ligand appeared in the medium as TCA-soluble radioactivity. EGF degradation was partially leupeptin-sensitive and markedly NH4Cl-sensitive, indicating lysosomal degradation. In contrast, DT A-fragment degradation was resistant to these inhibitors, while B-fragment showed only partial sensitivity. These data suggest that the bulk of endocytosed diphtheria toxin is localized within endosomes and degraded by a pathway essentially independent of lysosomes.  相似文献   

18.
It is well known, that mechanism of diphtheria toxin (DT) action triggers only if toxin penetrates into acid endosome after binding with specific receptor--heparin-binding epidermal grows factor like grows factor (HB-EGF) on the cell surface. We have suggested that DT is capable to penetrate either into B-lymphocytes, which have specific immunoglobulin receptors for DT or into phagocytes, which are able to phagocytosis of DT, because in both of these cases toxin get in endosome with conditions suitable for its activation. To check this hypothesis the comparative studies with insensitive to DT mice lacking specific receptor for DT, and with sensitive to DT guinea pigs were performed. Influence of DT on vitality of phagocytes and B-cells with different specificity from mice and guinea pigs was studied. B-cells were obtained from animals immunized by control antigen--ovalbumine and recombinant diphtheria toxoid--DT without N-terminal 28 aminoacid residues responsible for toxic effect. The results obtained have showed that DT can penetrate into phagocytes and B-cells specific to DT and kill these cells even if they lack classic receptor for DT. This fact evidences that DT is potentially able to inhibit self-directed antibody response and keep from participation of phagocytes in the protection of organism from infection.  相似文献   

19.
Diphtheria toxin enters toxin-sensitive mammalian cells by receptor-mediated endocytosis employing the heparin-binding EGF-like growth factor precursor as its receptor. We reported previously (Almond and Eidels, 1994) that cytoplasmic domain mutants of the toxin receptor and cells expressing wild-type receptor internalize toxin slowly, the rate being approximately that of normal turnover of the plasma membrane. To determine whether it was possible to increase toxin sensitivity by increasing the rate of toxin internalization, we constructed diphtheria toxin cytoplasmic domain mutant cell lines containing rapid-internalization signals from either the low density lipoprotein receptor or from the lysosomal acid phosphatase precursor. Although cells transfected with mutant receptor genes internalized toxin at a faster rate than those expressing the wild-type receptor, they showed a decrease in toxin sensitivity. This decreased sensitivity may be accounted for by an observed decrease in the number of toxin-binding sites and by an increased rate of toxin internalization and degradation. These results suggest that the rate of toxin internalization may not be the rate-limiting step in the cytotoxic process.  相似文献   

20.
A chemically truncated form of diphtheria toxin, DT51, which lacks the cell-binding site but retains the membrane-translocating function, was covalently linked to luteinizing hormone (LH) and compared to similar conjugates containing diphtheria toxin (DT) or diphtheria toxin A-chain (DTA). The DT51 hormonotoxin killed cells possessing an LH receptor at concentrations similar to that of DT hormonotoxin and orders of magnitude lower than DTA hormonotoxin. The DTA hormonotoxin exhibited an LD-50 similar to that of previously reported hormonotoxins which employed DTA, ricin A-chain, or gelonin as toxic moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号